

Our Promise for Every Product We Make

At Simpson Strong-Tie we are continually striving to introduce innovative new products that advance construction technology. We are equally committed to fulfilling the Simpson Strong-Tie promise of uncompromised quality, service and support with each new expansion to our product offering. So we focus on quality and product performance, documenting both with extensive testing done to the latest industry standards. We train our people to become experts in supporting our customer's needs, providing unparalleled technical expertise for each product line we offer. Our obligation to those who specify, install and rely on our products is something everyone at Simpson Strong-Tie takes very seriously. We recognize that the trust you put in our company and our products is something we have to earn every day.

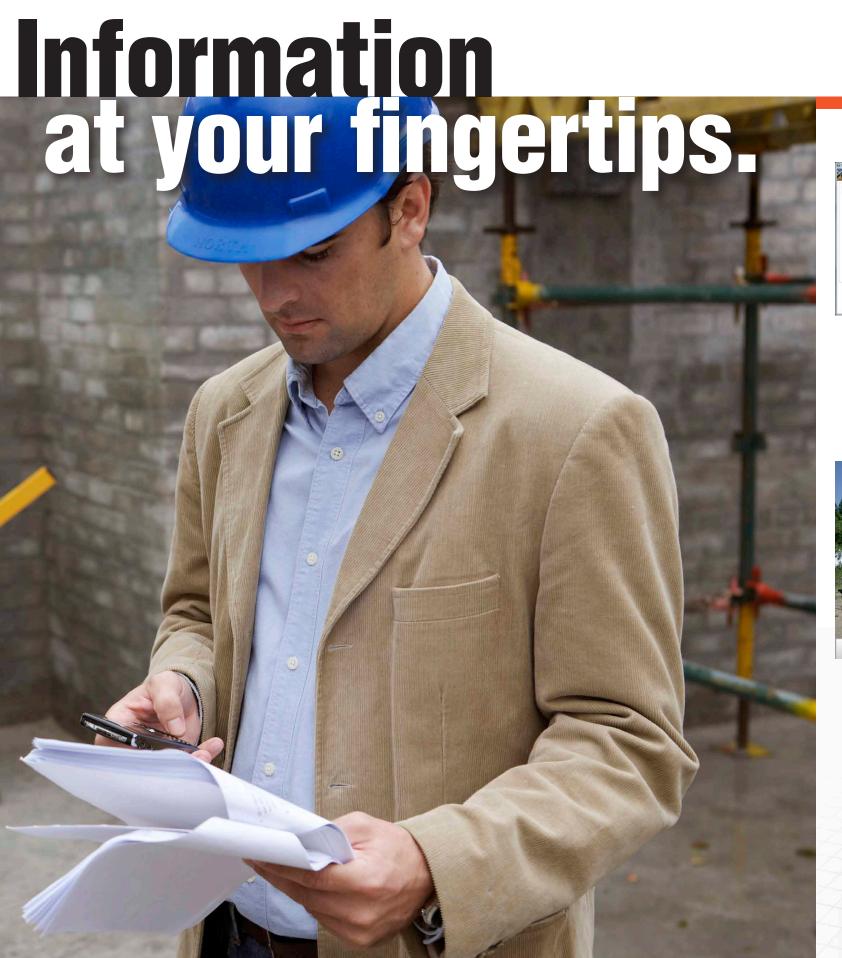
To learn more about all of our product lines, visit: www.strongtie.com

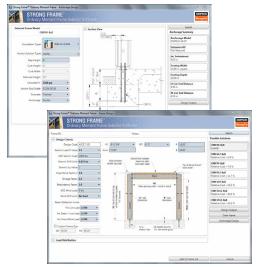
Our interactions with designers over the years has provided us with a wealth of insight into their needs. As a result, we offer a multi-faceted approach to providing technical information where and when it is needed.

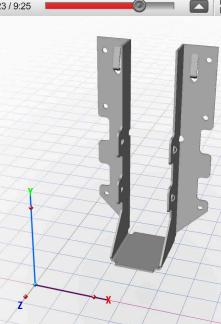
- Our salespeople and field engineers maintain regular contact with engineers and architects, updating information and acting as a valuable resource when questions arise.
- Our in-house engineering department is available to help with everything from simple questions to design assistance and problem resolution.
- Our regional branch offices educate industry professionals about our products and discuss pertinent design issues in free, regularlyscheduled seminars. Visit us at www.strongtie.com for a complete list of accredited seminars and on-line training programs.

We are happy to offer you the benefit of the knowledge we have gained from testing a wide array of structural connections, anchorage designs and structural systems.

Please don't hesitate to call.


Things happen within a tight schedule on the jobsite and up-front knowledge as well as effective question and issue resolution keeps work moving in the right direction. Simpson Strong-Tie salespeople are jobsite veterans who welcome the chance to get involved. Support such as crew training before the project starts, application advice for installers and resolution of inspection questions are all but a phone call away. Some companies feel like their job ends once the product is sold, but to us, that's where the fun begins.





With just a few keystrokes you'll find that our website is a hub of information when it comes to our products, and their application and installation. But even better, we also offer content that makes our customer's jobs easier.

Selector software

Strong Frame Selector™

Our suite of Selector software will save you time when it comes to choosing the right product for your application.

Connector Selector™ Anchor Selector™ Strong-Wall Selector™ ATS Selector™

Online Training Courses

Interactive learning tools that cover a wide variety of topics, and many are eligible for Continuing Education Units (CEU) and Professional Development Hours (PDH) credit. Topics range from product-based installation training to clarification of structural design issues.

Online Video Library

Informational and training videos that provide valuable information about our products and how they are installed. For added convenience and compatibility with mobile devices, check out the Simpson Strong-Tie channel on YouTube.

Drawing Files and Other Tools

Drawing details (in DWG, DXF and Revit® formats), an AutoCAD® menu and handy wall- and truss-bracing calculators help specifiers include our drawings in their plans as well as save time.

To learn more about all of our product lines, visit: www.strongtie.com

Revit and AutoCAD are registered trademarks of Autodesk, Inc.

Strong-Drive® SD Screw

Now there is a new fastening option for Simpson Strong-Tie connectors – the new Strong-Drive SD Structural-Connector screw. Featuring an optimized shank specifically designed for use with our connectors, the SD screw has been tested and approved as a replacement for nails in some of our most popular products.

See pages 28-29 for more information and the list of approved connectors.

MASA Mudsill Anchor

MAS mudsill anchors have always been a time-saving alternative to mudsill anchor bolts, and now the new and improved design of the MASA provides a replacement for $\frac{1}{2}$ " and $\frac{5}{6}$ " anchor bolts. Additional fasteners and the reinforcement of key sections of the anchor have improved performance so that the load capacity of the MASA mudsill anchor either meets or exceeds that of other cast-in-place anchors. Since the MASA can be installed as wide as 6' on center, the same load capacity can be achieved with fewer mudsill anchors.

See pages 44-45 for more information.

CTS218 Compression and Tension Strap

Our first strap to handle both compression and tension, the CTS is designed to repair wood members such as top plates, studs and trusses. The unique rolled-edge design allows it to span gaps as wide as $4\frac{1}{2}$ " while still fitting on the narrow face of 2x lumber.

See page 201 for more information.

HTT4 & HTT5 Tension Ties

The LTT/HTT series of tension ties offers tension-resisting solutions that install with nails. These new additions to the HTT line feature an optimized nailing pattern which results in better performance with less deflection. Designed to meet new code standards, the HTT4 and HTT5 offer higher capacities than their predecessors the HTT16 and HTT22. For an added benefit, the HTT5 installs with 6 fewer nails than the HTT22.

See page 49 for more information.

SDW Structural Wood Screw

Simpson Strong-Tie is proud to introduce our first screw specifically designed to join multi-ply wood members: the SDW wood screw. Ideal for fastening multi-ply trusses, engineered-lumber products and solid-sawn lumber, the SDW installs easily with no predrilling and allows efficient single-side fastening.

See pages 26 and 144-145 for more information.

NEW PRODUCTS FOR 2012

PAB Pre-Assembled Anchor Bolt

The PAB Pre-Assembled Anchor Bolt offers innovative design enhancements over traditional anchor-bolt designs. The plate washer at the embedded end is sandwiched between two fixed hex nuts to ensure the integrity of the anchor before the pour, and the information on the head stamp simplifies inspection.

See page 43 for more information.

HDB Holdowns

Now there is a bolted holdown that offers the low-deflection performance of our pre-deflected holdowns: the HDB. Suitable for installation on or above the sill plate as well as back-to-back and compression applications, the HDB is ideal for shearwalls, braced wall panels and lateral applications.

See pages 54-55 for more information.

THASR/L Adjustable/ Skewable Truss Hangers

The THASR/L hangers provide height adjustability and field skewability, eliminating the need for a special-order truss hanger in many applications. Shipped at a 22° right or left skew, they can be field skewed up to 75°.

See pages 152-153 for more information.

TSBR Truss Spacer-Restraint

For wood and cold-formed steel framing, the new TSBR Spacer Restraint reduces time and material cost while satisfying the prescriptive recommendations of the WTCA/TPI BCSI. Featuring an easier minimum nailing option, the TSBR captures the on-center truss spacing and alignment and remains in place to be sheathed over, eliminating the need to remove wood bracing and creating a safer, and more stable work platform for sheathing crews.

See page 160 for more information.

ABL Anchor Bolt Locator

The new ABL Anchor Bolt Locator enables the quick and secure placement of anchor bolts on concrete-deck forms prior to the pour. The steel "chair" ensures a 1" standoff and also features a structural heavy-hex nut attached to the bottom to eliminate the need for a bottom nut on the anchor bolt.

See page 33 for more information.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

ALPHABETICAL INDEX

	A Angle	180
	A34/A35 Anchor	181
	ABA/ABE/ABU Post Base	57
凾	ABL Anchor Bolt Locator	
	ABS Anchor Bolt Stabilizer	33
	AC/ACE Post Cap	64
	ANCHORMATE® Anchor Bolt Holder	33
	APG Architectural Products Group	
	ACRYLIC-TIE® Adhesive	
	ATS Anchor Tiedown System	
	Are / monor frodown by storm	00, 7 1
	B Hanger 83, 87-89, 118-	110 123
	127-128, 132-136,	
O.	BA Hanger 83, 87-88,	
V		
	BC/BCS Cap/Base	
	BP Bearing Plate	
	BT Brick Tie	202
	CB/CBGT Column Base	61, 206
	CBQGT Column Base	
V	CBSQ Column Base	62
	CC Column Cap	66-71
	CCC Column Cap	71
	CCCQ Column Cap	71
	CCO Column Cap	68-69
	CCOB Column Cap	
V	CCQ/CCOQ Column Cap	
	CCT Column Cap	
	CCTQ Column Cap	
	CF-R Form Angle/Shelf Bracket	
	CGH Corner Girder Hanger	
	CJT Concealed Tie	
	CMST Coiled Strap	
	CMSTC Coiled Strap	
	CNW Coupler Nut	
	Continuous Load Path	
	Corrosion Information	
	CP CRUSH PLATE Bearing Enhancer.	
	CPS Composite Standoff	
	CS Coiled Strap	
	CSC Ceiling Support Clip	
凾	CTS Compression Tension Strap	201
	DJTZ Deck Tie	194
	DPTZ Deck Tie	
	DS Drywall Stop	
	DSC Drag Strut Connector	
₩.	DSP Double Stud Plate Tie	
V		
<u>a</u>	DTC Roof Truss Clip	
NEW	DTT2/DTT2Z Deck Tension Tie	193

	ECCL Column Cap	71
	ECCLQ Column Cap	
	ECCO Column Cap	
V	ECCQ/ECCOQ Column Cap	
	EG Hanger 97, 213	
V	EGQ Hanger121,213,21	
	EPB Post Base	
	EPC Post Cap	
	EPOXY-TIE® Adhesive	
EN.	• EPS4Z Column Base	
	• ETB Hidden Connector Kit	
_	· E-Z Base TM (FPBB44)	
	- E-Z Mender ™ (FPBM44)	
\sim	.E-Z Spike ™ (FPBS44)	
9	(1 20 1 1)	101
	FAP Foundation Plate	37
	FB/FBR Fence Bracket	
	FC Framing Clip	
	FJA Anchor	
	FSA Anchor	
	FSC Strap	
	FSS Furring Stabilizer Strap	
	FWH Rigid Tie	
	THE INGULATE	199
	GA Angle	182
	GB Hanger	
V	GBC Gable Bracing	
	GLB Beam Seat	
	GLBT Beam Seat	
	GLS Hanger 99-100, 213	
	GLT Hanger 84-85, 88-89, 99-100, 21	
	GLTV Hanger 119, 127-129, 133-136, 21	
	del v Hanger 113, 127 123, 103 130, 21	0, 211
	H Hurricane Ties 167-17	0.189
	Hanger Options21	
	HB Hanger 118-119, 12	
	132-136, 21	
	HBC Post Base	
	HCA Hinge Connector	
	HCP Hip Corner Plate	
	HD Holdown	
EW	. HDB Holdown 11,	
_	HDC Concentric Holdown	
	HDQ Holdown	
V	HDU Holdown	
	HGAM Gusset Angle	
	HGAM Gusset Angle	
	HGB Hanger 99-100, 21	
	HGLB Beam Seat	
	HGLS Hanger	
	HGLT Hanger84-85,88-89,99-100,21	
	HGLTV Hanger 119, 127-129, 133-135, 21	
	HGT Girder Tiedown 17	ソ 101

	HGU Girder Hanger 96, 113, 212, 220
	HGUM Girder Hanger
V	HGUS Hanger
	HH Hanger
	HHB Hanger
	HHDQ Holdown
V/	
	HHUS Hanger
•/	
9	HIT Hanger 114-115, 124-126, 129-130, 213
	HL Strap Tie
	HL Heavy Angle
	HM Hurricane Tie
	HRC Connector
	HRS Strap
	HRSZ Strap 172, 174-175
	HS Hurricane Tie
	HSCNW Coupler Nut
	HSS Stud Shoe
	HST Strap 174, 206
V	HSUR/L Hanger 91, 140-141, 212
	HT Strap Tie 182, 206
	HTC Heavy Truss Clip 166
	HTS Twist Strap 173
	HTSM Twist Strap 191
凾	HTT Tension Tie
	HTU Hanger 148-149, 212, 216
	HU/HUC Hanger 75, 77-81, 95, 104,
	HUCQ Hanger 76, 95 ,112, 212
V	HUS/HUSC Hanger 76-81, 104, 110, 144, 212
	HUSTF/HUSCTF Hanger 86-87, 213
	HW Hanger 84-85, 87-89, 98,
	116-117, 127-129, 134, 213, 218
	HWI Hanger 116-117,
	127-130, 135, 213, 218
	HWU Hanger 84-85, 98, 116-117,
	127-128, 133-136, 213, 218
	ICFVL Ledger Connector System 198
	ITS Hanger 114-115, 122-125, 127-128, 213
V	IUS Hanger 101, 103, 105-108, 212
	JB Hanger 83, 86-87
	KST Speed Wall Tie (Kwik Strip)35
	L Angle
	L Strap Tie 184, 204-205
	LB Hanger 83, 86-87, 213
	L-BOLT Anchor Bolt
	LBP Bearing Plate

ECC, ECCU Column Cap 68, 70

ALPHABETICAL INDEX

		118-119, 122-132, 213,	
		97, 206, 213,	
	LF Hanger	102-103, 105-	108
		vn 171,	
		r 96, 113, 212,	
	LGUM Girder Han	ger 187, 212,	220
	LJS26DS Hanger		146
	LMAZ Mudsill And	chor	. 46
	LPCZ Post Cap		. 64
	LS Angle		182
凾	LSC Light Stair St	ringer Connector	195
V	LSSU Hanger	90, 139,	212
V	LSSUI Hanger	139,	212
	LSTA Strap Tie	174-	-175
V	LSTHD Holdown	50)-51
		174-	
V		90,	
	LT Hanger	102, 114-115, 122-	-128
愈		or	
-			
V		154,	
		nor	
	-		
		Tie	
		75, 82,	
		75, 77-79,	
		75, 77-79,	
	LUS Hanger	76-81 146-147	212
V	LUS Hanger	76-81, 146-147,	212
V			
V	MA Mudsill Ancho	or	. 46
	MA Mudsill Ancho	or 10r	. 46 . 46
	MA Mudsill Ancho MAB Mudsill Ancl MASA/MASAP M	or nor 10, 44 udsill Anchor 10, 44	. 46 . 46 I-45
	MA Mudsill Ancho MAB Mudsill Ancl MASA/MASAP MI MASB Mudsill And	or nordsill Anchor 10, 44 chor	. 46 . 46 I-45 . 46
	MA Mudsill Ancho MAB Mudsill Anclo MASA/MASAP Mi MASB Mudsill And MEG Hanger	or nor udsill Anchor 10, 44 chor	. 46 . 46 I-45 . 46 219
	MA Mudsill Ancho MAB Mudsill Anch MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio	or nor udsill Anchor 10, 44 chor 97, 204, 213,	. 46 . 46 I-45 . 46 219 . 23
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mo MASB Mudsill And MEG Hanger Metric Conversion MGT Girder Tiedo	orudsill Anchor 10, 44 chor 97, 204, 213, nn	. 46 . 46 45 . 46 219 . 23
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mo MASB Mudsill And MEG Hanger Metric Conversion MGT Girder Tiedo MGU Girder Hango	or	. 46 . 46 -45 . 46 219 . 23 190 220
	MA Mudsill Ancho MAB Mudsill Anch MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversion MGT Girder Tiedo MGU Girder Hange MIT Hanger	or	. 46 . 46 . 46 . 46 219 . 23 190 220 213
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hango MIT Hanger MIU Hanger	or	. 46 . 46 !-45 . 46 219 . 23 190 220 213 212
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hango MIT Hanger MIU Hanger	or	. 46 . 46 1-45 . 46 219 . 23 190 220 213 212 194
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hango MIT Hanger MIU Hanger ML Angles MP Mending Plate	or	. 46 . 46 . 46 219 . 23 190 220 213 212 194 197
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hango MIT Hanger MIU Hanger ML Angles MP Mending Plate MPAI Purlin Anch	or	. 46 . 46 . 46 219 . 23 190 220 213 212 194 197
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill Anch MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hango MIT Hanger MIU Hanger ML Angles MP Mending Plate MPAI Purlin Anch MSC Hanger	or	. 46 . 46 !-45 . 46 219 . 23 190 220 213 212 194 197 . 47 213
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger ML Angles MP Mending Plate MPAI Purlin Anch MSC Hanger MST Strap Tie	or	. 46 . 46 . 46 219 . 23 190 220 213 212 194 197 . 47 213
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MST Strap Tie MSTA Strap Tie	or	. 46 . 46 1-45 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -177
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Me MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MST Strap Tie MSTAM Strap Tie MSTAM Strap Tie MSTAM Strap Tie	or	. 46 . 46 !-45 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -177 175
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hango MIT Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MSTA Strap Tie MSTAM Strap Tie MSTAM Strap Tie MSTC Strap Tie	or	. 46 . 46 !-45 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -177 -175
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hango MIT Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MSTA Strap Tie MSTAM Strap Tie MSTAM Strap Tie MSTC Strap Tie MSTC Strap Tie MSTC Strap Tie MSTCB Strap Tie MSTCB Strap Tie	or	. 46 . 46 !-45 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -177 -175 192 -179
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hanger MIT Hanger MIU Hanger MIU Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MST Strap Tie MSTA Strap Tie MSTAM Strap Tie MSTCB Strap Tie MSTCB Strap Tie MSTCB Strap Tie MSTCM Strap Tie	or	. 46 . 46 1-45 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -175 192 177 177
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hango MIT Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MST Strap Tie MSTAM Strap Tie MSTCB Strap Tie MSTCB Strap Tie MSTCB Strap Tie MSTCM Strap Tie	or	. 46 . 46 1-45 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -177 192 -179 192
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MSTA Strap Tie MSTA Strap Tie MSTAM Strap Tie MSTCB Strap Tie MSTCB Strap Tie MSTCB Strap Tie MSTCM STRAP TIE MTHM/MTHM-2 H	or	. 46 . 46 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -175 192 -179 217 212
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MSTA Strap Tie MSTA Strap Tie MSTA Strap Tie MSTAM Strap Tie MSTCB STRAP TIE	or	. 46 . 46 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -175 192 -179 212 173
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill And MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MSTA Strap Tie MSTA Strap Tie MSTA Strap Tie MSTAM Strap Tie MSTCB STRAP TIE	or	. 46 . 46 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -175 192 -179 212 173
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MSTA Strap Tie MSTA Strap Tie MSTAM Strap Tie MSTC Strap Tie MSTCB	or	. 46 . 46 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -175 192 -175 177 192 -175 212 173 191
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Mi MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MSTA Strap Tie MSTA Strap Tie MSTAB Strap Tie MSTC Strap Tie MSTC Strap Tie MSTCB Strap Tie	or	. 46 . 46 !-45 . 46 219 . 23 190 220 213 212 194 197 . 47 213 -175 192 -175 212 173 191
	MA Mudsill Ancho MAB Mudsill Ancho MASA/MASAP Me MASB Mudsill Ancho MEG Hanger Metric Conversio MGT Girder Tiedo MGU Girder Hange MIT Hanger MIU Hanger MP Mending Plate MPAI Purlin Anch MSC Hanger MSTA Strap Tie MSTA Strap Tie MSTAM Strap Tie MSTC Strap Tie MSTC Strap Tie MSTCB Strap Tie	or	. 466 . 466 . 466 . 476 . 476 . 219 . 220 . 213 . 212 . 194 . 47 . 47 . 47 . 175 . 175 . 175 . 175 . 175 . 175 . 212 . 173 . 191 24

	NS/NSP Nail Stopper	200
	O Strap Ties/Angles	207
	OCB, OCC Caps/Bases	
	OHU Hangers	
	OU Hangers	
凾	- PAB Anchor Bolt 1	
	PAI Purlin Anchor	
	PB/PBS Post Base	
	PC Post Cap	
~	PGT Pipe Grip Tie	
鲫	- PGT2E Pipe Grip Tie	
	PS Strap 174, 176,	206
	PSPNZ Protective Plate	
	PSCA Sheathing Clip	
	PSCL Sheathing Clip	
	Publications & Software	
	PWF24 Strap Tie	1/2
	Quik Drive® Systems	30
	RBC Roof Boundary Clip	185
	RCPS Rebar Carport Saddle	
	RCWB Wall Bracing	
	RFB Retrofit Bolt	
	RP6 Retro Plate	
	RPS Strap Tie	
	RR Ridge Rafter Connector	
	RSP Stud Plate Tie	
	nor oluu fiale iie lõz	-183
		-183
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	
鹹	RTA/RTB/RTC/RTF/RTR/RTT/RTU	199
鄶	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192
_	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134
_	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 32 -183
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 32 -183 205
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 -183 205 35
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors SB Anchor Bolt SBV Shelf Bracket SCL Hanger 120, 127-129, 133 SD Structural Connector Screw 10, 2 SDS Screw 10, 26, 144 SET Epoxy-Tie® SET-XP® Epoxy-Tie® SP/SPH Stud Plate Tie 182 Special Order Plates SPT Strap Tie (Form Tie) SS Stud Shoe SSP Single Stud Plate Tie 182 SSTB Anchor Bolt 4	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183 0-42
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors SB Anchor Bolt SCL Hanger 120, 127-129, 133 SD Structural Connector Screw 10, 2 SDS Screw SDW Wood Screw 10, 26, 144 SET Epoxy-Tie® SET-XP® Epoxy-Tie® SP/SPH Stud Plate Tie 182 Special Order Plates SPT Strap Tie (Form Tie) SS Stud Shoe SSP Single Stud Plate Tie 182 SSTB Anchor Bolt 48 ST Strap Tie 47	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183 0-42 -176
郵	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183 0-42 -176 166
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183 0-42 -176 166
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183 0-42 -176 166 0-51
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183 0-42 -176 166 0-51 33
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors SB Anchor Bolt SBV Shelf Bracket SCL Hanger	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183 0-42 -176 166 0-51 33 33
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors SB Anchor Bolt SBV Shelf Bracket SCL Hanger	199 8-39 192 -134 7-29 27 -145 32 -183 205 35 200 -183 0-42 -176 166 0-51 33 31
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors SB Anchor Bolt SBV Shelf Bracket SCL Hanger	199 8-39 192 -134 7-29 27 -145 32 205 35 200 -183 0-42 -176 166 0-51 33 73
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors SB Anchor Bolt SBV Shelf Bracket SCL Hanger	199 8-39 192 -134 7-29 27 -145 32 205 35 200 -183 0-42 -176 166 0-51 33 73
	RTA/RTB/RTC/RTF/RTR/RTT/RTU Rigid Tie Connectors SB Anchor Bolt SBV Shelf Bracket SCL Hanger	199 8-39 192 -134 7-29 27 -145 32 -183 205 -183 0-42 -176 166 0-51 33 73 72 212

	TB Tension Bridging	204
	TBD Truss Bracer	
	TBE Truss Enhancer	
	TC Truss Connector	
V	THA/THAC Hanger 94, 150-151,	213
	THAI Hanger 137,	213
	THAR/L Truss Hanger 149,	213
SEN.	THASR/L Truss Hanger 11, 152-153,	
	THGB/THGBH Hanger 158, 212,	
	THGBV/THGBHV Hanger 159, 212,	
	THGQ/THGQH Hanger 157, 212,	
	THGW Hanger	158
	THGWV Hanger	159
	THJA Hanger 152,	212
	THJM Multiple Truss Hip Jack Hanger	
	THJU Hanger 153, 212,	
	TJC37 Truss Connector	
	TITEN® Screw	
	THD Titen HD® Anchor	. 31
	TORQ-CUT™ Self-Undercutting Anchor	. 31
	TP/TPA Tie Plate	
	TS Twist Strap	
α		
NEW	TSBR Truss Spacer 11,	
	TSF Truss Spacer	
	TSP Stud Plate Tie 167-169, 182-	
	TWB Wall Bracing	203
	U Hanger 75, 77-82, 1	104,
	106, 108, 111, 212,	215
	UB Post Bracket	
	UFP Foundation Anchor	
	OFF Outloation Alichoi	. 31
	VGT Variable Girder Tiedown 171,	
	VPA Connector	
V	VTCR Valley Truss Clip	161
	W Hanger 84-88, 116-117, 124, 213,	218
	WB/WBC Wall Bracing	
	WEDGE-ALL® Wedge Anchor	
	WI Hanger 116-117, 124, 213,	
	WM Hanger 84-89, 116-117, 122-1	129,
	131-134, 188,	215
	WMI Hanger 116-117, 125, 128-1	129.
	134, 188, 211,	
	WMU Hanger 84-85, 116-117, 188,	
	WNP Hanger 84-89, 98, 213,	
	WNPU Hanger 84-85, 213,	
	WP Hanger 84-85, 116-117, 122-	124,
		216
	WPI Hanger 116-117, 125-130, 1	
	WPU Hanger 84-85, 98, 116-	
	127-130, 213,	
	WT Wedge Form Ties	. 34
	WUB Post Bracket	. 60
	Z Clip	180
	··r ······	. 50

SUBJECT INDEX

FASTENERS & QUIK DRIVE® S	SYSTEMS
Nails	24-25
Fastener Types	24-25
Fastening Identification	
Screws 26-29	, 128-130, 144
Quik Drive® Systems	30
Concrete/CMU	
CONCRETE CONNECTORS & A	NCHORS
Anchor Adhesives	32
Anchor Bolts	
Anchor Bolt Holders	33
Beam Seats	48
Bearing Plates	34, 197
Column Caps	165
Coupler Nuts	35
Foundation Anchors	37
Hangers	155-159
Holdowns	55-57
Hurricane Ties	189
Ledger	198
Mudsill Anchors	44-46
Purlin Anchors	47
Truss Anchors	159-162
Truss Seats	161-162
Wedge Form Ties	34
HOLDOWNS & TENSION TIES	
Floor Tie Anchors	170-171
Holdowns	50-55
Tension Ties	49
CAPS & BASES	
Post/Column Caps and Bases.	57-71
LATERAL SYSTEMS	
Anchor Tiedown System	
Steel Strong-Wall® Shearwall.	
Wood Strong-Wall® Shearwall	
Strong Frame™ Moment Frame	73

SOLID SAWN LUMBER CONNECTOR	RS	
Adjustable Hangers	93-	94
Concealed Joist Tie	2	10
Face Mount Hangers 75-82,	197-1	98
Rough Lumber Face Mount Hangers		
Sloped/Skewed Connectors		
Top Flange Hangers		
Top Hange Hangers	00	00
GLULAM BEAM CONNECTORS		
Concealed Joist Tie	2	10
Face Mount Hangers		
Hinge Connectors		
Top Flange Hangers	97-1	UU
ENGINEERED WOOD & STRUCTURA		
COMPOSITE LUMBER CONNECTOR		
		o E
Adjustable Hangers 107, 123-124,		
Concealed Joist Tie		
Face Mount Hangers	104-1	12
General Installation Info		
Purlin Anchors		
SDW/Multi-Ply Members 26,		
Sloped/Skewed Connectors		
Top Flange Hangers	113-1	37
PLATED TRUSS/TRUSS CONNECTO		
Adjustable Hangers 146,		
Bridging/Spacers/Braces		
Special Order Plates		
Face Mount Hangers	146-1	49
Gable End		
Girder Hangers 46, 113, 156-		
Girder Tiedowns 171-172,	190-1	91
Multi-Member Hangers	154-1	55
Multi-Ply Wood Trusses	128-1	30
Top Flange Hangers	1	36
Truss Bearing Enhancers	163-1	65
Truss Clips		
101,	100 1	00
STRAPS & TIES		
Angles & Clips	180-1	85
Hurricane Ties		
Straps		
772-		01

MASONRY CONNECTORS	
Brick Ties	
Titen® Screws	
Hangers 186	3-188
Hurricane Connectors 159	9-164
Straps	191
Truss Anchors	
DECKS & FENCES	
Angles	105
Deck Post Connectors	
Fence Products	
Joist Tie	
Staircase Angle	. 195
MISCELLANEOUS	
Brick Ties	. 202
Bridging	. 204
Compression Tension Straps	. 201
Custom Steel Plates	. 205
Drywall Stops	
Framing Clips	
Hip Connectors	92
Mending Plates	
Nail Stoppers	
Panel Sheathing Clips	. 202
Retro Plate	
Ridge Rafter Connector	202
Rigid Ties	199
Shelf Brackets	192
Stud Shoes	
T & L Strap Ties	
Tie Plates	
Variable Pitch Connectors	138
Wall Bracing	
ARCHITECTURAL PRODUCT	
GROUP205	5-211
HANGER OPTIONS212	2-221
CONTINUOUS LOAD PATH	. 222

BETTER BUILDING THROUGH EDUCATION

Simpson Strong-Tie is committed to training customers on the proper specification, installation and inspection of structural system solutions.

As part of this commitment, our regional training centre offer a selection of seminars for engineers, architects, dealers, contractors and inspectors. These dedicated training facilities offer opportunities for classroom instruction as well as chances for hands-on installation of Simpson Strong-Tie® products. Participants can earn professional development hours (PDH) through our registration with CSI, SEA, ICC, BIA, AIBO, ACIA and AIBD.

Simpson Strong-Tie is now a provider of IACET CEUs. We offer continuing education units to workshop participants that meet requirements.

To locate the Simpson Strong-Tie training centre nearest you and to obtain a schedule of seminars, call (800) 999-5099 or visit **www.strongtie.com**.

INTRODUCTION

24-30

31-48

49-56

CONNECTOR SELECTION KEY

Fasteners &

& Anchors

Holdowns &

Tension Ties

Quik Drive® Systems

Concrete Connectors

Products are divided into fifteen general categories.

identified by tabs along the page's outer edge.

For more than 50 years, Simpson Strong-Tie has focused on creating structural products that help people build safer and stronger homes and buildings. A leader in structural systems research and technology, Simpson Strong-Tie is one of the largest suppliers of structural building products in the world. The Simpson Strong-Tie commitment to product development, engineering, testing and training is evident in the consistent quality and delivery of its products and services. Simpson Strong-Tie® product lines include:

- Structural connectors for wood and cold-formed-steel construction
- Strong-Wall® prefabricated shearwalls
- Strong Frame™ moment frames
- Anchor Tiedown Systems (ATS) for multi-storey buildings
- Simpson Strong-Tie® anchors and fasteners for concrete and masonry
- Simpson Strong-Tie Fastening Systems
- Connectors for Cold-Formed Steel Curtainwalls

For more information, visit the company's Web site at www.strongtie.com.

The Simpson Strong-Tie Company Inc. "No Equal" pledge includes:

- Quality products value-engineered for the lowest installed cost at the highest-rated performance levels
- Most thoroughly tested and evaluated products in the industry
- Strategically located manufacturing and warehouse facilities
- · National code agency listings
- Largest number of patented connectors in the industry
- European locations with an international sales team
- In-house R&D, and tool and die professionals
- In-house product testing and quality control engineers
- Member of WWTA, OWTFA, QWTFA, AWTFA, WRLA, LBMAO, ABSDA, TPIC, PEO.

THE SIMPSON STRONG-TIE QUALITY POLICY

We help people build safer structures economically. We do this by designing, engineering and manufacturing "No Equal" structural connectors and other related products that meet or exceed our customers' needs and expectations. Everyone is responsible for product quality and is committed to ensuring the effectiveness of the Quality Management System.

Terry Kingsfather
President

GETTING FAST TECHNICAL SUPPORT

When you call for engineering technical support, we can help you quickly if you have the following information at hand. This will help us to serve you promptly and efficiently.

- Which Simpson Strong-Tie catalogue are you using? (See the front cover for the catalogue number)
- Which Simpson Strong-Tie product are you using?
- What is your load requirement?
 What is the carried member's width
- What is the carried member's widtr and height?
- What is the supporting member's width and height?
- What is the carried and supporting members' material and application?

WE ARE ISO 9001-2008 REGISTERED

Simpson Strong-Tie is an ISO 9001-2008 registered company. ISO 9001-2008 is an internationally-recognized quality assurance system which lets our domestic and international customers know that they can count on the consistent quality of Simpson Strong-Tie® products and services.

USA and CANADA 800-999-5099 | www.strongtie.com

IGNSION NGS	
Caps & Bases	57-71
Lateral Systems	72-74
Solid Sawn Lumber Connectors	75-94
Glulam Beam Connectors	95-100 ▶
Engineered Wood & Structural Composite Lumber Connectors	101-145
Plated Truss Connectors	146-166
Straps & Ties	167-185 🕨
Masonry Connectors	186-192
Decks & Fences	193-197
Miscellaneous	198-204
Architectural Products Group	205-211
Hanger Options	212-221

SIMPSON Strong-Tie

Products that were discontinued in 2011

Simpson Strong-Tie is dedicated to continuously expanding our line of structural connectors with innovative new products that address the changing needs of our customers. As new connectors are introduced that improve upon older designs, it becomes necessary to discontinue the old versions in the name of efficiency and product-line simplicity.

The table below lists products that are no longer included in the *Wood Construction Connectors* catalogue as well as the products recommended to replace them. While technical information for discontinued products will be maintained on our website for a number of months, Simpson Strong-Tie asks that our customers begin to substitute the replacement products shown below in their designs and inventories. While it is hard to say when they will no longer be available from our distribution partners, production of some of these connectors ended in late 2010 and others were phased out of production in 2011.

For the most current information on discontinued products, visit **www.strongtie.com/discontinued**. If you have questions about any of the products shown below, please call (800)999-5099 for assistance.

DISCONTINUED PRODUCT		SUGGESTED REPLACE	MENT PRODUCT (C-CAN12 Page #)
		HOLDOWNS	
	HD2A	HD3B (page 55) DTT2Z (pages 52, 193) HDU2 (page 52)	
	HD5A	HD5B (page 54) HDU5 (page 52)	
	HD6A	HD5B <i>(page 54)</i> HDU5 <i>(page 52)</i>	HD3B DTT2Z HD12
HD2A (HD5A and HD6A similar)	HD8A	HD7B (page 55) HDU8 (page 52)	
	HD10A	HDU11 <i>(page 52)</i> HD9B <i>(page 55)</i>	
HD10A (HD14A similar)	HD14A	HDU14 (page 52) HD12 (page 55)	HDU5 HD5B HDU14 (HDU8 and (HD7B and (HDU2 and HDU11 similar) HD9B similar) HDU11 similar)
	PHD2	HDU4 (page 52)	
	PHD5	HDU5 (page 52)	· ?:
PHD5 (PHD2 and PHD6 similar)	PHD6	HDU8 (page 52)	HDU5 (HDU4 and HDU8 similar)
	HDC5/22-SDS2.5	HDC10/22-SDS2.5 (page 54)	
HDC5/22-\$D\$2.5 (HDC5/4-\$D\$2.5 similar)	HDC5/4-SDS2.5	HDC10/4-SDS2.5 (page 54)	HDC10/22-SDS2.5 (HDC10/4-SDS2.5 similar)

DISCONTINUED PRODUCTS

DISCONTINUED PRODUCT		SUGGESTED REPLACEN	MENT PRODUCT (C-CAN12 Page #)
1 1	STR <i>i</i>	AP-TIE HOLDOWNS	
	STHD8	LSTHD8 (page 50)	
	STHD8RJ	LSTHD8RJ (page 50)	
	PAHD42	LSTHD8 (page 50)	STHD10 LSTHD8 (STHD14 (LSTHD8RJ
HPAHD22 PAHD42 STHD8	HPAHD22	STHD10 STHD14 (page 50)	similar) (L3THLORG similar) similar)
HPAHD22-2P (STHD8RJ similar)	HPAHD22-2P	STHD14 (page 50)	
	MU	DSILL ANCHORS	
	MAS	MASA (page 44)	AAAA
	MASP	MASAP (page 44)	
MAS MASP	MASPZ	MASAPZ (page 44)	MASA MASAP
	MASZ	MASAZ (page 44)	
	DRAG S	STRUT CONNECTORS	
	DSC4L-SDS3	DSC5L (page 161)	
DSC4R-SDS3 (DSC4L-SDS3 similar)	DSC4R-SDS3	DSC5R (page 161)	DSC5L-SDS3 (DSC5R-SDS3 similar)
	Н	URRICANE TIES	
	H15	H10S (page 167) H16 (page 170)	H16
H15 (H15-2 similar)	H15-2	LGT2 (page 171) H16-2 (page 170)	H10S (H16-2 similar) LGT2
		1110-2 (paye 170)	4 44
d.e.	LATER	AL TRUSS ANCHOR	
LTA1	LTA1		LTA2
LTA1	LTA1	AL TRUSS ANCHOR	LTA2
LTA1	LTA1	LTA2 (page 188)	LTA2
LTA1	LTA1	LTA2 (page 188) RUSS HANGERS THASR/L29	LTA2
THASR/L218 (THASR/L218-2 similar) THASR/L418	THASR/L218 THASR/L218-2 THASR/L418	LTA2 (page 188) RUSS HANGERS THASR/L29 (page 152) THASR/L29-2 (page 152) THASR/L422 (page 152)	LTA2 THASR/L29 (THASR/L29-2 similar) THASR/L422
THASR/L218	THASR/L218 THASR/L218-2 THASR/L418	LTA2 (page 188) RUSS HANGERS THASR/L29 (page 152) THASR/L29-2 (page 152) THASR/L422 (page 152) RUSS SPACERS	THASR/L29
THASR/L218	THASR/L218 THASR/L218-2 THASR/L418	LTA2 (page 188) RUSS HANGERS THASR/L29 (page 152) THASR/L29-2 (page 152) THASR/L422 (page 152)	THASR/L29

HOW TO USE THIS CATALOGUE

NEW PRODUCTS

New products are shown with the 🔯 symbol. There are also many new sizes within existing model series.

CHANGES IN RED

Significant changes from last year's catalogue are indicated in red.

HOW WE DETERMINE FACTORED RESISTANCES

Factored resistances in this catalogue are determined using calculations and/or one or more of the following methods:

- a minimum of 3 static load tests in wood assemblies;
- a minimum of 3 static load tests in steel jigs;
- · a minimum of 3 static load tests of products embedded in concrete or masonry.

Some tests include only portions of a product such as purlin anchor tests only the embedded hook is tested, not the nailed or bolted section of the strap, which is calculated. Testing to determine factored resistances in this catalogue is not done on connection systems in buildings. Testing is conducted under the supervision of an independent laboratory.

For detailed information regarding how Simpson Strong-Tie tests specific products, contact Simpson Strong-Tie.

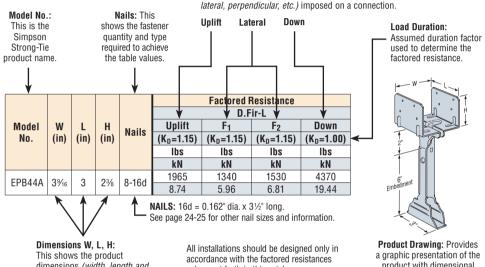
SEINEEREO

VALUE ENGINEERED

This icon indicates a product that is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

EXTRA CORROSION PROTECTION

This icon identifies products that are available with additional corrosion protection (ZMAX® Hot-Dip Galvanized, stainless steel or the SDS double-barrier coating). Other products may also be available with additional protection, contact Simpson Strong-Tie for options. The end of the product name will indicate what type of extra corrosion protection is provided (Z = ZMAX), HDG = Hot-Dip Galvanized or SS = stainless steel). See page 18-19 for information on corrosion, and visit our website **www.strongtie.com/info** for more technical information on this topic.


STRONG-DRIVE® SD SCREW COMPATIBLE

This icon identifies products approved for installation with the Simpson Strong-Tie Strong-Drive® SD structural-connector screw. See pages 28-29 for more information.

CATALOGUE DEFINITION:

Deflection: The distance a point moves when a load is applied.

Factored Resistances: The maximum resistance that a connection is designed to provide. There may be multiple design loads acting in different directions (up. down, lateral, perpendicular, etc.) imposed on a connection.

dimensions (width, length and height in this case) referenced in the product drawing

values set forth in this catalogue.

product with dimensional information (often cross referenced to the table).

CORROSION INFORMATION

Understanding the Issues

Metal connectors, anchors, and fasteners will corrode and may lose loadcarrying capacity when installed in corrosive environments or exposed to corrosive materials. There are many environments and materials which may cause corrosion including ocean salt air, fire retardants, fumes, fertilizers, preservative-treated wood, dissimilar metals, and other corrosive elements.

The many variables present in a single building environment make it impossible to accurately predict if, or when, significant corrosion will begin or reach a critical level. This relative uncertainty makes it crucial that specifiers and users be knowledgeable of the potential risks and select a product coating or metal suitable for the intended use. It is also important that regular maintenance and periodic inspections are performed, especially for outdoor applications.

It is common to see some corrosion on connectors especially in outdoor applications. Even stainless steel can corrode. The presence of some corrosion does not mean that load capacity has necessarily been affected or that a failure will occur. If significant corrosion is apparent or suspected, then the wood, fasteners and connectors should be inspected by a professional engineer or general contractor and may need to be replaced.

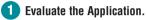
Preservative-treated wood formulations have changed significantly and some of the new formulations are more corrosive to steel connectors and fasteners than the traditionally used formulation of CCA-C. Simpson Strong-Tie testing has shown that ACQ-C, ACQ-D (Carbonate) and CA-B treated woods are approximately 2 times more corrosive than CCA-C, while SBX-DOT (Sodium Borate) treated woods were shown to be less corrosive than CCA-C. Refer to technical bulletin T-PTWOOD for more information.

Due to the many different preservative formulations, fluctuating retention levels, moisture content, and because the formulations may vary regionally, or change without warning, understanding which connectors and fasteners to use with these materials has become a complex task. We have attempted to provide basic knowledge on the subject here, but it is important to fully educate yourself by reviewing our technical bulletins on the topic, and also by viewing information and literature provided by others. This information pertains to Simpson Strong-Tie® connectors only. For corrosion information on other product lines, such as fasteners, see the specific Simpson Strong-Tie product line catalogues. Additionally, because the issue is evolving, it is important to get the very latest connector information on the topic by visiting our website at www.strongtie.com/info.

Stainless steel is always the most effective solution to corrosion risk. However, it is also more expensive and sometimes more difficult to obtain. To best serve our customers. Simpson Strong-Tie is evaluating the options to identify the safest and most cost-effective solutions. Based on our testing and experience there are some specific applications that are appropriate for ZMAX/HDG or G90 connectors (see chart on page 19).

Because increased corrosion from some newer preservative-treated wood is a new issue with little historical data, we have to base our recommendations on the testing and experience we have to date. It is possible that as we learn more, our recommendations may change, but these recommendations are based on the best information we have at this time.

CORROSION INFORMATION


Strong-Tie

General Simpson Strong-Tie Recommendations

- Outdoor environments are generally more corrosive to steel. If you choose to use ZMAX® or HDG finish on an outdoor project (i.e. deck, patio cover), you should periodically inspect your connectors and fasteners or have a professional inspection performed. Regular maintenance including waterproofing of the wood used in your outdoor project is also a good practice.
- For wood with actual retention levels greater than 0.40 pcf for ACQ, 0.34 for MCQ, 0.21 pcf for CA-B, 0.15 pcf for CA-C and MCA or 0.14 pcf for μCA-C (Ground Contact), stainless steel connectors and fasteners are recommended. Verify actual retention level with the wood treater.
- · When using stainless steel connectors, use stainless steel fasteners. When using ZMAX/HDG galvanized connectors, use fasteners with a coating that meets the specifications of ASTM A153 or equivalent coating offered on Simpson Strong-Tie fasteners.
- Testing indicates wood installed dry (moisture content less than 19%) reduces potential corrosion. If dry wood is used, see our website for additional information.
- Using a barrier membrane can provide additional corrosion protection, see technical bulletin T-PTBARRIER.

Due to the many variables involved, Simpson Strong-Tie cannot provide estimates on service life of connectors, anchors or fasteners. We suggest that all users and Designers also obtain recommendations for HDG, ŽMAX (G185), mechanically galvanized, or other coatings from the treated wood supplier for the type of wood used. However, as long as Simpson Strong-Tie recommendations are followed, we stand behind product performance and our standard warranty (page 23) applies.

Guidelines for Selecting the Proper Connector

Consider the type of structure and how it will be used. These recommendations may not apply to non-structural applications such as fences.

Evaluate the Environment.

Testing and experience indicate that indoor dry environments are less corrosive than outdoor environments. Determining the type of environment where a connector or fastener will be used is an important factor in selecting the most appropriate material and finish for use on the connectors and fasteners. To help in your decision making, consider the following general exposure information:

Interior Dry Use: Includes wall and ceiling cavities, and raised floor applications of enclosed buildings that have been designed to ensure that condensation and other sources of moisture do not develop.

Exterior - Dry: Includes outdoor installations in low rainfall environments and no regular exposure to moisture.

Exterior - Wet: Includes outdoor installations in higher moisture and rainfall environments.

Higher Exposure Use: Includes exposure to ocean-salt air, fire retardants. large bodies of water, fumes, fertilizers, soil, some preservative-treated woods. industrial zones, acid rain, and other corrosive elements. Type 316 stainless steel contains slightly more nickel than other grades, plus molybdenum, giving it better corrosion resistance in high-chloride environments.

Evaluate and select a suitable preservative-treated wood for the intended application and environment.

The treated wood supplier should provide all the information needed regarding the wood being used. This information should include: the specific type of wood treatment used, if ammonia was used in the treatment, and the chemical retention level. If the needed information is not provided then Simpson Strong-Tie would recommend the use of stainless steel connectors and fasteners. You should also ask the treated-wood supplier for a connector coating or material recommendation.

Use the chart on the right, which was created based on Simpson Strong-Tie testing and experience to select the connector finish or material.

If a preservative-treated wood product is not identified on the chart, Simpson Strong-Tie has not evaluated test results regarding such product and therefore cannot make any recommendation other than the use of stainless steel with that product. Manufacturers may independently provide test results or other product use information; Simpson Strong-Tie expresses no opinion regarding any such information.

Compare the treated-wood supplier's recommendation with the Simpson Strong-Tie recommendation.

If these recommendations are different, Simpson Strong-Tie recommends that the most conservative recommendation be followed.

Simpson Strong-Tie recommendations are as follows:

- **Low** = Use standard painted and G90 galvanized connectors, or Simpson Strong-Tie[®] Strong-Drive® screws (SDS) with the double-barrier coating, as a minimum.
- Med = Use ZMAX/HDG galvanized connectors as a minimum. Use HDG fasteners which meet the specifications of ASTM A153, Simpson Strong-Tie® Strong-Drive® SDS screws with double-barrier coating, or Strong-Drive® SD screws with mechanical galvanization, class 55

High⁵ = Use Type 303, 304, 305 or 316 stainless steel connectors and fasteners.

CONNECTOR COATING RECOMMENDATION – STRUCTURAL APPLICATIONS								
	Untreated	SBX/ DOT	not CA-B, CA-C & uCA-					Other
Environment	Wood	& Zinc Borate	MCA/ MCQ	No Ammonia	With Ammonia	Higher Chemical Content ¹	ACZA	or Uncertain
Interior – Dry	Low	Low	Low	Low	Med	High	High	High
Exterior – Dry	Low	N/A ²	Med	Med	High	High	High	High
Exterior – Wet	Med	N/A ²	Med ^{3,4}	Med ^{3,4}	High	High	High	High
Higher Exposure	High	N/A ²	High	High	High	High	High	High
Uncertain	High	N/A ²	High	High	High	High	High	High

- 1. Wood with actual retention levels greater than 0.40 pcf for ACQ, 0.34 for MCQ, 0.21 pcf for CA-B, 0.15 pcf for CA-C and MCA or 0.14 pcf for μ CA-C (Ground Contact).
- Borate treated woods are not appropriate for outdoor use.
 Test results indicate that ZMAX/HDG and the SDS double-barrier coating will
- perform adequately, subject to regular maintenance and periodic inspection. However, the nationally-recognized test method used, AWPA E12-94, is an accelerated test, so data over an extended period of time is not available. If uncertain, use stainless steel.
- Some treated wood may have excess surface chemicals making it potentially more corrosive. If you suspect this or are uncertain, use stainless steel.
- Type 316 stainless steel connectors and fasteners are the minimum recommendation for ocean-salt air and other chloride environments.

COATINGS AVAILABLE

Not all products are available in all finishes. Contact Simpson Strong-Tie for product availability, ordering information and lead times.

Finish/Material	Description	Level of Corrosion Resistance
Gray Paint	Water-based paint intended to protect the product while it is warehoused and in transit to the jobsite.	Low
Powder Coating	Baked on paint finish that is more durable than our standard paint and produces a better looking finished product.	Low
Standard G90 Zinc Coating	Zinc galvanized coating containing 0.90 oz. of zinc per square foot of surface area (total both sides).	Low
7/MAX: G185	Galvanized (G185) 1.85 oz. of zinc per square foot of surface area (hot-dip galvanized per ASTM A653 total both sides). These products require hot-dip galvanized fasteners (fasteners which meet the specifications of ASTM A153).	Medium
HOTOPD (G GALVANIZED*	Products are hot-dip galvanized after fabrication (14 ga. and thicker). The coating weight increases with material thickness. The minimum specified coating weight is 2.0 oz./ft² (per ASTM A123 total both sides). These products require hot-dip galvanized fasteners (fasteners which meet the specifications of ASTM A153).	Medium
Mechanically-Galvanized Coating, Class 55 (SD screws)	Simpson Strong-Tie Strong-Drive® SD structural-connector screws are manufactured with a mechanically applied zinc coating in accordance with ASTM B695, Class 55 with a supplemental overcoat. These fasteners are compatible with painted and zinc-coated (G90 and ZMAX) connectors.	Medium
Double-Barrier Coating (SDS Screws)	Simpson Strong-Tie Strong-Drive SDS screws are manufactured with two different finishes that together provide a level of corrosion protection that equals that provided by the previous HDG coating.	Medium
SSESSION STAINLESS STEEL	Connectors are manufactured from Type 316L stainless steel, and provide greater durability against corrosion. Stainless steel nails are required with stainless steel products, and are available from Simpson Strong-Tie.	High

CODES

Simpson Strong-Tie® connectors are recognized by most code agencies. Agencies that recognize some or all of our products include CCMC, ICC-ES; the City of Los Angeles, California; State of Florida; and IAPMO Evaluation Service.

The factored resistances shown in this catalogue comply with the National Building Code of Canada (NBCC 2005 and NBCC 2010).

Department of State Architecture, State of California: The DSA of California is no longer issuing Product Acceptance Reports on wood to wood connections – joist hangers. AC25-2, a new acceptance criteria drafted by the DSA, specifically states, companies with current ICBO code reports and/or third party witnessed testing will be recognized as acceptable structural connections for DSA specified projects. Further to AC25-2, the DSA is requiring that those companies who are supplying the aforementioned products to State specified projects be ISO9001 certified.

Call Simpson Strong-Tie or visit the code agencies' web sites for the current evaluation reports if recognition or approval is to be based on the report. Specific reductions and restrictions may be required by other code agencies. **CCMC**—Canadian Construction Materials Centre: Nos. CCMC 12862-R, 12863-R.

International Code Council:

NER-209, 393, 413, 432, 443, 499, 694.

ER—1211, 4935, 5313, 5349, 5357, 5655, 5672, 5708, 5709, 5952.

ESR—1622, 1866, 2105, 2203, 2236, 2330, 2549, 2551, 2552, 2553, 2554, 2555, 2604, 2605, 2606, 2607, 2608, 2611, 2613, 2614, 2615, 2616, 2877, 2920, 3046.

City of Los Angeles, CA—Nos. RR 25711, RR 25712, RR 25713, RR 25714, RR 25716, RR 25718, RR 25719, RR 25720, RR 25725, RR 25726, RR 25800, RR 25801, RR 25802, RR 25803, RR 25804, RR 25806, RR 25807, RR 25814, RR 25818, RR 25827, RR 25828, RR 258251

State of Florida—FL9589, 10441, 10444, 10446, 10447, 10456, 10531, 10655, 10667, 10849, 10852, 10856, 10854, 10860, 10861, 10864, 10865, 10866, 11166, 11169, 11468, 11470, 11473, 11478, 11496, 12708, 13326, 13628, 13904, 13975, 14101.

IAPMO Evaluation Service:

ER-112, 130, 143, 192

TERMS & CONDITIONS OF SALE

PRODUCT USE

Products in this catalogue are designed and manufactured for the specific purposes shown, and should not be used with other connectors not approved by a qualified Designer. Modifications to products or changes in installation procedures should only be made by a qualified Designer. The performance of such modified products or altered installation procedures is the sole responsibility of the Designer.

INDEMNITY

Customers or Designers modifying products or installation procedures, or designing non-catalogue products for fabrication by Simpson Strong-Tie Company Inc. shall, regardless of specific instructions to the user, indemnify, defend, and hold harmless Simpson Strong-Tie Company Inc. for any and all claimed loss or damage occasioned in whole or in part by non-catalogue or modified products.

NON-CATALOGUE AND MODIFIED PRODUCTS

Consult Simpson Strong-Tie Company Inc. for applications for which there is no catalogue product, or for connectors for use in hostile environments, with excessive wood shrinkage, or with abnormal loading or erection requirements.

Non-catalogue products designed by the customer will be fabricated by Simpson Strong-Tie in accordance with customer specifications.

Simpson Strong-Tie cannot and does not make any representations regarding the suitability of use or load-carrying capacities of non-catalogue products. Simpson Strong-Tie provides no warranty, express or implied, on non-catalogue products.

F.O.B. Shipping Point unless otherwise specified.

WARNING

Simpson Strong-Tie Company Inc. structural connectors, anchors, and other products are designed and tested to provide specified design capacities. To obtain optimal performance from Simpson Strong-Tie Company Inc. products and achieve maximum factored resistances, the products must be properly installed and used in accordance with the installation instructions and design limits provided by Simpson Strong-Tie Company Inc. To ensure proper installation and use, designers and installers must carefully read the following General Notes, General Instructions For The Installer and General Instructions For The Designer, as well as consult the applicable catalogue pages for specific product installation instructions and notes.

Proper product installation requires careful attention to all notes and instructions, including these basic rules:

- 1. Be familiar with the application and correct use of the connector.
- Follow all installation instructions provided in the applicable catalogue, website, *Installer's Pocket Guide* or any other Simpson Strong-Tie publications.
- 3. Install all required fasteners per installation instructions provided by Simpson Strong-Tie Company Inc.: a) use proper fastener type; b) use proper fastener quantity; c) fill all fastener holes; d) do not overdrive or underdrive nails, including when using gun nailers; and e) ensure screws are completely driven.
- Only bend products that are specifically designed to be bent. For those products that required bending, do not bend more than once.
- Cut joists to the correct length, do not "short-cut". The gap between the end of the joist and the header material should be no greater than 1/6" unless otherwise noted.

In addition to following the basic rules provided above as well as all notes, warnings and instructions provided in the catalogue, installers, designers, engineers and consumers should consult the Simpson Strong-Tie Company Inc. website at **www.strongtie.com** to obtain additional design and installation information, including:

- Instructional builder/contractor training kits containing an instructional video, an instructor guide and a student guide in both English and Spanish;
- Installer's Pocket Guide (form S-INSTALL) which is designed specifically for installers and uses detailed graphics and minimal text in both English and Spanish to explain visually how to install many key products;
- Information on workshops Simpson Strong-Tie conducts at various training centre throughout the country;
- Product specific installation videos;
- · Specialty catalogues;
- Code reports;
- Technical fliers and bulletins;
- Master format specifications;
- · Material safety data sheets;
- · Corrosion information;
- Connector selection guides for engineered wood products (by manufacturer);
- Simpson Strong-Tie Connector Selector™ software;
- · Simpson Strong-Tie Autocad menu; and
- · Answers to frequently asked questions and technical topics.

Failure to follow fully all of the notes and instructions provided by Simpson Strong-Tie Company Inc. may result in improper installation of products. Improperly installed products may not perform to the specifications set forth in this catalogue and may reduce a structure's ability to resist the movement, stress, and loading that occurs from gravity loads as well as impact events such as earthquakes and high velocity winds.

Simpson Strong-Tie Company Inc. does not guarantee the performance or safety of products that are modified, improperly installed or not used in accordance with the design and load limits set forth in this catalogue.

FACTORED RESISTANCE DETERMINATION METHOD

The factored resistance is the maximum factored static load that can be imposed on a connection. Factored resistances in this catalogue are determined using calculations and/or one or more of the following methods: static load tests in wood assemblies; static load tests in steel jigs; static load tests of products embedded in concrete or masonry. Some tests include only portions of a product such as purlin anchor tests, where only the embedded hook is tested, not the nailed or bolted section of the strap, which is calculated.

Testing to determine factored resistances in this catalogue is not done on connection systems in buildings. Testing is conducted under the supervision of an independent laboratory. Some factored resistances are determined using calculations without testing. Tested and calculated factored resistances are determined in accordance with the appropriate material design standards, including CSA 086-09, CSA S16-09, CSA S136-07 and CSA A23.3-04 (2009).

For detailed information regarding how Simpson Strong-Tie tests specific products, contact your Simpson Strong-Tie representative or the company.

GENERAL NOTES

These general notes are provided to ensure proper installation of Simpson Strong-Tie Company Inc. products and must be followed fully.

- Simpson Strong-Tie Company Inc. reserves the right to change specifications, designs, and models without notice or liability for such changes.
- b. Steel used for each Simpson Strong-Tie® product is individually selected based on the product's steel specifications, including strength, thickness, formability, coating, and weldability. Contact Simpson Strong-Tie for steel information on specific products.
- c. Unless otherwise noted, dimensions are in inches, resistances are in pounds.
- d. Unless otherwise noted, bolts and nails cannot be combined. 8d (0.131x2½"), 10d (0.148x3") and 16d (0.162x3½") specify common nails that meet the requirement of CSA B111. When a shorter nail is specified, it will be noted (for example 8dx1½"). Refer to page 24 for more nail info.
- Unless otherwise noted, factored resistances are for Douglas Fir-Larch under continuously dry conditions (K_S=1.00). Factored resistances for other species or conditions must be adjusted according to CSA 086-09.
 - The following material properties were used to generate the resistances in this catalogue in accordance with CSA 086-09. For LVL and other engineered wood products verify with the manufacturer that their material properties meet or exceed the values shown in the table below.

Species	ϕ F _{Cp}	Specific Gravity
Douglas Fir-Larch (D.Fir-L)	812 psi (5.60 MPa)	0.49
Spruce-Pine-Fir (S-P-F)	615 psi (4.24 MPa)	0.42
Hem-Fir (HF)	533 psi (3.68 MPa)	0.46
D.Fir-L Glulam	812 psi (5.60 MPa)	0.49
Spruce-Pine Glulam	672 psi (4.64 MPa)	0.44
LVL	1092 psi (7.53 MPa)	0.50
Parallam® PSL	1092 psi (7.53 MPa)	0.50
LSL (E=1.3x10 ⁶)	992 psi (6.84 MPa)	0.50
LSL (E>1.5x10 ⁶)	1092 psi (7.53 MPa)	0.50

- f. Simpson Strong-Tie Company Inc. will manufacture non-catalogue products provided prior approval is obtained and an engineering drawing is included with the order. Steel specified on the drawings as ½", ¾6", and ¼" will be 11 gauge (0.120"), 7 gauge (0.179"), and 3 gauge (0.239"), respectively. The minimum yield and tensile strengths are 33 ksi and 52 ksi, respectively.
- g. All references to bolts or machine bolts (MBs) are for structural quality through bolts equal to or better than American Society of Testing and Materials ASTM Standard A307, Grade A or Society of Automotive Engineers standard SAEJ429, Grade 2. RFB is A307, Grade C; SSTB is ASTM A36.
- h. Unless otherwise noted, bending steel in the field may cause fractures at the bend line. Fractured steel will not carry load and must be replaced.
- A fastener that splits the wood will not take the factored load. Evaluate splits to determine if the connection will perform as required. Dry wood may split more easily and should be evaluated as required. If wood tends to split, consider pre-boring holes with diameters not exceeding 0.75 of the nail diameter.

- . Wood shrinks and expands as it loses and gains moisture, particularly perpendicular to its grain. Take wood shrinkage into account when designing and installing connections. Simpson Strong-Tie manufactures products to fit common dry lumber dimensions. If you need a connector with dimensions other than those listed in this catalogue, Simpson Strong-Tie may be able to vary connector dimensions; contact Simpson Strong-Tie. The effects of wood shrinkage are increased in multiple lumber connections, such as floor-to-floor installations. This may result in the vertical rod nuts becoming loose, requiring post-installation tightening.
- k. Top flange hangers may cause unevenness. Possible remedies should be evaluated by a professional and include using a face mount hanger, and routering the beam or cutting the subfloor to accommodate the top flange thickness.
- Built-up lumber (multiple members) must be fastened together to act as one unit to resist the applied load (excluding the connector fasteners).
 This must be determined by the Designer/Engineer of Record.
- m. Do Not Overload. Do not exceed catalogue factored resistances, which would jeopardize the connection.
- n. Some model configurations may differ from those shown in this catalogue. Contact Simpson Strong-Tie for details.
- o. Hanger Options some combinations of hanger options are not available. In some cases, combinations of these options may not be installable. Horizontal loads induced by sloped joists must be resisted by other members in the structural system. A qualified Designer must always evaluate each connection, including carried and carrying member limitations, before specifying the product. Fill all fastener holes with fastener types specified in the tables, unless otherwise noted. Hanger configurations, height, and fastener schedules may vary from the tables depending on joist size, skew and slope. See the tabulated factored resistance for the non-modified hanger, and adjust as indicated. Gauge may vary from that specified depending on the manufacturing process used. U and W hangers normally have single stirrups; occasionally, the seat may be welded. B, GLT, HGLT, HW, LBV, W and WNP hangers for sloped seat installations are assumed backed. To order a custom non-backed hanger, contact the Simpson Strong-Tie.
- Simpson Strong-Tie will calculate the net height for a sloped seat. The customer must provide the H1 joist height before slope.
- q. Truss plates shown are not manufactured by Simpson Strong-Tie.
- r. Do not weld products listed in this catalogue unless this publication specifically identifies a product as acceptable for welding or unless specific approval for welding is provided in writing by Simpson Strong-Tie. Some steels have poor weldability and a tendancy to crack when welded. Cracked steel will not carry load and must be replaced.
- s. Unless noted otherwise, all references to standard cut washers refer to Type A plain washers (W) conforming to the dimensions shown in ASME B18.22.1 for the appropriate rod size. Some products require SAE narrow washers (N) to fit in a tight space and are noted accordingly.

GENERAL INSTRUCTIONS FOR THE DESIGNER

- Factored resistances for hangers are determined by a static load test resulting in not more than a ¼" (3mm) deflection of the joist relative to the header.
- b. Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows:
 - Factored Uplift/Factored Uplift Resistance + Factored Parallel to Plate / Factored Parallel to Plate Resistance + Factored Perpendicular to Plate / Factored Perpendicular to Plate Resistance < 1.0.

The three terms in the unity equation are due to the three possible directions that exist to generate force on a hurricane tie. The number of terms that must be considered for simultaneous loading is at the sole discretion of the Designer and is dependant on the method of calculating wind forces and the utilization of the connector within the structural system.

- Factored resistances are based on CSA 086-09 unless otherwise specified.
- d. Load Duration Factor, K_D as specified by CSA 086-09 is as follows: **Standard term (K_D = 1.00)** – applies to all roof and floor factored resistances and is designated as "Normal" in tables.
 - **Short term (K_D = 1.15)** applies to all wind and seismic factored resistances. Other factored resistance values, based on load durations or special conditions, may govern in certain geographic areas and may be used where applicable, up to the maximum tabulated factored resistance. Load duration increases are only applied if the factor of safety can be maintained.
- e. Wood shear is not considered in the factored resistances given; reduce factored resistances when wood shear is limiting.
- f. Simpson Strong-Tie strongly recommends the following addition to construction drawings and specifications: "Simpson Strong-Tie® connectors are specifically required to meet the structural calculations of plan. Before substituting another brand, confirm factored resistances based on reliable published testing data or calculations. The Engineer/

- Designer of Record should evaluate and give written approval for substitution prior to installation."
- g. Verify that the dimensions of the supporting member are sufficient to receive the specified fasteners, and develop the top flange bearing length.
- Some catalogue illustrations show connections that could cause tension stresses perpendicular to grain or bending of the wood during loading if not sufficiently reinforced. In this case, mechanical reinforcement should be considered.
- Simpson Strong-Tie recommends that hanger height be at least 60% of joist height for stability.
- j. The term "Designer" used throughout this catalogue is intended to mean a licensed/certified building design professional, a licensed professional engineer, or a licensed architect.
- k. For holdowns, anchor bolt nuts should be finger-tight plus ½ to ½ turn with a hand wrench, with consideration given to possible future wood shrinkage. Care should be taken to not over-torque the nut. Impact wrenches should not be used as they may preload the holdown.
- I. Holdown and Tension Tie capacities are based on installations with an anchor rod length of 6" from the concrete to top of holdown seat. These products may be raised to any height with consideration of the increased deflection due to additional rod elongation. For cases where the anchor rod is offset, Simpson Strong-Tie offers recommendations, subject to the approval of the Designer, which permit holdowns to be raised up to 18" maximum with a corresponding horizontal anchor rod offset of 1½". See "General Instructions for the Installer" (page 23 note q).
- m. Throughout the catalogue there are installation drawings showing the load transfer from one element in the structure to another. Additional connections may be required to safely transfer the loads through the structure. It is the Designer's responsibility to specify and detail all necessary connections to ensure that a continuous load path is provided as required by the building code.

GENERAL INSTRUCTIONS FOR THE INSTALLER

These general instructions for the installer are provided to ensure proper selection and installation of Simpson Strong-Tie Company Inc. products and must be followed carefully. These general instructions are in addition to the specific installation instructions and notes provided for each particular product, all of which should be consulted prior to and during installation of Simpson Strong-Tie Company Inc. products.

- a. All specified fasteners must be installed according to the instructions in this catalogue. Incorrect fastener quantity, size, placement, type, material, or coating may cause the connection to fail. Prior to using a particular fastener, please consult the Fastener Guide in this catalogue.
 - 16d fasteners are common nails (0.162" dia. x 3½" long) and cannot be replaced with 16d sinkers (0.148" dia. x 3¼" long) for full load value unless otherwise specified.
 - Screws may not be used to replace nails in connectors unless approved and recommended by the Designer/Engineer of Record. Unless stated otherwise, Simpson Strong-Tie cannot and does not make any representations regarding the suitability of use or load-carrying capacities of connectors with screws replacing nails.
 - When using stainless-steel connectors, use stainless-steel fasteners.
 When using ZMAX®/HDG galvanized connectors, use fasteners that meet the zinc coating specifications of ASTM A153.
- b. Fill all fastener holes as specified in the installation instructions for that product. Refer to Simpson Strong-Tie Fastener Guide for the requirements of the various shaped fastener holes.
- c. Do not overdrive nails. Overdriven nails reduce shear capacity.
- d. Use the materials specified in the installation instructions. Substitution
 of or failure to use specified materials may cause the connection to fail.
- e. Do not add fastener holes or otherwise modify Simpson Strong-Tie Company Inc. products. The performance of modified products may be substantially weakened. Simpson Strong-Tie will not warrant or guarantee the performance of such modified products.
- f. Install products in the position specified in the catalogue.

- g. Do not alter installation procedures from those set forth in this catalogue.
- h. The proper use of certain products requires that the product be bent.
 For those products, installers must not bend the product more than one time (one full cycle).
- i. Bolt holes shall be at least a minimum of 1/2 (1 mm) and no more than a maximum of 1/2 (2 mm) larger than the bolt diameter (per 10.4.1.2 CSA 086-09).
- j. Install all specified fasteners before loading the connection.
- k. Some hardened fasteners may have premature failure if exposed to moisture. These fasteners are recommended to be used in dry interior applications.
- I. Use proper safety equipment.
- m. Welding galvanized steel may produce harmful fumes; follow proper welding procedures and safety precautions. Welding should be in accordance with CSA W59. Unless otherwise noted Simpson Strong-Tie connectors cannot be welded.
- n. Pneumatic or powder-actuated fasteners may deflect and injure the operator or others. Pneumatic nail tools may be used to install connectors, provided the correct quantity and type of nails (length and diameter) are properly installed in the nail holes. Tools with nail hole-locating mechanisms should be used. Follow the manufacturer's instructions and use the appropriate safety equipment. Overdriving nails may reduce allowable loads. Contact Simpson Strong-Tie. Powder-actuated fasteners should not be used to install connectors.
- Joist shall bear completely on the connector seat, and the gap between the joist end and the header shall not exceed 1/8" (3 mm) per ASTM D1761 test standards.

GENERAL INSTRUCTIONS FOR THE INSTALLER (cont.)

- p. For holdowns, anchor bolt nuts should be finger-tight plus 1/2 to 1/2 turn with a hand wrench, with consideration given to possible future wood shrinkage. Care should be taken to not over-torque the nut. Impact wrenches should not be used as they may preload the holdown.
- Holdowns and Tension Ties may be raised off the sill as dictated by field conditions to accommodate an anchor mislocated no more than 11/2". The holdown shall be raised off the sill at least 3" for every 1/4" that the anchor is offset from the model's centerline (as defined on pages 49 to 56 to maximum of 18"). Anchor bolt slope shall be no greater than 1:12 (or 5 degrees). Contact the Designer if the holdown anchor is offset more then 11/2". Raised holdown height is measured from the top of concrete to the top of the holdown bearing plate.
- Strong-Drive® Screws are permitted to be installed through metal truss plates as approved by the Truss Designer (pre-drilling required through the plate using a maximum of a 5/32" bit).
- s. For cold-formed steel applications, all screws shall be installed in accordance with the screw manufacturer's recommendations. All screws shall penetrate and protrude through the joined materials a minimum of 3 full exposed threads per AISI Standard for Cold Formed Steel Framing – General Provisions, section D1.3, if applicable.
- Nuts shall be installed such that the end of the threaded rod or bolt is at least flush with the top of the nut.
- u. When installing hurricane ties on the inside of the wall special considerations must be taken to prevent condensation on the inside of the completed structure in cold climates.
- Unless otherwise noted, connectors shown in this catalogue have been designed to be installed at the time the framing members are installed. Contact Simpson Strong-Tie for retrofit suitability of specific connectors including those manufactured in accordance with the hanger options section of this catalogue.

LIMITED WARRANTY

Simpson Strong-Tie Company Inc. warrants catalogue products to be free from defects in material or manufacturing. Simpson Strong-Tie Company Inc. products are further warranted for adequacy of design when used in accordance with design limits in this catalogue and when properly specified, installed, and maintained. This warranty does not apply to uses not in compliance with specific applications and installations set forth in this catalogue, or to non-catalogue or modified products, or to deterioration due to environmental conditions.

Simpson Strong-Tie® connectors are designed to enable structures to resist the movement, stress, and loading that results from impact events such as earthquakes and high velocity winds. Other Simpson Strong-Tie products are designed to the load capacities and uses listed in this catalogue. Properly-installed Simpson Strong-Tie products will perform in accordance with the specifications set forth in the applicable Simpson Strong-Tie catalogue. Additional performance limitations for specific products may be listed on the applicable catalogue pages.

Due to the particular characteristics of potential impact events, the specific design and location of the structure, the building materials used, the quality of construction, and the condition of the soils involved, damage may nonetheless result to a structure and its contents even if the loads resulting from the impact event do not exceed Simpson Strong-Tie catalogue specifications and Simpson Strong-Tie connectors are properly installed in accordance with applicable building codes.

All warranty obligations of Simpson Strong-Tie Company Inc. shall be limited, at the discretion of Simpson Strong-Tie Company Inc., to repair or replacement of the defective part. These remedies shall constitute Simpson Strong-Tie Company Inc.'s sole obligation and sole remedy of purchaser under this warranty. In no event will Simpson Strong-Tie Company Inc. be responsible for incidental, consequential, or special loss or damage, however caused.

This warranty is expressly in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose, all such other warranties being hereby expressly excluded. This warranty may change periodically - consult our website www.strongtie.com for current information.

CONVERSION CHARTS

Metric Conversion

Imperial	Metric		
1 in	25.40 mm		
1 ft	0.3048 m		
1 lb	4.448N		
1 Kip	4.448 kN		
1 psi	6895 Pa		

Bolt Diameter

in	mm			
3/8	9.5			
1/2	12.7			
5/8	ís 15.9			
3/4	19.1			
7/8	22.2			
1	25.4			

in	25.40 mm		3/8	9.5		1/12	5°
ft	0.3048 m		1/2	12.7		2/12	10°
			5/8	15.9		3/12	14°
lb	4.448N		3/4	19.1		4/12	18°
Kip	4.448 kN		7/8	22.2		5/12	23°
psi	6895 Pa		1	25.4		6/12	27°
		7/12	30°				
			8/12	34°			
			9/12	37°			
Use these Roof Pitch to Hip/Valley Rafter Roof						10/12	40°
itch conversion tables only for hip/valley rafters					afters	11/12	42°
	hat are skewed 45° right or left. All other skews will cause the slope to change from that listed.					12/12	45°

If Common Rafter

Roof Pitch is...

Rise/Run

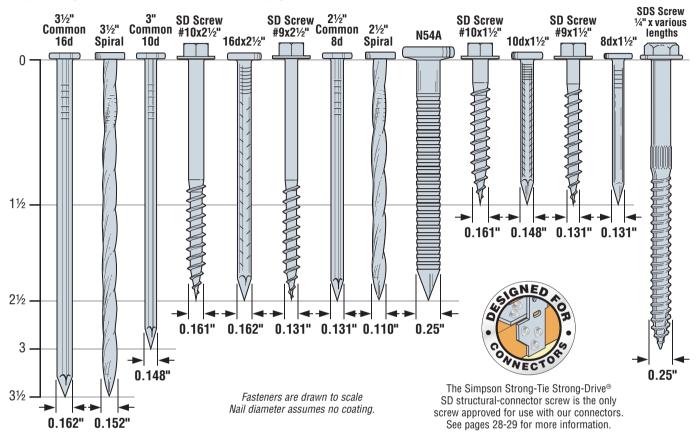
Slope	Rise/Run	Slope
5°	1/17	3°
10°	2/17	7°
14°	3/17	10°
18°	4/17	13°
23°	5/17	16°
27°	6/17	19°
30°	7/17	22°
34°	8/17	25°
37°	9/17	28°
40°	10/17	30°
42°	11/17	33°
45°	12/17	35°

Then Hip/Valley Rafter Roof Pitch becomes...

Rise/Run	Slope
1/17	3°
2/17	7°
3/17	10°
4/17	13°
5/17	16°
6/17	19°
7/17	22°
8/17	25°
9/17	28°
10/17	30°
11/17	33°
12/17	35°

US Standard Steel Gauge Equivalents in Nominal Dimensions

	Ga Min. Thick. (mils)		Approximate Dimensions		Decimals (in)				
			in	mm	Uncoated Steel	Galvanized Steel (G90)	ZMAX (G185)		
	3	229	1/4	6.0	0.239	_	_		
	7	171	3/16	4.5	0.179	0.186	1		
	10	118	9/64	3.5	0.134	0.138	0.140		
	11	111	1/8	3.1	0.120	0.123	0.125		
	12	97	7/64	2.7	0.105	0.108	0.110		
	14	68	5/64	2.0	0.075	0.078	0.080		
	16	54	1/16	1.6	0.060	0.063	0.065		
	18	43	3/64	1.3	0.048	0.052	0.054		
	20	33	1/32	1.0	0.036	0.040	0.042		
	22	27	1/32	1.0	0.030	0.033	0.035		


Steel thickness varies according to mill standards.

FASTENER TYPES

Fastener Types and Sizes Specified for Simpson Strong-Tie® Connectors

Many Simpson Strong-Tie connectors have been designed and tested for use with specific types and sizes of fasteners. The specified quantity, type and size of fastener must be installed in the correct holes on the connector to achieve published values. Other factors such as fastener material and finish are also important. Incorrect fastener selection or installation can compromise connector performance and could lead to failure.

Simpson Strong-Tie does not offer all of these fasteners, see page 25 for more information.

NAIL DESIGN INFORMATION

In some cases it is desirable to install Simpson Strong-Tie face mount joist hangers and straight straps with nails that are a different type or size than what is called out in the load table. In these cases these reduction factors must be applied to the factored resistances listed for the connector.

Resistance Adjustment Factors for Optional Nails Used with Face Mount Hangers and Straight Straps

Specified Catalogue Nail	Replacement Nail	Face Mount Hangers	Straight Straps	
16d common (0.162"v21/")	10d common (0.148"x3")	0.83	0.83	
16d common (0.162"x3½")	12d common (0.148"x31/4")	0.03		
16d common (0.162"x3½")	16dx2½" (0.162"x2½")	1.00	1.00	
16d common (0.162"x3½")	10dx1½" (0.148"x1½")	0.64	0.77	
16d common (0.162"x3½")	16d spiral (0.152"x3½")	0.91	0.91	
16d common (0.162"v21/")	10d spiral (0.122"x3")	0.61	0.61	
16d common (0.162"x3½")	12d spiral (0.122"x31/4")	0.01		
10d common (0.148"x3")	10dx2½" (0.148"x2½")	0.85	1.00	
10d common (0.148"x3")	8d common (0.131"x2½")	0.80	0.80	
10d common (0.148"x3")	10dx1½" (0.148"x1½")	0.77	0.92	
10d common (0.148"x3")	10d spiral (0.122"x3")	0.74	0.74	
8d common (0.131"x2½")	8dx1½" (0.131"x1½")	0.85	0.98	
8d common (0.131"x2½")	8d spiral (0.110"x2½")	0.64	0.75	

Double shear nailing should use full length common nails

Shorter nails may not be used as double shear nails

- Resistance adjustment factors shown in the table are based on calculated reduction factors and are applicable for all face mount hangers and straight straps throughout this catalogue, except as noted in the footnotes below.
- Some products have been tested specifically with alternate fasteners and have reduced capacities published on the specific product page which may differ from the values calculated using this table.
- This table does not apply to hangers modified per the Hanger Options described on pages 210-219, or steel thicker than 10 gauge.
- 4. Unless noted otherwise, 10dx1½", 10dx2½" or 16dx2½" nails may not be substituted for joist nails in double-shear hangers (*i.e. LUS, HUS, HHUS, HGUS*). For applications involving pneumatic nails. refer to specific tool manufacturer technical bulletins.
- Do not substitute 10dx1½" nails for face nails on slope and skew combinations or skewed only LSU and LSSU.
- 6. For straps installed over sheathing use a 21/2" long nail minimum.

FASTENING IDENTIFICATION

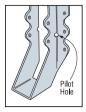
Round Holes
Purpose: to fasten a connector.
Fill Requirements: always fill, unless noted otherwise.

Obround Holes
Purpose: to make
fastening a connector
in a tight location
easier.
Fill Requirements:

always fill.

Hexagonal Holes Purpose: to fasten a connector to concrete or masonry. Fill Requirements: always fill when

fastening a connector


to concrete or masonry.

Triangular Holes
Purpose: to increase a
connector's strength or
to achieve Max strength.
Fill Requirements:
when the Designer
specifies Max nailing.

Diamond Holes Purpose: to temporarily fasten a connector to make installing it easier. **Fill Requirements:** none.

SIMPSON

Strong-Tie

Pilot HolesTooling holes for manufacturing purposes.
No fasteners required.

Speed Prongs
Used to temporarily position and secure the connector for easier and faster installation.

Positive Angle Nailing (PAN) Provided when wood splitting may occur, and to speed installation.

Dome Nailing
This feature guides the nail into the joist and header at a 45° angle.
U.S. Patent 5,603,580

Double Shear Nailing
The nail is installed into the joist and header, distributing the load through two points on each joist nail for greater strength.

ITS Strong-Grip™
(IUS Similar)
The Strong-Grip™ seat allows the I-joist to "snap" in securely without the need for joist nails.

SIMPSON STRONG-TIE® NAILS

Simpson Strong-Tie nails and structural fasteners have been developed as the optimum fasteners for connector products. Special lengths afford economy of purchase and installation, and depth compatibility with framing members.

For pneumatic nail use, see General Instructions to the Installer, page 22-23 and visit **www.strongtie.com** for technical bulletins.

Retail Packaging

1 lb. Retail Tub

5 lb. Retail Bucket

Simpson Strong-Tie hot-dip galvanized nails are packed in 1 lb. and 5 lb. plastic retail containers for easy handling.

Display Packages

Display Package	Description
N8DHDG MSTR CTN	24 display packs of 150 N8 nails
N8D5HDG MSTR CTN	6 display packs of 750 N8 nails
N10DHDG MSTR CTN	24 display packs of 120 N10 nails
N10D5HDG MSTR CTN	6 display packs of 600 N10 nails
10DHDG MSTR CTN	24 display packs of 50 10d nails
10D5HDG MSTR CTN	6 display packs of 250 10d nails
16DHDG MSTR CTN	24 display packs of 40 16d nails
16D5HDG MSTR CTN	6 display packs of 200 16d nails
50 lb. Bulk Boxes	Available for N8HDG and N10HDG Model no. N8, N10

Nails Sold by the Pound

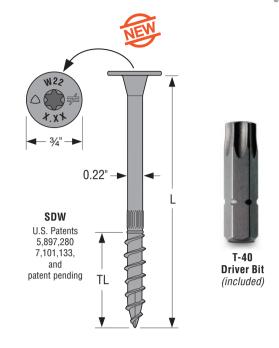
Nail	Simpson Model No.	Dimensions	Wire Gauge	Finish	Fasteners ⁸ per CWT
8dx1½"	N8	0.131" x 1½"	101/4	HDG	15200
OUX 1 72	SSN8	(3.3mm x 38.1mm)	1074	SS	15200
8d Common	SS8D	0.131" x 2½" (3.3mm x 63.5mm)	101/4	SS	9400
10dx1½"	N10	0.148" x 1½"	9	HDG	11900
100X172	SSN10	(3.8mm x 38.1mm)	9	SS	12200
10d Common	10DHDG	0.148" x 3"	9	HDG	6700
Tou Common	SS10D	(3.8mm x 76.2mm)	9	SS	6700
16dx2½"	N16	0.162" x 2½" (4.1mm x 63.5mm)	8	Bright	6300
16d Common	16DHDG	0.162" x 3½"	8	HDG	4400
100 00111111011	SS16D	(4.1mm x 88.9mm)	0	SS	4400
N54A	N54A	0.250" x 2½"	3	Bright	2700
NJ4A	N54AHDG	(6.4mm x 63.5mm)	٥	HDG	2700

- N16 fasteners may be ordered electro-galvanized; specify EG; for example N16EG.
 This finish is not acceptable for ZMAX® or HDG applications.
- 2. HDG = hot-dip galvanized; SS = stainless steel; Bright = no finish; GV = green vinyl.
- 3. Metric equivalents are listed (Diameter x Length).
- 4. For pneumatic fastener info, request additional technical information.
- 5. Use HDG nails with ZMAX and HDG products.
- 6. 16d sinker with GV finish is not acceptable for ZMAX or HDG applications.
- HDG nails sold by Simpson Strong-Tie meet the specifications of ASTM A153. Stainless steel nails are type 316 stainless.
- 8. Fasteners per CWT references the quantity of fasteners per 100 lbs.

SDW Strong-Drive® Structural Wood Screws

The Strong-Drive® SDW screw is a 0.22" diameter, high-strength structural wood screw specifically designed for fastening together multi-ply wood members, such as plated trusses, engineered-lumber products and solid-sawn lumber. The SDW installs easily with no pre-drilling and is available in optimized lengths for fastening 2, 3 and 4-ply trusses or 13/4" structural composite lumber (SCL). The SDW enables single-side fastening, while still allowing concurrent loading on both sides of the assembly.

- Low-profile head for reduced interference during handling or installation of hardware on the assembly
- High shear values enable wider screw spacing
- · Bold thread design firmly cinches plies together to close gaps in multi-ply assemblies
- Optimal screw lengths provide maximum penetration


MATERIAL: Heat-treated carbon steel

FINISH: Black E-coat™

WARNING: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, the SDW wood screws should only be used in dry, interior and non-corrosive environments.

INSTALLATION: • See General Notes.

- SDW screws install best with a low-speed ½" drill and a T-40 6-lobe bit. The matched bit included with the screws is recommended for best results.
- Pre-drilling is typically not required. SDW screws may be installed through metal truss plates as approved by the Truss Designer (pre-drilling required through the plate using a maximum of 5/32" bit).
- Screw heads that are countersunk flush to the wood surface are acceptable if the screw has not spun out.

Product Information

Model No. ^{2,3}	Head Stamp Length	Nominal Length (L) (in)	Typical Application ¹	Thread Length (TL) (in)	Retail Box³ Quantity (1 Bit)	Retail Boxes/ Carton	Mini-Bulk Bucket Quantity ² (1 Bit)	Bulk Bucket Quantity (2 Bits)
SDW22300	3.00	3	2x/Truss	1 ½16	50	6	250	950
SDW22338	3.37	3%	SCL	1%16	50	6	250	900
SDW22458	4.62	45/8	2x/Truss	1 ½16	50	4	200	600
SDW22500	5.00	5	SCL/3x2PCT	1%16	50	4	200	600
SDW22600 ⁴	6.00	6	2x/Truss	1 ½16	50	4	200	500
SDW226384	6.37	6%	2x/Truss	17/16	50	4	200	500
SDW22634	6.75	6¾	SCL/4x2PCT	1%16	50	4	200	500

- Typical screw application kev:
- 2x/Truss = Solid-sawn dimensional lumber and plated wood trusses.
- SCL = 13/4" plies of structural-composite lumber. SCL/3x2PCT = 13/4" plies of structural-composite lumber or double 3x2 parallel-chord trusses.
- SCL/4x2PCT = $1\frac{3}{4}$ " or $3\frac{1}{2}$ " plies of structural-composite lumber or double 4x2 parallel-chord trusses
- 2. To order mini-bulk buckets add the letters MB to the model number, e.g. SDW22458MB.
- 3. To order retail pack boxes add "-R50" to the model number, e.g. SDW22458-R50.
- If assembly is less than or equal to 63/16" thick, use the SDW22600.

			D.Fir-L			S-P-F			
	Nominal	Thread		d Lateral (K _D = 1.00)	Factored		d Lateral (K _D = 1.00)	Factored	
Model No.	Length	Length	Wood Side Member		Withdrawal Resistance	Wood Side Member		Withdrawal Resistance	
NO.	(in)	(in)	1½"	1¾" SCL	- Hoolotalloo	1½"	1¾" SCL	Hoolotalloo	
			lbs	lbs	lbs	lbs	lbs	lbs	
			kN	kN	kN	kN	kN	kN	
SDW22300	3	1 7/16	335	_	485	290	_	370	
300022300	3	1716	1.49	_	2.16	1.29	_	1.65	
SDW22338	3%	1%6	335	390	530	290	325	405	
300022330	378	1 716	1.49	1.73	2.36	1.29	1.44	1.80	
SDW22438	43/8	1 7/16	455	_	485	405	_	370	
3DW22430	478	1716	2.02	_	2.16	1.80	_	1.65	
SDW22458	45%	1 7/ ₁₆	455	_	485	405	_	370	
3DW22430	478	I 716	2.02	_	2.16	1.80	_	1.65	
SDW22500	5	1%6	455	495	530	405	430	405	
300022300	3	1716	2.02	2.20	2.36	1.80	1.91	1.80	
SDW22600	6	1 7/ ₁₆	455	_	485	405	_	370	
300022000	0	1716	2.02	_	2.16	1.80	_	1.65	
SDW22638	63/8	17/16	455	_	485	405	_	370	
300022030	098	1 716	2.02	_	2.16	1.80	_	1.65	
SDW22634	6¾	1%16	455	495	530	405	430	405	
3DW22034	U74	1 716	2.02	2.20	2.36	1.80	1.91	1.80	

See pages 144-145 for specific multi-ply lamination details using Strong-Drive SDW screws.

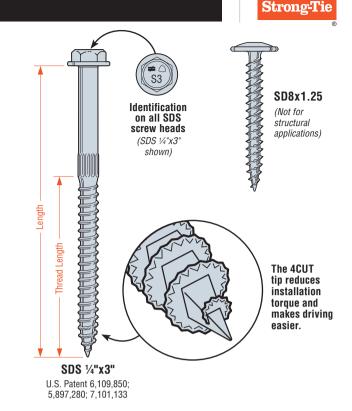
- 1. Factored resistances shown have been developed in accordance with 10.11 CSA 086-09 based on testing per ICC-ES AC233. Apply the adjustment factors K_D , K_{SF} and K_T as per 10.11.4.1 when applicable.
- 2 Factored withdrawal resistances shown are only applicable to short term loads as per 10.11.5.1 CSA 086-09.
- 3. Factored withdrawal resistances shown assume the entire threaded portion of the screw is installed into the main member. Where the penetration into the main member is less than the length of the thread, the factored resistances may be calculated by multiplying the length of penetration of the threads x 280 lbs/in (49 N/mm) for D.Fir-L and 215 lbs/in (38 N/mm) for S-P-F.
- Minimum spacing, edge and end distances shall be in accordance with 10.9.2.1 CSA 086-09 using a diameter value of 0.30".

SIMPSON

SDS & SD Wood Screws

The Simpson Strong-Tie® Strong-Drive® screw (SDS) is a ¼" diameter structural wood screw ideal for various connector installations as well as wood-to-wood applications. It installs with no predrilling and has been extensively tested in various applications. The SDS is improved with a patented easy driving 4CUT™ tip and a corrosion resistant double-barrier coating.

The SD8 #8x1½" wafer head screw is ideal for miscellaneous fastening applications. The needle point ensures fast starts and deep #2 Phillips drive reduces cam-out and stripping.


SDS FEATURES:

- The patented 4CUT tip has a square core and serrated threads to reduce installation torque and make driving easier with no predrilling and minimal wood splitting.
- A double-barrier coating finish provides corrosion resistance equivalent to hot-dip galvanization. Now one screw can handle interior, exterior and certain pressure-treated wood applications (see Corrosion Information on page 18-19 for more information).
- %" hex washer head is stamped with the No-Equal sign and fastener length for easy identification after installation.

MATERIAL: Heat-treated carbon steel, Type-316 stainless steel

FINISH: SDS—Double-barrier coating. SDS screws may also be available yellow zinc dichromate or HDG (Not all sizes are available in all coatings – Contact Simpson Strong-Tie for product availability and ordering information); SD8x1.25—Electro Galvanized.

WARNING: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, the SD8 should be used in dry, interior, and noncorrosive environments only.

These products feature additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

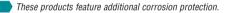
SDS Wood Screws

					D.Fir-L				S-P-F						
				Factor	ed Latera	al Resista	ance (K _D	=1.00)		Factor	ed Later	al Resista	ance (K _D	= 1.00)	
	T1		F4	Side Plate Factored				Side Plate				Factored			
Model	Size	Length	Fasteners per	Wo	od		Steel		Withdrawal	Wo	od		Steel		Withdrawal
No.	(in)	(in)	Carton	1½"	1¾" SCL	14 ga	10 ga	3 ga	Resistance	1½"	1¾" SCL	14 ga	10 ga	3 ga	Resistance
				lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
				kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
SD8x1.25	5/32 x 11/4	_	_	_					_	_	_				_
SDS25112	.,,		4500			340	465	545	280		_	315	435	435	215
SDS25112SS	1/4 x 11/2	1	1500		_	1.51	2.07	2.42	1.25	_	_	1.40	1.94	1.94	0.96
SDS25200	1/ 1/ 0	11/4	1300	_	_	400	530	655	355	_	_	370	455	455	270
SDS25200SS	1/4 x 2	1 74	1300		_	1.78	2.36	2.91	1.58	_	_	1.65	2.02	2.02	1.20
SDS25212	1/4 x 21/2	11/2	1100	_	_	465	590	825	425	_	_	420	550	590	320
SDS25212SS	74 X Z 72	1 72	1100		_	2.07	2.62	3.67	1.89	_	_	1.87	2.45	2.62	1.42
SDS25300	½ x 3	2	950	370	_	525	655	840	565	320	_	475	590	590	430
SDS25300SS	/4 A U		330	1.65	_	2.34	2.91	3.74	2.51	1.42	_	2.11	2.62	2.62	1.91
SDS25312	1/4 x 31/2	21/4	900	435	435	585	715	840	635	370	370	525	590	590	485
SDS25312SS	74 / 072	2/4	300	1.94	1.94	2.60	3.18	3.74	2.82	1.65	1.65	2.34	2.62	2.62	2.16
SDS25412	1/4 x 41/2	23/4	800	475	510	585	720	840	775	420	450	530	590	590	590
02020112	7170 172	-71		2.11	2.27	2.60	3.20	3.74	3.45	1.87	2.00	2.36	2.62	2.62	2.62
SDS25500	½ x 5	23/4	500	475	510	585	720	840	775	420	450	530	590	590	590
	717.0			2.11	2.27	2.60	3.20	3.74	3.45	1.87	2.00	2.36	2.62	2.62	2.62
SDS25600	1/4 x 6	31/4	600	475	510	585	720	840	915	420	450	530	590	590	700
				2.11	2.27	2.60	3.20	3.74	4.07	1.87	2.00	2.36	2.62	2.62	3.11
SDS25800	1/4 x 8	31/4	400	475	510	585	720	840	915	420	450	530	590	590	700
			1.	2.11	2.27	2.60	3.20	3.74	4.07	1.87	2.00	2.36	2.62	2.62	3.11

- 1. Factored resistances shown have been developed in accordance with 10.11 CSA 086-09. Apply the adjustment factors K_D , K_{SF} and K_T as per 10.11.4.1 CSA 086-09 when applicable.
- 2. Factored lateral resistances shown assume steel side plates with a minimum $F_{IJ} = 45,000 \; \text{psi} \; (310 \; \text{MPa}).$
- 3. Factored lateral resistances shown assume full penetration into the main member.
- 4. Factored withdrawal resistances shown are only applicable to short term loads as per 10.11.5.1 CSA 086-09.
- Factored withdrawal resistances shown assume the entire threaded portion of the screw is installed into the main member. Where the penetration into the main member is less than the length of the thread, the factored resistance may be
- calculated by multiplying the length of penetration of the threads x 280 lbs/in (49 N/mm) for D.Fir-L and 215 lbs/in (38 N/mm) for S-P-F).
- Factored withdrawal resistances shown are for penetration into the main member. Head pull through resistance may govern and must be calculated in accordance with 10.11.5.3 CSA 086-09 using a washer diameter d_w = 0.480".
- LSL wood-to-wood applications that require 4½", 5", 6" or 8" SDS screws are limited to interior-dry use only.
- 8. Minimum spacing, edge and end distances shall be in accordance with 10.9.2.1 CSA 086-09 using a fastener diameter of 0.250" (6.4 mm).
- 9. Screws may be provided with the 4CUT or Type 17 tip.
- 10. SDS screws install best with a low speed ½" drill with a %" hex head driver.

The Strong-Drive® SD screw for use with Simpson Strong-Tie® connectors

Simpson Strong-Tie introduces the Strong-Drive® SD structural-connector screw for use with our connectors. Designed to replace nails in certain products, the load-rated SD screw has been tested and approved for use in many popular Simpson Strong-Tie® connectors. In certain applications screws are easier and more convenient to install than nails, and the single-fastener capacities achieved by the SD9 and SD10 exceed those of typical 10d common or 16d common nails, respectively. In addition, the galvanized coating makes the SD screw ideal for interior and most exterior conditions.


The SD structural-connector screw features an optimized shank which is specifically designed to be compatible with the fastener holes in Simpson Strong-Tie connectors. The hex head virtually eliminates cam-out and helps avoid stripping of the head during installation. The sharp point of the screw enables fast starts, and the patented serrated threads reduce torque for improved drivability.

FEATURES:

- · Tested and approved for use in many of our best-selling connectors for both interior and most exterior applications
- The single-fastener steel-side-plate capacity of the SD9 exceeds the capacity of a 10d common nail, while the single-fastener capacity of the SD10 exceeds that of the 16d common nail
- · Ideal for use in tight spaces where using a hammer is inconvenient
- Optimized heat-treating for ductility and strength
- Mechanically-galvanized coating meets ASTM B695 Class 55, is recommended for use with certain preservative-treated woods (see pages 18-19)
- 1/4" hex drive
- · Head identification

MATERIAL: Heat-treated carbon steel

FINISH: Mechanically galvanized (ASTM Class 55)

Product Information

Model No.	Shank Size	Length (in)
SD9112R100		
SD9112R500		11/2
SD9112MB	#9	
SD9212R100	(0.131")	
SD9212R500		2½
SD9212MB		
SD10112R100		
SD10112R500		11/2
SD10112MB	#10	
SD10212R100	(0.161")	
SD10212R500		21/2
SD10212MB		

SD10 (SD9 similar) U.S. Patent 7,101,113

					Factored	Lateral Re	esistance (K _D = 1.00)				
				D.F	ir-L		S-P-F				
		Thread		Side	Plate			Side	Plate		
Model No.	Size (in)	Length	Wo	ood	St	eel	Wood		Steel		
140.	()	(in)	1/2"	1½"	20 ga	12 ga	1/2"	1½"	20 ga	12 ga	
			lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	
			kN	kN	kN	kN	kN	kN	kN	kN	
SD9112	#9x1½	1	150	_	195	295	130	_	175	280	
309112	# 3X 1 72	'	0.67	_	0.87	1.31	0.58	_	0.78	1.25	
SD9212	#9x2½	1	240	230	285	390	205	195	250	360	
303212	#38272	'	1.07	1.02	1.27	1.73	0.91	0.87	1.11	1.60	
SD10112	#10x1½	1	165	_	220	340	140	_	200	320	
3010112	# IUX I 72		0.73	_	0.98	1.51	0.62	_	0.89	1.42	
SD10212	#10x2½	1	270	265	325	445	230	225	290	395	
3010212	# IUXZ72		1.20	1.18	1.45	1.98	1.02	1.00	1.29	1.76	

- 1. Factored resistances shown have been developed in accordance with 10.11 CSA 086-09. Apply the adjustment factors KD, KSF and KT as per 10.11.4.1 CSA 086-09 to the tabulated values shown when applicable. Resistances assume full penetration into the main member.
- 2. Factored resistances shown assume steel side plates with F_U = 45,000 psi (310 MPa). 3. Factored resistances shown for ½" wood
- side plates is applicable to structural panel side members (OSB, DFP and CSP) as per 10.11.4.2 CSA 086-09.
- Widrawal values for SD9 and SD10 screws may be calculated in accordance with 10.11.5.2 CSA 086-09.
- Minimum spacing edge and end distances shall be in accordance with 10.9.2.1 CSA

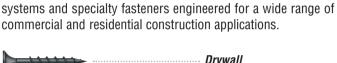
Connectors approved for use with the Strong-Drive® SD structural-connector screw

Throughout this catalogue this symbol will appear with products that are approved for installation with the Strong-Drive SD screw.

Model	SI	D9	SD10			
No.			#10x1½"			
A21	•					
A23	•					
A33						
A34	•					
A35	•					
A44	•					
ABA44	•					
ABA44R	•					
ABA46			•			
ABA66			•			
ABA66R			•			
ABU44			•			
AC4 (Max)			•			
AC6 (Max)			•			
BC4			•			
BC40			•			
BC60			•			
BCS2-2/4		•				
CTS218						
DJT14Z				•		
DPT5Z*						
DPT7Z*	•					
EPB44			•			
EPB44PHDG			•			
EPC44			•			
EPC44-16			•			
FB24*						
FB24R*	•					
FB26*						
FBR24*	•					
FPBM44*						
FWH2	•					
GA1						
GA2	•					
H1						
H10	•					
H2.5						
H2.5A	•					
H4	•					
H5	•					
H8	•					
HPTZ			•			
HRS12	•					
HRS6	•					
HRS8						
HTP37Z	•					
IIIFJ/Z						

Model	SI	D9	SD10			
No.	#9x1½" #9x		#10x1½"	#10x2½"		
L30	•					
L50	•					
L70	•					
L90	•					
LCE4			•			
LPC4	•					
LSCZ	•					
LSTA12	•					
LSTA15	•					
LSTA18	•					
LSTA21	•					
LSTA24	•					
LSTA30	•					
LSTA36	•					
LSTA9	•					
LSTI49	•					
LSTI73	•					
LTP4	•					
LU210 (10d)	•					
LU24 (10d)	•					
LU28 (10d)	•					
LUC210Z (10d)	•					
LUC210Z (16d)			•			
LUC26Z (10d)	•					
LUC26Z (16d)			•			
LUS210		•				
LUS210-2				•		
LUS24		•				
LUS24-2				•		
LUS26		•				
LUS26-2				•		
LUS28		•				
LUS28-2				•		
MST27			•			
MST37			•			
MST48			•			
MST60			•			
MST72			•			
MSTA12	•					
MSTA15	•					
MSTA18	•					
MSTA21	•					
MSTA24	•					
MSTA30	•					
MSTA36	•					
MSTA49	•					
MSTA9	•					
MSTC28	•					


Model	SI	D9	SD10			
No.	#9x1½"	#9x2½"	#10x1½"	#10x2½		
MSTC40	•					
MSTC52	•					
MSTC66	•					
MSTC78	•					
MSTI26	•					
MSTI36	•					
MSTI48	•					
MSTI60						
MSTI72	•					
MTS12	•					
	•					
MTS16						
MTS20	•					
NS1*	•					
NS2*	•					
PBS44A			•			
PC44			•			
PC44-16			•			
PSPN58Z*			•			
RR	•					
RSP4	•					
ST12			•			
ST18			•			
ST2115			•			
ST2122			•			
ST22			•			
ST292			•			
ST2215			•			
ST6215			•			
ST6224			•			
ST6236			•			
ST9			•			
THASR/L29	•	•				
THASR/L29-2	•	•				
THASR/L422		•				
TP15*	•					
TP311*	•					
TP35*	•					
TP37*	•					
TP39*	•					
TP411*	•					
TP45*	•					
TP47*						
	•					
TP49*	•					
TP57*	•					
TPA37*	•					
TPA39*	•					
TPA57*	•					
VTCR	•	•				


HUS26 HUS28

Since testing of the SD structural-connector screw is ongoing, Simpson Strong-Tie will continue to add newly approved connectors to the list. For the most current list of approved connectors, capacities and applications visit **www.strongtie.com/sd**.

^{*} These connectors are not load rated.

QUIK DRIVE® FASTENERS AND ATTACHMENTS

Simpson Strong-Tie® Quik Drive offers labor saving auto-feed

See the Fastenina Systems catalogue (form C-FS) for more information.

AUTO-FEED SCREW DRIVING SYSTEMS

The systems offer several easy-to-use attachments bringing speed and reliability to applications that require the fastening power of screws. Our attachments provide tough, reliable performance in specific fastening applications.

QUIK DRIVE FASTENERS

Featuring patented collation technology, Quik Drive fasteners are designed to meet or exceed industry standards for strength and longevity while offering easy-to-load, tangle-free strips for efficient performance in auto-feed systems.

For more information, visit www.strongtie.com

ANCHORING SYSTEMS

SIMPSON Strong-Tie

TITEN HD® Heavy Duty Screw Anchor

U.S. Patent 5,674,035 & 6,623,228 The Titen HD anchor is a patented, high-strength screw anchor for concrete and masonry. It is designed for optimum performance in both cracked and uncracked concrete. The high strength, easy-to-install Titen HD anchor has been tested and shown to provide outstanding performance in cracked and uncracked concrete under both static and seismic-loading conditions. The self-undercutting, non-expansion characteristics of the Titen HD anchor make it ideal for structural applications, even at reduced edge distances and spacings. Recommended for permanent dry, interior non-corrosive environments or temporary outdoor applications.

CODES: ICC-ES ESR-2713 (concrete); ICC-ES ESR-1056 (CMU); City of L.A. RR25741 (Concrete) and RR25560 (CMU); Florida FL 11506.7; Factory Mutual 3017082

STRONG-BOLT™2 Wedge Anchor

This innovative, new wedge anchor features a redesigned, tri-segmented clip made of a special high-strength alloy that enables it to outperform many other cracked-concrete wedge anchors, including the original Strong-Bolt™. Strong-Bolt 2 anchor has also received classification as a Category 1 anchor, which is the highest reliability rating as outlined by the ICC-ES AC193 acceptance criteria. It has been tested for installation in the most adverse conditions, including performance in cracked concrete under static and seismic loading and meets the requirements of CSA A23.3-04 Annex D.

CODES: ICC-ES ESR-3037; City of L.A. Pending; Florida FL 11506.6

WEDGE-ALL® Wedge Anchor

The Wedge-All anchor is a non-bottom bearing, wedge-style expansion anchor for use in solid concrete or grout filled masonry. A one-piece clip ensures uniform holding capacity that increases as tension is applied. The threaded stud version is available in eight diameters and multiple lengths. A single size tie-wire version is available for wire supported fixtures. Threaded studs are set by tightening the nut. Tie-wire anchors are set with the claw end of a hammer.

CODES: ICC-ES ESR-1396 (CMU); City of L.A. RR24682; Factory Mutual 3017082 and 3031136; Florida FL 11506.8; Underwriters Laboratories File Ex3605

TORQ-CUT[™] Self-Undercutting Anchor

The Torq-Cut self-undercutting anchor is a heavy-duty, high-capacity anchor designed and tested for use in cracked and uncracked concrete under static and seismic loading conditions. It is designed to meet the requirements of CSA A23.3-04 Annex D. The built-in ring with hardened cutters expands with installation torque forming undercut grooves in the concrete. This interlocking connection between the anchor and the concrete provides superior load carrying capacity.

CODES: ICC-ES pending

ANCHORING SYSTEMS

EPOXY-TIE® SET-XP®

SET-XP is a 1:1 two component, high solids epoxy-based anchoring adhesive formulated for optimum performance in both cracked and uncracked concrete. SET-XP has been rigorously tested in accordance with ICC-ES AC308 and has proven to offer increased reliability in the most adverse conditions, including performance in cracked concrete under static and seismic loading. SET-XP is teal in color in order to be identified as a high performance adhesive for adverse conditions. Resin and hardener are dispensed and mixed simultaneously through the mixing nozzle. SET-XP exceeds the ASTM C881 specification for Type I and Type IV, Grade 3, Class C epoxy.

USES: When SET-XP® adhesive is used with all thread rod or rebar, the system can be used in tension and seismic zones where there is a risk of cracks occurring that pass through the anchor location. It is also suitable for uncracked concrete conditions.

CODES: ICC-ES ESR-2508; City of L.A. RR25744; Florida FL 11506.5 NSF/ANSI Standard 61 (216 in²/1000 gal)

EPOXY-TIE® SET

SET epoxy is a two-component, 1:1 ratio, high solids epoxy-based adhesive for use as a high strength, non-shrink anchor grouting material. Resin and hardener are dispensed and mixed simultaneously through the mixing nozzle. SET meets or exceeds the ASTM C-881 specification for Type I, II, IV and V, Grade 3, Class B and C.

CODES: ICC-ES ESR-1772 (CMU & URM); City of L.A. RR25279; Florida FL 11506.4; Caltrans approved; multiple DOT listings; NSF/ANSI Standard 61 (216 in²/1000 gal), except SET1.7KTA. SET-PAC-EZ™ covered by ICC-ES, City of L.A. and NSF/ANSI listings only

EPOXY-TIE® ET

ET is a two-component, high solids epoxy-based system for use as a high strength, non-shrink anchor grouting material. Resin and hardener are dispensed and mixed simultaneously through the mixing nozzle. ET meets the ASTM C-881 specifications for Type I, II, IV and V, Grade 3, Classes B and C, except gel time.

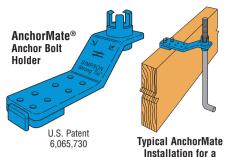
CODES: ICC-ES ER-4945 (URM); City of L.A. RR25185, RR25120; Multiple DOT Listings

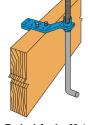
AT ACRYLIC-TIE®

AT is a two component, high solids, 10:1 ratio acrylic-based adhesive for use as a high strength, anchor grouting material. Formulated for use in all types of weather, AT is designed to dispense easily and cure at temperatures down to -18°F. Resin and initiator are dispensed and mixed simultaneously through the mixing nozzle. AT meets the physical requirements of ASTM C881, Type I & IV, Grade 3, Classes A, B & C, except Acrylic-Tie is a non-epoxy product formulated for fast cure time.

CODES: ICC-ES ER-5791* (CMU & URM); City of L.A. RR25459*; NSF/ANSI Standard 61 (11 in²/5000 gal); Multiple DOT listings

*Applies to all AT products except AT10


ANCHORMATE® Anchor Bolt Holders


These reusable anchor bolt holders are designed to hold the anchor in place before the concrete pour, as required in some jurisdictions. The gripping section secures the bolt in place without a nut for quicker set up and tear down. It also protects the threads from wet concrete and simplifies trowel finishing.

- Built-in 2x4 and 2x6 stops eliminate measuring.
- Color-coded for easy size identification.
- Use the %" and %" AnchorMate to secure the SSTB to the formboard before the concrete pour. Alignment arrows (left or right) match the SSTB bolt head arrow.

MATERIAL: Nylon

Model No.	Dia. (in)	Color
AM½	1/2	Yellow
AM%	5/8	Blue
AM¾	3/4	Red
AM7/8	7/8	Green
AM1	1	Black

SIMPSON

Strong-Tie

Typical AnchorMate Installation for a 2x4 Mudsill

WATERIAL. NYION

ABS Anchor Bolt Stabilizer

The ABS stabilizes the anchor bolt to prevent it from being pushed against the form during the concrete pour.

FEATURES:

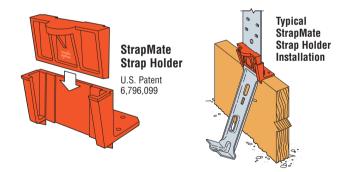
- Supports the bolt approx. 8" below the top of the concrete.
- Model ABS% is for the 5%" SSTB and ABS% is for the 7%" SSTB.
- Thin section limits the effect of a cold joint
- Sized for 2x4 and 2x6 mudsills.

MATERIAL: Engineered Composite Plastic.

Model No.	Dia. (in)	Color
ABS%	5/8	Blue
ABS%	7/8	Green

2x6 Mudsill

STRAPMATE® Strap Holder


The StrapMate is designed to keep the STHD and LSTHD straps vertically aligned during the concrete pour to minimize possibility of spalling. The friction fit allows for quick and easy installation.

- The StrapMate is reusable.
- · Works with STHD and LSTHD.

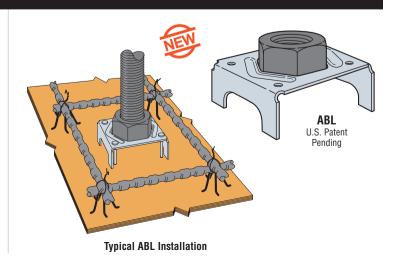
MATERIAL: Engineered Composite Plastic.

- Designed to fit ¾" plywood forms up to 1¾" LVL forms and larger.
- The strap is positioned off the front edge of the form board.

Model No.	Nails
SM1	2-8d Duplex

ABL Anchor Bolt Locator

The ABL enables the accurate and secure placement of anchor bolts on concrete-deck forms prior to concrete placement. The structural heavy-hex nut is attached to a pre-formed steel "chair", which eliminates the need for an additional nut on the bottom of the anchor bolt. Electro-galvanized versions available for HDG anchor bolts.


FEATURES:

- Designed for optimum concrete flow
- Installed with nails or screws
- Provide 1" stand off

MATERIAL: Nut - Heavy hex, Chair - Steel

FINISH: Nut – None or Electro-galvanized; Chair – G90

	Model No.	Anchor Bolt Dia. (in)
凾	ABL4-1	1/2
凾	ABL5-1	5/8
1	ABL6-1	3/4
凾	ABL7-1	7/8
凾	ABL8-1	1
凾	ABL9-1	11//8
1	ABL10-1	11/4

BP/LBP Bearing Plates

Bearing Plates give greater bearing surface than standard cut washers, and help distribute the load at these critical connections.

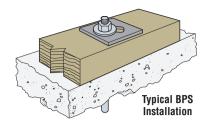
The BPS and LBPS are 3"x3" bearing plates that offer increased flexibility. The slotted hole allows for adjustability to account for bolts that are not in the middle of the sill plate.

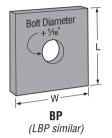
The BP%SKT uses SDS ¼"x1½" screws to provide lateral resistance when ½" diameter sill holes are overdrilled (screws are provided). The shear capacity of the connection and the sill/anchor bolt shall be determined by the Designer for each installation.

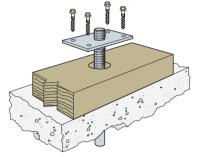
MATERIAL: See table

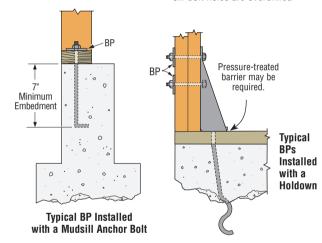
FINISH: LBP, LBPS & BP%S—Galvanized; BP%-2—Zinc Plated; BPS, BP—None. BP's and BPS's may be ordered HDG; LBP and LBPS products may be ordered ZMAX®; contact Simpson Strong-Tie. Refer to page 18-19 for Corrosion Information.

INSTALLATION: See General Notes.

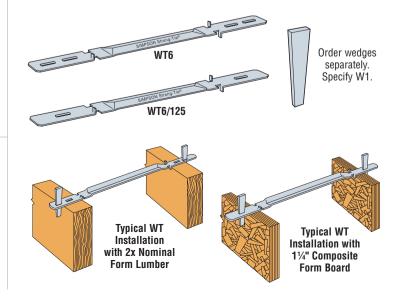

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.


Model	Thickness	Dimensi	ions (in)	Bolt Dia.
No.	THICKHESS	W	L	(in)
LBP½	%4	2	2	1/2
LBP5/8	9/64	2	2	5/8
LBPS½	9/64	3	3	1/2
LBPS%	%4	3	3	5/8
BPS1/2-3	3 ga	3	3	1/2
BPS%-3	3 ga	3	3	5/8
BP%-2	3/16	2	2	3/8
BP½	3/16	2	2	1/2
BP½-3	3 ga	3	3	1/2
BP5/8-2	3/16	2	2	5/8
BP5/8SKT	3 ga	4	2	5/8
BP5/8	1/4	21/2	21/2	5/8
BP5/8-3	3 ga	3	3	5/8
BP¾	5/16	2¾	23/4	3/4
BP3/4-3	3 ga	3	3	3/4
BPS¾-3	3 ga	3	3	3/4
BP7/8-2	3/8	1 15/16	21/4	7/8
BP1//8	5/16	3	3	7/8
BP1	3/8	3½	3½	1


- 1. BP%SKT sold as a kit.
- 2. Standard cut washer required with BPS½-3, BPS5%-3, and BPS34-3 (not provided).



The BP%SKT is used when 5%" diameter sill bolt holes are overdrilled


WT Wedge Form Ties

Designed for low foundation wall applications. 5%" wide formed "V" design for rigidity allows accurate form spacing and support. Sizes now available for composite form board.

MATERIAL: Wedges—14 gauge, WT—18 gauge FINISH: Galvanized INSTALLATION:

- Use two 3½" long wedges for each tie.
- Not recommended for wall pours greater than 4' high.
- Wall thickness from 6" to 12".
- Refer to technical bulletin T-WT for recommended spacing.

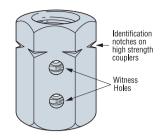
Model No.	Form Board	Wall Thickness (in)	
WT6		6	
WT8	2x Solid	8	
WT10	Sawn	10	
WT12		12	
WT6/125		6	
WT8/125	11/4"	8	
WT10/125	Composite	10	
WT12/125		12	

CNW/HSCNW Coupler Nuts

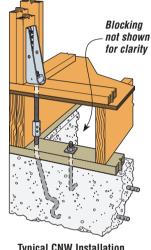
SIMPSON

Simpson Strong-Tie® coupler nuts are a tested and load-rated method to join threaded rod and anchor bolts. "Witness" holes in the nut provide a means to verify when rods are properly installed. The positive stop feature helps ensure even threading into each end of the nut. CNWs meet and exceed the tensile capacity of corresponding ASTM A36 bolts and threaded rod. HSCNWs meet and exceed the tensile capacity of corresponding ASTM A449 bolts and threaded rod. Contact Simpson Strong-Tie for other coupler nut sizes.

FINISH: Zinc Plated

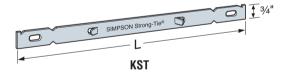

INSTALLATION:

- · Tighten the two rods until each all-thread rod is visible in the witness hole.
- For non-hot-dip galvanized all-thread rod only.
- %" and %" diameter couplers available with oversized threads for installation to hot-dip galvanized bolts (order CNW 5/8-5/8 OST and CNW 7/8-7/8 OST).

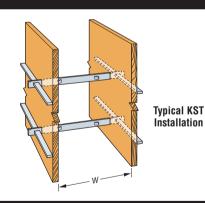

Model No.	Rod Diameter (in)	H Min. (in)
CNW½	0.500	11/2
CNW%	0.625	17/8
CNW¾	0.750	21/4
CNW%	0.875	21/2
CNW1	1.000	2¾
CNW11/4	1.250	3
HSCNW¾	0.750	21/4
HSCNW1	1.000	2¾
	Transition Couplers	
CNW5/8 -1/2	0.625 to 0.500	1½
CNW3/4 - 5/8	0.750 to 0.625	1¾
CNW7/8 - 5/8	0.875 to 0.625	2
CNW1-7/8	1.000 to 0.875	21/4

CNW Allows fast visual check for correct all thread rod installation

HSCNW High Strength Coupler Nut


Witness Holes **CNW Transition Coupler Nut**

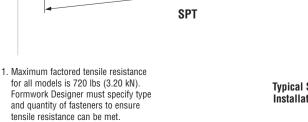
Typical CNW Installation

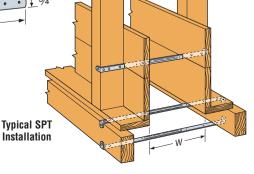

KST Speed Wall Ties (Kwik Strip)

MATERIAL: 16 gauge FINISH: none

Model No.	Wall Thickness W (in)	Length L (in)		
KST6	6	101//		
KST8	8	121//		
KST10	10	141//8		
KST12	12	161//		

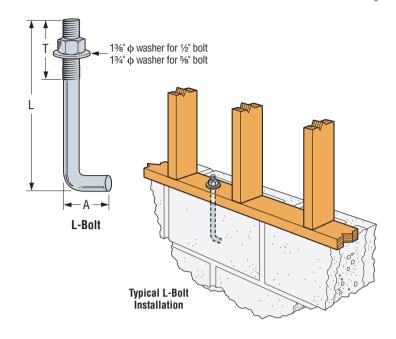
- 1. The Factored Tensile Resistance for all models is 1410 lbs (6.27 kN)
- 2. Formwork designer to specify tie spacing and concrete pour rate to ensure that Factored Resistances are not exceeded.


SPT Strap Ties (Form Ties)


Used for forms or footings. MATERIAL: 16 gauge

FINISH: none

Model No.	Wall Thickness W (in)	Length L (in)
SPT6	6	171/4
SPT8	8	191/4
SPT10	10	211/4
SPT12	12	231/4


The L-Bolt anchor bolts are used to attach sill plates to concrete or masonry foundations, provide anchorage for light weight post bases and for general anchorage to concrete. The L-Bolt anchor bolts meet the prescriptive requirements of article 9.23.6 of the National Building Code of Canada 2010 (NBCC2010).

MATERIAL: ASTM F1554 Grade 36

FINISH: Unfinished, available in HDG (per ASTM A153)

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Model No.		Dimensi	ons (in)	
Model No.	Diameter	L	T	Α
LB0LT50600	1/2	6	1½	1½
LB0LT50800	1/2	8	1½	1½
LB0LT50100	1/2	10	1½	1½
LB0LT50120	1/2	12	1½	1½
LBOLT62600HDG	5/8	6	3	11//8
LB0LT62800	5/8	8	3	1%
LB0LT62100	5/8	10	3	11//8

RFB Retrofit Bolts

RFBs are clean, oil free, pre-cut threaded rod, supplied with nut and washer. Offers a complete engineered anchoring system when used with Simpson Strong-Tie® adhesive. Inspection is easy; the head is stamped with rod length and "No Equal" symbol for identification after installation.

MATERIAL: ASTM F1554 Grade 36,

Type 316 stainless steel (RFB#5X8SS only)

FINISH: Zinc Plated (unless otherwise noted), available in HDG

(per ASTM A153)

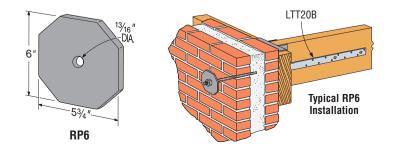
These products feature additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Model No.	Length L (in)	Bolt Diameter (in)
RFB#4X4	4	1/2
RFB#4X5	5	1/2
RFB#4X6	6	1/2
RFB#4X7	7	1/2
RFB#4X10	10	1/2
RFB#4x8HDG-R	8	1/2
RFB#5X5	5	5/8
RFB#5X8	8	5/8
RFB#5X10	10	5/8
RFB#5X12HDG-R	12	5/8
RFB#5X16	16	5/8
RFB#6X10.5	10½	3/4

- 1. RFB#4X8HDG-R and RFB#5X12HDG-R are only available with a hot-dip galvanized coating. They are retail packaged and are sold 10 per carton.
- 2. Washer provided on all RFB (except RFB#5x8SS).

RP6 Retro Plate

The RP6 retrofit plate fits on the outside of masonry buildings, and helps tie the walls to the roof or floor structure with a 3/4" diameter rod.


FINISH: Simpson gray paint. Optional hot-dip galvanized coating; see Corrosion Information, page 18-19, and specify HDG.

MATERIAL: 3/8" Steel

Available with additional corrosion protection.

Check with Simpson Strong-Tie.

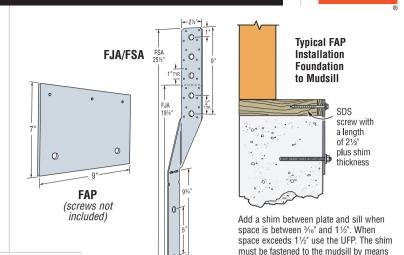
INSTALLATION: Use a 3/4" diameter rod.

SIMPSON

FAP/FJA/FSA Foundation Anchors

This series is for retrofit or new construction. These products may be used together as a system or in individual applications, designed and tested for earthquake and high wind conditions.

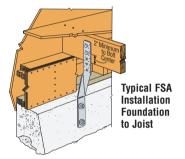
The FAP Plate connects the mudsill to the foundation. Designed to provide lateral load resistance.

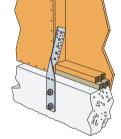

FJA Foundation Joist Anchor nails or bolts directly into floor joist, and provides a direct connection between the foundation and joist. It provides uplift and lateral resistance. FSA Foundation Stud Anchor nails or bolts to floor joist, or nails to stud. Plywood shearwall may require notching with stud-to-foundation installation.

MATERIAL: FAP—7 gauge; all others—12 gauge

FINISH: Galvanized; may be ordered HDG, contact Simpson Strong-Tie. See Corrosion Information, page 18-19.

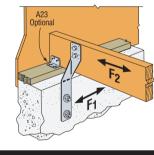
INSTALLATION: • Use all specified fasteners; see General Notes.


- Select and install concrete anchor bolts in accordance with the manufacturer's recommendations.
- See Acrylic-Tie® adhesive, page 32 and RFB, page 36.
- Spacing to be specified by the Designer.



These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

		Fas	teners	F	actored	l Resist	ance (K	_D = 1.15)	
Madal	Anchor Bolt			D.Fir-L			S-P-F			
Model No.		D:-	Stud/Joist/	Uplift	F ₁	F ₂	Uplift	F ₁	F ₂	
NO.	Qty.	Dia. (in)	Plate	lbs	lbs	lbs	lbs	lbs	lbs	
		(,		kN	kN	kN	kN	kN	kN	
FAP	2	1/2	3-SDS 1/4"x 21/2"	_	2035	690		1610	520	
TAF		72	3-3D3 74 X Z 72		9.05	3.07		7.16	2.31	
			8-10dx1½	2085	_	_	1480	_	_	
FJA	2	2	1/2	0-10ux 172	9.27	_		6.58	_	_
IJA		/2	2-1/2" MB	1805	_		1425			
			Z-72 IVID	8.02			6.33		_	
			8-10dx1½	1790	_	_	1270	_	_	
FSA	2	1/2	8-100X17/2 2-1/2" MB	7.96			5.65		_	
1 34		/2		960	_	_	760	_	_	
			Z-72 IVID	4.27	_	_	3.38	_	_	

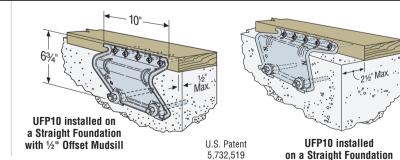

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed; reduce where other load durations govern.
- 2. Use the RFB#4x6 with Acrylic-Tie® for the anchorage system.
- 3. FAP uses a minimum SDS wood screw length of $2\frac{1}{2}$ " plus the shim thickness.
- 4. The shim must be fastened to the mudsill by means other than the FAP wood screw.
- 5. See page 27 for SDS wood screw information.
- 6. **NAILS:** $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

other than the FAP SDS wood screw.

Typical FSA Installation Foundation to Stud

Typical FJA Installation Foundation to Joist

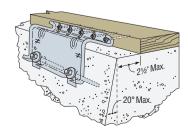
UFP Universal Foundation Plate


The UFP10 Retrofit Foundation Plate cuts installation time in half. Designed to connect when the mudsill is offset from the foundation up to $2\frac{1}{2}$ " or extended beyond the foundation up to $\frac{1}{2}$ ".

MATERIAL: 14 gauge

FINISH: Galvanized. May be ordered HDG, contact Simpson Strong-Tie. See Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners; see General Notes.


- Capacities are based on Simpson Strong-Tie® SDS ¼"x3" screw's factored lateral resistance, which are supplied with the UFP10.
 - Alternate lag screws will not achieve published values.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

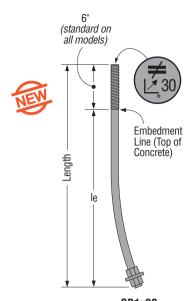
		Faste	eners	Factored Resistance Parallel to Plate (K _D = 1.15)			
Model	Ancho	r Bolt		D.Fir-L	S-P-F		
No.	No. Qty.	Dia.	Plate	lbs	lbs		
		(in)		kN	kN		
UFP10-SDS3	2	1/2	5-SDS 1/4"x3"	2110	1525		
UFF 10-3D33		72	3-3D3 74 X3	9.39	6.78		

- 1. Factored resistances have been increased 15% for earthquake or wind loading, with no further increase allowed. Reduce where other load durations apply.
- 2. Each anchor bolt requires a standard cut washer.

UFP10 installed on a Trapezoid Foundation

The new SB%x24 anchor bolt offers a load-tested anchorage solution that exceeds the capacity of all of our holdowns that call for a %" dia. anchor. Similarly, the SB1x30 covers holdowns utilizing a 1" diameter anchor that exceed the capacity of our SSTB bolts. The SB%x24 is designed to maximize performance with minimum embedment for holdowns utilizing a %" dia. anchor.

Special Features:

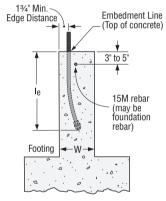

- · Indentification on the bolt head showing embedment angle and model
- Sweep geometry to optimize position in form
- Rolled thread for higher tensile capacity
- Hex nuts and plate washer fixed in position
- Available in HDG for additional corrosion resistance

MATERIAL: ASTM F1554 Grade 36

FINISH: None. May be ordered HDG. Contact Simpson Strong-Tie.

INSTALLATION:

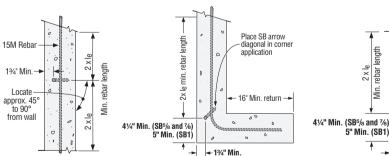
- SB is only for concrete applications poured monolithically.
- Top nuts and washers for holdown attachment are not supplied with the SB; install standard nuts, couplers and/or washers as required.
- On HDG SB anchors, chase the threads to use standard nuts or couplers or use overtapped products in accordance with ASTM A563, for example Simpson Strong-Tie® NUT5/8-OST, NUT7/8-OST and NUT1-OST.
- Install SB before the concrete pour using AnchorMates®.
 Install the SB per the plan view detail.
- Minimum concrete compressive strength is 20 MPa.
- When rebar is required it does not need to be tied to the SB.

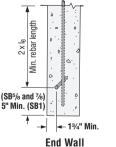


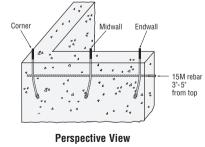
SB1x30 (Other models similar)

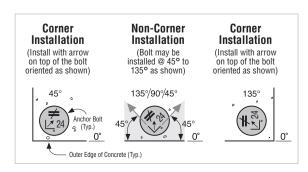
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

SB Bolts at Stemwall

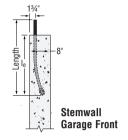

		Dime	nsions		Factored Tensile Resistance								
		(i	n)		Wind/Seis	mic I _e F _a S _a (0.2) < 0.35	Seismic	Seismic $I_eF_aS_a(0.2) \ge 0.35$				
Model No.				Min.	Midwall	Corner	End Wall	Midwall	Corner	End Wall			
	Stemwall Width	Stemwall	Dia.	Length	Embed.	lbs	lbs	lbs	lbs	lbs	lbs		
	***************************************					(l _e)	(I _e)	kN	kN	kN	kN	kN	kN
SB5%x24	6	5/8	24	18	8915	8915	8915	8915	7600	7600			
3D%8X24	0	78	24		39.66	39.66	39.66	39.66	33.81	33.81			
SB7/8x24	8	7/8	24	18	15560	13895	10135	11670	10420	7600			
3D78X24	0	78	24	10	69.22	61.81	45.08	51.91	46.35	33.81			
SB1x30	8	1	30	24	20285	13895	10730	15215	10420	8045			
טפאוטפ	O	'	30		90.24	61.81	47.73	67.68	46.35	35.79			

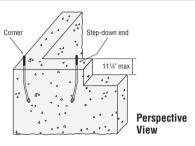

Typical SB Installation

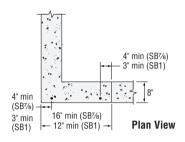

1. See page 39 for notes to the Designer.


Midwall

Corner Stemwall Plan Views

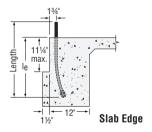

Plan View of SB Placement in Concrete

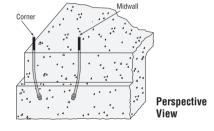

SB Anchor Bolt

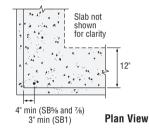


SB Bolts at Stemwall: Garage Front

			Dimer	nsions			Factored Tensile Resistance			
	Madal		(iı	n)		Wind/Seismic I _e	$F_aS_a(0.2) < 0.35$	Seismic l _e F _a S	$S_a(0.2) \ge 0.35$	
	Model No.	04			Min.	Step-Down End	Corner	Step-Down End	Corner	
		• • • • • • • • • • • • • • • • • • • •	. Stemwall Dia		Length	gth Embed	lbs	lbs	lbs	lbs
		wiutii			(I _e)	kN	kN	kN	kN	
	SB%x24	0	7/8	24	18	10735	11385	8050	8540	
	3D78XZ4	0	78	24	10	47.75	50.65	35.81	37.99	
	SB1x30	8	-1	30	24	16790	14550	12595	10910	
	301830	0	1	30	24	74.69	64.72	56.03	48.53	

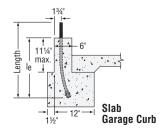


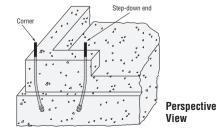


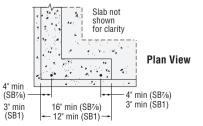


SB Bolts at Slab on Grade: Edge

				nsions		Factored Tensile Resistance				
	Model		(i	n)		Wind/Seismic I _e	$F_aS_a(0.2) < 0.35$	Seismic I _e F _a S	$S_a(0.2) \ge 0.35$	
	No.	Facting			Min.	Midwall	Corner	Midwall	Corner	
		Footing Width	' 11112	Length	Embed.	lbs	lbs	lbs	lbs	
		wiutii				(I _e)	(I _e)	kN	kN	kN
	SB5%x24	12	5/8	24	18	8915	8915	8915	7600	
	3D78X24	12	78	24		39.66	39.66	39.66	33.81	
	SB7/8x24	12	7/8	24	18	18220	18025	16345	13520	
	SB78X24	12	78	24	10	81.05	80.18	72.71	60.14	
	SB1x30	12	-1	30	24	23900	23150	23580	17360	
	3D 1X3U	12	ĺ	ა0	24	106.32	102.98	104.89	77.22	







SB Bolts at Slab on Grade: Garage Curb

	Model No.		Dimer	nsions		Factored Tensile Resistance					
		(in)				Wind/Seismic le	$F_aS_a(0.2) < 0.35$	Seismic $I_eF_aS_a(0.2) \ge 0.35$			
		Curb Width	Dia.	Length	Min. Embed. (l _e)	Step-Down End	Corner	Step-Down End	Corner		
						lbs	lbs	lbs	lbs		
						kN	kN	kN	kN		
L	SB%x24	6	7/8	24	18	13630	16685	10225	12515		
						60.63	74.22	45.48	55.67		
	SB1x30	6	1	30	24	23150	23150	17360	17360		
'						102.98	102.98	77.22	77.22		

Notes to the Designer:

- 1. Rebar is required at top of stemwall foundations but is not required for Slab-on-Grade Edge and Garage Curb, or Stemwall Garage Front installations.
- 2. Minimum end distances for SB bolts are as shown in graphics.
- 3. Factored resistances have been developed based on testing per ICC AC399 in uncracked concrete using the corresponding adjustment factors from CSA A23.3-04 Annex D.
- 4. Midwall loads apply when anchor is 1.5 le or greater from the end. For bolts acting in tension simultaneously, the minimum bolt center-to-center spacing is 3 le.

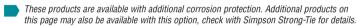
Strong-Tie

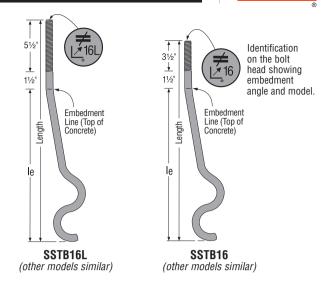
The SSTB anchor bolt is designed for maximum performance as an anchor bolt for holdowns and Simpson Strong-Tie® Strong-Wall® shearwalls. Extensive testing has been done to determine the tensile capacity of the SSTB when installed in many common applications.

Special Features:

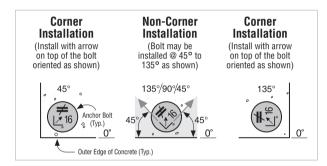
- Identification on the bolt head showing embedment angle and model
- Offset angle reduces side bursting, and provides more concrete cover
- Rolled thread for higher tensile capacity
- Stamped embedment line aids installation
- · Available in HDG for additional corrosion resistance

MATERIAL: ASTM F1554 Grade 36


FINISH: None. May be ordered HDG; contact Simpson Strong-Tie.

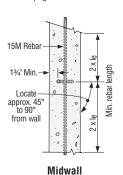

INSTALLATION:

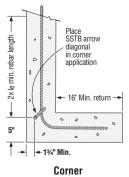
- SSTB is suitable for monolithic and two-pour concrete applications.
- Nuts and washers for holdown attachment are not supplied with the SSTB; install standard nuts, couplers and/or washers as required.
- On HDG SSTB anchors, chase the threads to use standard nuts or couplers or use overtapped products in accordance with ASTM A563, for example Simpson Strong-Tie® NUT%-OST or NUT%-OST.
- Install SSTB before the concrete pour using AnchorMates®. Install the SSTB per the plan view detail.
- . Minimum concrete compressive strength is 20 MPa.
- . When rebar is required it does not need to be tied to the SSTB.
- Order SSTBL Models (example: SSTB16L) for longer thread length (16L= 5½", 20L = 6½", 24L = 6", 28L = 6½"). SSTB and SSTBL tensile capacities are the same. SSTB34 and SSTB36 feature 4½" and 6½" of thread respectively and are not available in "L" versions.


REINFORCED CONCRETE BLOCK

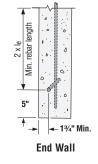
- Before concrete pour, install diagonally at approximately 45° in the cell.
- Horizontal 15M rebar (minimum 56" long centered about the anchor bolt) approximately one rebar 12" from the top and two rebars approximately 28" from the top. Vertical 15M rebar (minimum 24" long) - install with maximum 24" o.c. spacing.
- Grout all cells with coarse grout per CSA A179. Vibrate the grout per Code. OPTIONS: Available in hot-dip galvanized; consult Simpson Strong-Tie.

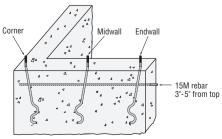
See pages 41-42 for additional installation details.



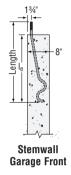

Plan View of SSTB Placement in Concrete

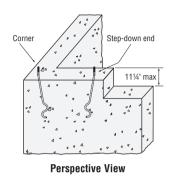
SSTB Bolts at Stemwall

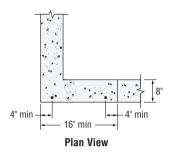

	Model No.	Dimensions (in)				Factored Tensile Resistance					
						Wind/Seismic $I_eF_aS_a(0.2) < 0.35$			Seismic $I_eF_aS_a(0.2) \ge 0.35$		
		Stemwall Width	Dia.	Length	Min. Embed. (I _e)	Midwall	Corner	End Wall	Midwall	Corner	End Wall
						lbs	lbs	lbs	lbs	lbs	lbs
						kN	kN	kN	kN	kN	kN
	SSTB16	6	5/8	17 % (16L = 19%)	12 %	5365	5365	5365	3380	3380	3380
-4	331010					23.87	23.87	23.87	15.04	15.04	15.04
	SSTB20	6	5/8	21 % (20L = 24%)	16%	6415	6005	6005	4170	3895	3895
-4	331020					28.54	26.71	26.71	18.55	17.33	17.33
	SSTB24	6	5/8	25% (24L = 28%)	20%	7470	6645	6645	4960	4410	4410
-4	551B24	O				33.23	29.56	29.56	22.06	19.62	19.62
	CCTDOO	8	7/8	29% (28L = 32%)	24 1/8	14710	12940	11315	11035	9705	8485
-4	SSTB28					65.44	57.56	50.33	49.09	43.17	37.74
	SSTB34	8	7/8	34%	28 1/8	14710	12940	11315	11035	9705	8485
	331034					65.44	57.56	50.33	49.09	43.17	37.74
	SSTB36	8	7/8	36%	28%	14710	12940	11315	11035	9705	8485
	331530					65.44	57.56	50.33	49.09	43.17	37.74


1. See page 42 for notes to the Designer.

STEMWALL PLAN VIEWS

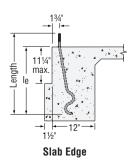


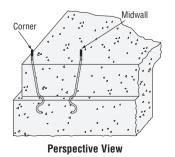

Perspective View


SIMPSON Strong-Tie

SSTB Bolts at Stemwall: Garage Front

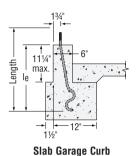
		Dimer	nsions		Factored Tensile Resistance					
		(i	n)		Wind/Seismic I _e	$F_aS_a(0.2) < 0.35$	Seismic $I_eF_aS_a(0.2) \ge 0.35$			
Model No.				Min.	Step-Down End	Corner	Step-Down End	Corner		
140.	Stemwall Width	Dia.	Length	Embed. (l _e)	lbs	lbs	lbs	lbs		
	width				kN	kN	kN	kN		
ССТВОО	8	7/8	007/	24 1/8	10425	10470	7820	7850		
SSTB28	0	78	29%	Z4 78	46.37	46.57	34.79	34.92		

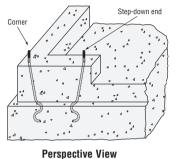


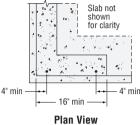


SSTB Bolts at Slab on Grade: Edge

		Dime	nsions		Factored Tensile Resistance					
		(i	n)		Wind/Seismic I _e	$F_aS_a(0.2) < 0.35$	Seismic $I_eF_aS_a(0.2) \ge 0.35$			
Model No.				Min.	Midwall	Corner	Midwall	Corner		
	Footing Width	Dia.	Length	Embed. (I _e)	lbs	lbs	lbs	lbs		
					kN	kN	kN	kN		
SSTB16	12	5/8	17%	12%	7955	7955	5015	5015		
331010	12	78	17 78	1278	35.39	35.39	22.31	22.31		
SSTB20	12	5/8	21%	16%	8915	8915	6345	6345		
331020	12	78	2178	10%	39.66	39.66	28.23	28.23		
SSTB24	12	5/8	055/	20%	8915	8915	7680	7680		
331024	12	78	25%	2078	39.66	39.66	34.16	34.16		
SSTB28	12	7/8	29%	24 1/8	18220	18220	14670	15400		
331020	12	78	2978	2478	81.05	81.05	65.26	68.51		
SSTB34	12	7/8	34%	207/	18220	18220	14670	15400		
331034	12	78	3478	28 1/8	81.05	81.05	65.26	68.51		
CCTD26	10	7/4	36%	28 1/8	18220	18220	14670	15400		
331030	SSTB36 12 7/8	78	3078	2078	81.05	81.05	65.26	68.51		






SIMPSON Strong-Tie

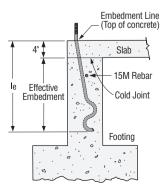
SSTB Bolts at Slab on Grade: Garage Curb

		Dime	nsions		Factored Tensile Resistance					
		(i	n)		Wind/Seismic I _e	$F_aS_a(0.2) < 0.35$	Seismic $I_eF_aS_a(0.2) \ge 0.35$			
Model No.	Curb Width			Min.	Step-Down End	Corner	Step-Down End	Corner		
		Dia.	Length	Embed. (I _e)	lbs	lbs	lbs	lbs		
	***************************************				kN	kN	kN	kN		
ССТВОО	SSTB28 6		29%	241//8	15255	18220	11440	13785		
SSTB28	0	78	2978	24 78	67.86	81.05	50.89	61.32		

Notes to the Designer:

11" Min.

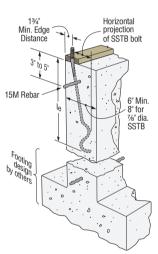
- 1. Rebar is required at top of stemwall foundations but is not required for Slab-on-Grade Edge and Garage Curb, or Stemwall Garage Front installations.
- 2. Minimum end distances for SSTB bolts are as shown in graphics.
- 3. Factored resistances have been developed based on testing per ICC AC399 in uncracked concrete using the corresponding adjustment factors from CSA A23.3-04 Annex D.
- 4. See ESR-2611 for additional information.
- 5. Midwall capacities apply when anchor is 1.5 le or greater from the end. For bolts acting in tension simultaneously, the minimum bolt center-to-center spacing is 3 le.

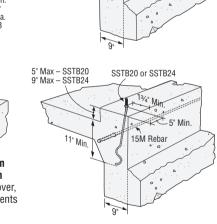

SSTB14

15M Rebar

SSTB Bolts in 8" CMU Wall

		Dimensions (in)		Factored Tensile Resistance			
Model No.			Min.	Midwall	End Wall		
NU.	Dia.	Length	Embed.	lbs	lbs		
			(I _e)	kN	kN		
SSTB16	5/8	17% (16L = 19%)	12%	5715	2340		
331010	78	1778 (TOL = 1978)	12.78	25.42	10.41		
SSTB20	5/8	215/ (201 - 245/)	16%	5715	2340		
331620	78	21% (20L = 24%)	10 78	25.42	10.41		
SSTB24	5/8	25% (24L = 28%)	20%	5715	2340		
331024	78	2578 (24L = 2678)	2078	25.42	10.41		
SSTB28	7/8	207/ (201 227/)	247/8	8030	5760		
331020	78	29% (28L = 32%)	24 78	35.72	25.62		
SSTB34	7/8	34%	287/8	8030	5760		
331034	78	3478	2078	35.72	25.62		
CCTDOC	7/ 007/		007/	8030	5760		
SSTB36	7/8	36%	28%	35.72	25.62		


- 1. Factored resistances shown are based on testing per CSA A370-04.
- 2. Reinforced concrete masonry units shall have a minimum specified compressive strength of 15 MPa per CSA S304.1-04 using Type N mortar and filled solid using coarse grout per CSA A179-04.
- 3. Minimum end distance required to achieve Midwall resistance is 15 le.
- 4. Minimum end distance required to achieve End Wall resistance is 41/4".
- 5. See installation detail for minimum reinforcing requirements.


Two Pour Installation (SSTB20, 24 and 34)


For two-pour (4" slab) installation loads:

- · When using the SSTB20, use the equivalent loads of the SSTB16.
- · When using the SSTB24, use the equivalent loads of the SSTB20.
- · When using the SSTB34 or 36, use the equivalent loads of the SSTB28.

Length

"High Strength"

standard-steel models)

designation (blank on

Concrete Connectors & Anchors

PAB Pre-Assembled Anchor Bolt

The PAB anchor bolt is a versatile new cast-in-place anchor bolt ideal for high-tension-load applications. It features a plate washer at the embedded end sandwiched between two fixed hex nuts and a head stamp for easy identification after the pour.

- Available in diameters from ½" to 1¼" in lengths from 12" to 36" (in 6" increments)
- Available in standard and high-strength steel
- · Head stamp contains the No Equal sign, diameter designation and an "HS" on high-strength rods

MATERIAL: Standard Steel – ASTM F1554 Grade 36, A36 or A307 – F_{II} = 58 ksi High-Strength Steel (up to 1" dia.) – ASTM A449 – F_{u} = 120 ksi

High-Strength Steel (11/8" and 11/4" dia.) – ASTM A193 B7 or F1554 Grade 105 – F_u = 125 ksi

FINISH: None

The Simpson Strong-Tie® Anchor Designer Software™ for ACI 318 analyzes and suggests anchor solutions using the ACI 318 Appendix D strength-design methodology or CAN/CSA A23.3 Annex D Limit States Design methodology. It provides cracked and uncracked-concrete anchorage solutions for numerous

Simpson Strong-Tie Anchor Systems® mechanical and adhesive anchors as well as the PAB anchor. With its easy-to-use graphical user interface, the software makes it easy for the Designer to identify anchorage solutions without having to perform time-consuming calculations by hand.

PAB Anchor Bolt - Standard Steel

Diameter (ii) Plate Washer Size (in)	l ₁ (in)	Root Model No.	Lengths (in)
1/2	1/4 x 11/4 x 11/4	1	PAB4-XX	
5/8	3% x 1½ x 1½	11/4	PAB5-XX	
3/4	% x 2 x 2	1%	PAB6-XX	12" to 36"
7/8	3/8 x 21/4 x 21/4	1½	PAB7-XX	(in 6"
1	3% x 2½ x 2½	1%	PAB8-XX	increments)
11/8	3/8 x 23/4 x 23/4	13/4	PAB9-XX	
11/4	½ x 3 x3	21/2	PAB10-XX	

PAB Anchor Bolt - High-Strength Steel

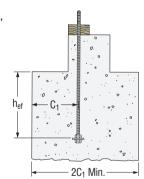
Diameter (in)	Plate Washer Size (in)	l ₁ (in)	Root Model No.	Lengths (in)
1/2	1/4 x 11/4 x 11/4	1	PAB4H-XX	
5/8	3% x 1½ x 1½	11/4	PAB5H-XX	
3/4	3% x 2 x 2	1%	PAB6H-XX	12" to 36"
7/8	3/8 x 21/4 x 21/4	1½	PAB7H-XX	(in 6"
1	% x 2½ x 2½	1%	PAB8H-XX	increments)
11/8	3/8 x 23/4 x 23/4	13/4	PAB9H-XX	
11/4	½ x 3 x 3	2½	PAB10H-XX	

^{1.} Plate washers are designed to develop the capacity of the bolt.

How to specify and order:

When calling out PAB anchor bolts. substitute the desired length for the "XX" in the Root Model Number.

For a %"x18" anchor bolt, the model number would be PAR5-18 (or PAB5H-18 for high strength).


Naming Scheme:

* Units in 1/8" Increments (Ex: 9 = %" or 11/8")

PAB Anchor Bolt – Anchorage Solutions

				Factored Tensil	e Resistance N	r	
	a	Wind/Se	ismic l _e FaSa(0.	2) < 0.35	Seism	ic l _e F _a S _a (0.2)	≥ 0.35
Model No.	Diameter (in)	h _{ef}	C ₁	Nr	h _{ef}	C ₁	Nr
140.	(111)	in	in	lbs	in	in	lbs
		mm	mm	kN	mm	mm	kN
PAB4	1/2	4	7	5600	4	7	5600
FAD4	72	102	178	24.91	102	178	24.91
PAB5	5/8	5	8.5	8915	6	10	8915
PADO	ADJ 78	127	216	39.66	152	254	39.66
PAB6	3/4	6	10	13175	7	11.5	13175
PADO	74	152	254	58.61	178	292	58.61
PAB7	7/8	8	13.5	18225	9	15	18225
PAD/	78	203	343	81.07	229	381	81.07
PAB7H	7/8	12	19	37725	15	24	37725
PAD/II	78	305	483	167.82	381	610	167.82
PAB8	1	9	15	23905	11	18	23905
PADO	'	229	381	106.34	279	457	106.34
DADOLI	1	15	24	49485	18	28.5	49485
PAB8H	'	381	610	220.13	457	724	220.13
PAB9	11/8	11	18	30100	13	21	30100
FADS	1 78	279	457	133.90	330	533	133.90
DAD10	41/	12	19.5	38225	15	24	38225
PAB10	11/4	305	495	170.04	381	610	170.04

PAB

The diameter

code on the

head is the

same as that

used for rebar: 4 = ½", 5 = 58", 6 = 34", etc.

> %" Diameter anchor rod

Plate washer

Design values are calculated using a full shear cone. Coverage on each side of the bolt shall be a minimum of C₁ or reductions must be taken.

- 1. Factored resistances shown are in accordance with CSA A23.3-04 Annex D using 20 MPa concrete assuming cracked concrete and no supplementary reinforcement (Category B).
- 2. PAB8H values shown in italics for seismic applications require minimum 25 MPa concrete.
- 3. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) is the responsibility of the design professional.
- 4. Embedment depths (hef) for seismic applications have been selected to ensure a ductile failure of the anchor bolt in accordance with D.4.3.6 CSA A23.3-04.

MASA/MASAP Mudsill Anchors

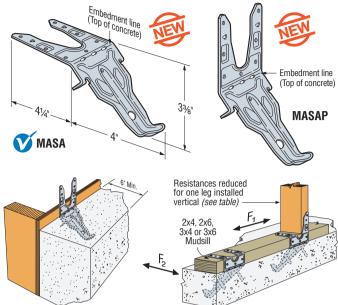
THEERED THE

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

Mudsill anchors have always been a time-saving alternative to anchor bolts, and the new MASA anchors provide even greater load-carrying capacity than our original MAS. As a result, the MASA provides an alternative for 5% and 1/2" mudsill anchor bolts on 2x, double-2x and 3x mudsills. Two versions of the MASA are available – the standard MASA for installation on standard forms and the MASAP for panelized forms.

The MASA and MASAP have been tested to meet the requirements of ICC-ES acceptance criteria AC-398 for cracked and uncracked concrete. New test data is reflected in the table below.

MATERIAL: 16 gauge


FINISH: Galvanized, all available in ZMAX® coating. See Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

- Concrete shall have a minimum f'c = 2500 psi (17.25 MPa).
- Spalling—Contact Simpson Strong-Tie for load reductions.
 Any exposed portion of the mudsill anchor must be protected against possible corrosion.

Typical MASA Installation in Concrete

Typical MASAP Installation in Concrete

Typical MASA/MASAP Installation on Sill Plate

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Factored Resistance for Non-Cracked Concrete

			Fasteners					Factored R	Resistance I	Non-Cracke	d Concrete			
		Sill	1 4311				mic l _e FaSa(l _e F _a S _a (0.2		
	Model	Plate			Uplift	F	•		2	Uplift	F			2
	No.	Size	Sides	Top	(K _D =1.15)		$(K_D=0.65)$							
			0.000	106	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
					kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
							LATION – A							
		2x4, 2x6	3-10dx1½	6-10dx1½	1235	2000	1130	1800	1035	1155	1810	1130	1490	1035
	MASA or	ZX1, ZX0	0 100X172	0 100X172	5.49	8.90	5.03	8.01	4.60	5.14	8.05	5.03	6.63	4.60
	MASAP	3x4, 3x6	5-10dx1½	4-10dx1½	935	1910	1130	1260	710	730	1430	1130	1245	710
		0X4, 0X0	0 100X172	4 100X172	4.16	8.50	5.03	5.60	3.16	3.25	6.36	5.03	5.54	3.16
					ONE LEG	UP INSTA	LLATION – <i>F</i>	Attached to	D.Fir-L Sill	Plate				
	MASA or	2x4, 2x6	6-10dx1½	3-10dx1½	1115	1330	755	_	_	875	1025	755	_	_
	MASAP	2,4,2,0			4.96	5.92	3.36	_	_	3.89	4.56	3.36		_
			В	OTH LEGS O	VER MAX. 3	2" PLYW00	D OR OSB I	NSTALLATI	ON – Attach	ed to D.Fir	L Sill Plate			
	MASA or	2x4, 2x6	9-10dx1½		1310	1560	1130	_	_	980	1170	1130		_
	MASAP ZX4, ZX	2,4,2,0	3-10ux172		5.83	6.94	5.03	_	_	4.36	5.20	5.03	1	_
				DC	OUBLE 2x SI	LL PLATE I	NSTALLATI	ON – Attach	ed to D.Fir-	L Sill Plate				
	MASA or	2x4, 2x6	x6 5-10dx1½	2-10dx1½	1300	1555	880	1315	745	975	1290	880	1315	745
	MASAP	2,4,2,0	J-100X172	Z-100X172	5.78	6.92	3.91	5.85	3.31	4.34	5.74	3.91	5.85	3.31
					STAND	ARD INSTA	LLATION -	Attached to	S-P-F Sill F	Plate				
		2x4, 2x6	3-10dx1½	6-10dx1½	875	1505	1040	1275	735	875	1505	1040	1275	735
	MASA or	2,4,2,0	J-100X172	0-10ux172	3.89	6.69	4.63	5.67	3.27	3.89	6.69	4.63	5.67	3.27
	MASAP	3x4, 3x6	5-10dx1½	4-10dx1½	665	1615	1040	895	505	665	1430	1040	895	505
l		3,4, 3,0	J-100X172	4-10ux172	2.96	7.18	4.63	3.98	2.25	2.96	6.36	4.63	3.98	2.25
					ONE LE	G UP INSTA	LLATION -	Attached to	S-P-F Sill	Plate				
	MASA or	2x4, 2x6	6-10dx1½	3-10dx1½	795	950	650	_	_	795	950	650	_	_
	MASAP	284, 280	0-10UX172	3-10ux172	3.54	4.23	2.89	_	_	3.54	4.23	2.89		_
				BOTH LEGS C	VER MAX.	1/2" PLYW00	OD OR OSB	INSTALL <u>a</u> t	ION – Attac	hed to S-P-	F Sill Plate			
_ [BUTH LEGS U	960	1290	840	_	_	960	1170	840	_	_
	MASA or	244 246	0.104711/											
	MASA or MASAP	2x4, 2x6	9-10dx1½	_	4.27	5.74	3.74			4.27	5.20	3.74		_
		2x4, 2x6	9-10dx1½	D		_	3.74 NSTALLAT	— ION – Attaci	— hed to S-P-I		5.20	3.74	_	_
		2x4, 2x6 2x4, 2x6	9-10dx1½ 5-10dx1½	2-10dx1½		_	-	— I ON – Attac 935	hed to S-P-I		5.20 1170	3.74 760	935	- 525

^{1.} Factored resistances shown are based on testing per ICC AC398 using the corresponding adjustment factors from CSA A23.3-04 Annex D.

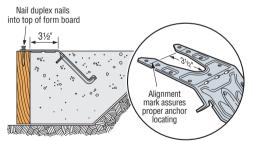
^{2.} The minimum 28-day concrete compressive strength (f'c) shall be 2500 psi (17.25 MPa).

^{3.} Factored resistances are base on a minimum wall width of 6".

For simultaneous loads in more than one direction, the connector must be evaluated using the unity equation (see Instructions for the Designer - note b. on page 22).

^{5.} **NAILS:** $10dx1\frac{1}{2}$ " = 0.148" dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

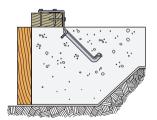
MASA/MASAP Mudsill Anchors


Factored Resistance for Cracked Concrete

1	Fasteners		Factored Resistance Cracked Concrete									
0	1 4310	oners .		Wind/Seis	mic l _e FaSa(0.2) < 0.35			Seismic	$I_eF_aS_a(0.2)$) ≥ 0.35	
Sill			Uplift	F	1	F	2	Uplift	F	1	F	2
	Sidos	Ton	$(K_D=1.15)$	(K _D =1.15)	$(K_D=0.65)$	$(K_D=1.15)$	$(K_D=0.65)$	$(K_D=1.15)$	$(K_D=1.15)$	$(K_D=0.65)$	$(K_D=1.15)$	$(K_D=0.65)$
0.20	Siucs	тор	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
			kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
			STAND <i>i</i>	ARD INSTAL	LATION - A	ttached to	D.Fir-L Sill	Plate				
244 246	2 10dv11/	6 10dv11/	1165	2000	1130	1455	1035	875	1810	1130	1090	1035
284, 280	3-10ux 1 72	0-10UX 1 72	5.18	8.90	5.03	6.47	4.60	3.89	8.05	5.03	4.85	4.60
244 246	E 104v11/	4.40dv41/	735	1910	1130	1215	710	550	1430	1130	910	710
3X4, 3X0	J-100X172	4-100X172	3.27	8.50	5.03	5.40	3.16	2.45	6.36	5.03	4.05	3.16
ONE LEG UP INSTALLATION – Attached to D.Fir-L Sill Plate												
0.4 0.6	C 104v11/	0.40dv41/	880	1330	755	_	_	660	1025	755	_	_
2X4, 2X6	6-1UUX 1 ½	3-100X1½	3.91	5.92	3.36	_	_	2.94	4.56	3.36	_	_
MASAP 2A4, 2A6 0-100A172 3-100A172 3.91 5.92 3.36 — — 2.94 4.56 3.36 — — BOTH LEGS OVER MAX. ½" PLYWOOD OR OSB INSTALLATION – Attached to D.Fir-L SIII Plate												
0.4.0.0	0.40-1-41/		1125	1560	1130	_	_	840	1170	1130	_	_
2x4, 2x6 9-10d	9-100X1½	_	5.00	6.94	5.03	_	_	3.74	5.20	5.03	_	_
		DC	UBLE 2x SI	LL PLATE I	NSTALLATI	ON – Attach	ed to D.Fir-	L Sill Plate				
0.4.0.0	E 40441/	0.40-1-41/	985	1555	880	1315	745	735	1290	880	1150	745
2x4, 2x6	5-10dx1½	2-100x1½	4.38	6.92	3.91	5.85	3.31	3.27	5.74	3.91	5.12	3.31
			STAND	ARD INSTA	LLATION -	Attached to	S-P-F Sill F	Plate				
0.4.0.0	0.40.141/	0.40-1-41/	875	1505	1040	1275	735	875	1505	1040	1090	735
2X4, 2X6	3-100X1½	6-100X1½	3.89	6.69	4.63	5.67	3.27	3.89	6.69	4.63	4.85	3.27
0.4.0.0	5 40 L 44/	4.40.1.447	665	1615	1040	895	505	550	1430	1040	895	505
3x4, 3x6	5-10dx1½	4-100x1½	2.96	7.18	4.63	3.98	2.25	2.45	6.36	4.63	3.98	2.25
			ONE LE	G UP INSTA	LLATION -	Attached to	S-P-F Sill	Plate				
0.4.0.0	0.401.444	0.401.411	795	950	650	_		660	950	650	_	_
2x4, 2x6	6-10dx1½	3-10dx1½	3.54	4.23	2.89	_	_	2.94	4.23	2.89	_	_
		BOTH LEGS O	VER MAX.	½" PLYW00	DD OR OSB	INSTALLAT	ION – Attac	hed to S-P-	F Sill Plate			
0.4.0.0	0.40-1-447		960	1290	840	_	_	840	1170	840	_	_
2x4, 2x6	9-100X1½	_	4.27	5.74	3.74	_	_	3.74	5.20	3.74	_	_
		D	OUBLE 2x S	ILL PLATE	INSTALL <u>a</u> t	ION – At <u>tac</u>	hed to S-P-	F Sill Pla <u>te</u>				
0.4.0.0	E 40.1.447		985	1170	760	935	525	735	1170	760	935	525
2x4, 2x6	5-10dx1½	5-10dx1½ 2-10dx1½	4.38	5.20	3.38	4.16	2.34	3.27	5.20	3.38	4.16	2.34
	2x4, 2x6 2x4, 2x6	Plate Size Sides 2x4, 2x6 3-10dx1½ 3x4, 3x6 5-10dx1½ 2x4, 2x6 6-10dx1½ 2x4, 2x6 9-10dx1½ 2x4, 2x6 3-10dx1½ 2x4, 2x6 5-10dx1½ 2x4, 2x6 6-10dx1½ 2x4, 2x6 6-10dx1½	Plate Size Sides Top 2x4, 2x6 3-10dx1½ 6-10dx1½ 3x4, 3x6 5-10dx1½ 4-10dx1½ 2x4, 2x6 6-10dx1½ 3-10dx1½ 2x4, 2x6 9-10dx1½	Plate Size Sides Top (K _D =1.15) Ibs kN	Top	Top	Top Sides Top	Note Sides Top T	Plate Size Sides Top	Plate Size Sides Top (Kp=1.15) (Kp=1.15) (Kp=0.65) (Kp=1.15) (Kp=0.65) (Kp=1.15) (Kp=0.65) (Kp=1.15) (Kp=0.65) (Kp=1.15) (Kp=0.65) (Kp=1.15) (Kp=0.65) (Kp=0.15) (Kp=0.	Plate Sides Top (Kp=1.15) (Kp=1.15) (Kp=0.65) (Kp=0.65) (Kp=1.15) (Kp=0.65) (Kp=0.	Plate Sides Top (Kp=1.15) (Kp=1.15) (Kp=0.65) (Kp=0.15) (Kp=0.15) (Kp=0.15) (Kp=0.15) (Kp=0.15) (Kp=0.15) (Kp=0.15) (Kp=0.15) (Kp=0.15) (K

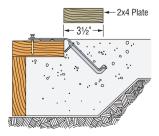
See foot notes on page 44.

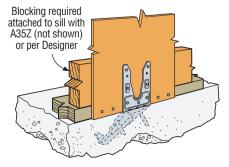
ALTERNATIVE MUDSILL ANCHOR INSTALLATIONS


ALTERNATE INSTALLATION FOR INSIDE OF WALL CONTINUITY

STEP 1:

Attach MASA 3½" from inside of form.
After concrete cures, remove nails and bend straps up 90°

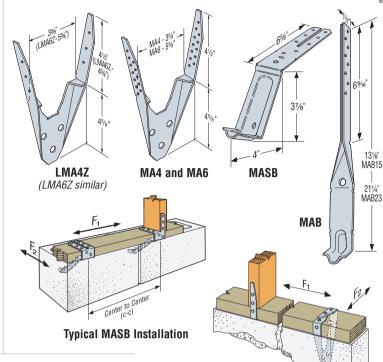



STEP 2:

Place mudsill on concrete and nail MASA over mudsill

ALTERNATE INSTALLATION FOR BRICK LEDGES

Alternate MASA Installation for Brick Ledges


MASA/MASAP Rim Joist or Blocking Installation in Concrete Over Max. ½" Sheathing

LMAZ/MA/MAB/MASB Mudsill Anchors

The LMAZ offers a higher lateral load capacity in a lighter gauge. The MASB is designed for installation on concrete masonry units. The MAB anchors the mudsill to concrete block, poured walls or slab foundation.

MATERIAL: MASB, MA-16 gauge; LMAZ, MAB-18 gauge FINISH: Galvanized. Some products available in ZMAX®: LMAZ—ZMAX only. See Corrosion Information, page 18-19. INSTALLATION: • Use all specified fasteners. See General Notes.

- Not for use where (a) a horizontal cold joint exists between the slab and foundation wall or footing beneath, unless provisions are made to transfer the load, or (b) anchors are installed in slabs poured over foundation walls formed of concrete block. All grout and concrete must have a minimum f'c of 2000 psi (13.8 MPa).
- MASB—First fill CMU cell with concrete grout. Place MASB into the grouted cell, and adjust into position. Attach mudsill to anchor after the concrete cures.
- MAB—When used in monolithic slab or stemwall construction, prior to installation, spread the MAB legs to accommodate mudsill. Immediately after pouring and screeding, insert into the concrete or grout. Attach the mudsill to the anchor with 10dx11/2" nails after the concrete cures. When installed in grouted concrete block or solid pour for a centre hole installation, drill a 3/4" hole through the mudsill and install straps through the hole. Wrap MAB straps around the mudsill and install 10dx11/2" nails.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

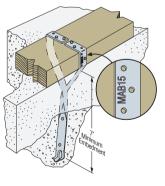
			Faste	nore		Factor	ed Resist	ance (K	_D = 1.15)	
			1 4310	511013		D.Fir-L			S-P-F	
	Model No.	Sill Size	Sides	Ton	Uplift	Parallel to Plate F ₁	Perp. to Plate F ₂	Uplift	Parallel to Plate F ₁	Perp. to Plate F ₂
			(total)	Тор	lbs	lbs	lbs	lbs	lbs	lbs
					kN	kN	kN	kN	kN	kN
	MASB	2x4, 2x6	2-10dx1½	4-10dx1½	200	1315	900	140	935	640
	IVIAGE	2,4,2,0	Z-100X172	4-10UX172	0.89	5.85	4.00	0.62	4.16	2.85
	MAB15	2x4, 2x6	2-10dx1½	4-10dx1½	800	725	705	570	515	500
	IVIADIO	2,4,2,0	Z-100X172	4-10ux172	3.56	3.23	3.14	2.54	2.29	2.22
	MAB23	2x4, 2x6	2-10dx1½	4-10dx1½	800	725	705	570	515	500
	IVIADZO	2,4,2,0	Z-10UX172	4-10ux172	3.56	3.23	3.14	2.54	2.29	2.22
		2x4	2-10dx1½	4-10dx1½	1410	955	930	1000	675	660
	LMA4Z		2 100X172	4 100X172	6.27	4.25	4.14	4.45	3.00	2.94
		3x4	4-10dx1½	2-10dx1½	1410	955	930	1000	675	660
		3,4	4-10ux172	Z-100X172	6.27	4.25	4.14	4.45	3.00	2.94
		2x4	2-10dx1½	2-10dx1½	1175	890	735	835	815	525
	MA4	2.44		Z-100X172	5.23	3.96	3.27	3.71	3.63	2.34
	IVIA	3x4	4-10dx1½	2-10dx1½	1410	1115	735	1000	790	525
		384	4-10ux172	Z-100X172	6.27	4.96	3.27	4.45	3.51	2.34
		2x6	2-10dx1½	4-10dx1½	1410	1165	1125	1000	825	800
	LMA6Z	2.00	Z-100X172	4-10ux 1 /2	6.27	5.18	5.00	4.45	3.67	3.56
	LIVIAUL	3x6	4-10dx1½	4-10dx1½	1570	1165	1125	1115	825	800
		380	4-10ux172	4-10ux 172	6.98	5.18	5.00	4.96	3.67	3.56
	DAA.C	2x6	2-10dv11/	4-10dx1½	1295	1160	735	920	825	525
		2.80	2-10dx1½ 4	4-10UX172	5.76	5.16	3.27	4.09	3.67	2.34
	MA6	3x6	4-10dv114	4-10dx1½	1370	1115	735	970	790	525
		SXU	4-10dx1½ 4	4-10ux 1 ½	6.09	4.96	3.27	4.31	3.51	2.34

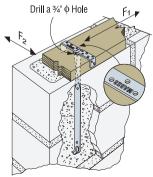
2. For factored uplift resistances, provide attachment from the mudsill to the building structural

Por factored upint resistances, provide attachment from the mudshi to the building structural components to prevent cross grain bending.
 LMA attached to the studs has a factored upiff resistance of 1125 lbs (5.00 kN) for D.Fir-L and 800 lbs (3.55kN) for S-P-F; a factored F₁ resistance of 1025 lbs (4.56 kN) for D.Fir-L and 725 lbs (3.22 kN) for S-P-F; a factored F₂ resistance of 1075 lbs (4.78 kN) for D.Fir-L and 760 lbs (3.38 kN) for S-P-F.
 MA attached to the studs has a factored upliff resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63kN) for S-P-F; a factored F₁ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₁ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₁ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₁ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₁ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₂ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₂ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₂ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₂ resistance of 890 lbs (3.95 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for D.Fir-L and 815 lbs (3.63 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for S-P-F; a factored F₃ resistance of 890 lbs (3.95 kN) for S-P-F; a factored F₃ resistance of 890

P-F; a factored F2 resistance of 950 lbs (4.23 kN) for D.Fir-L and 675 lbs (3.00 kN) for S-P-F

5. MASB with one leg attached to the studs has a factored uplift resistance of 200 lbs (0.89 kN) for D.Fir-L and 140 lbs (0.62 kN) for S-P-F; a factored F₁ resistance of 1110 lbs (4.93 kN) for D.Fir-L and 1020 lbs (4.54 kN) for S-P-F; a factored F₂ resistance of 895 lbs (3.98 kN) for D.Fir-L and 635 lbs (2.82 kN) for S-P-F 6. **NAILS:** $10dx1\frac{1}{2} = 0.148$ " dia. $x 1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.




Typical LMA/MA

Installation (in concrete with framing)

> MAB Misinstallation (MAB straps must be separated before the concrete is poured)

Typical MAB23 Installation in **Concrete Block** (MAB15 similar) MAB23 provides a two block embedment, if required by the local code iurisdiction

SIMPSON Strong-Tie

Wood-to-concrete and -concrete block connectors. The PA's dual embedment line allows installation in concrete or concrete block.

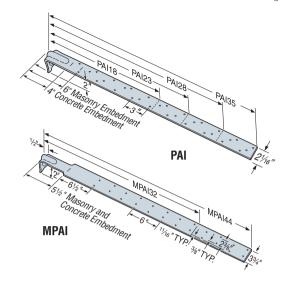
MATERIAL: MPAI—14 gauge; PAI—12 gauge

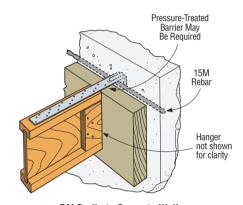
FINISH: Galvanized. Some products available HDG or ZMAX® coating.

INSTALLATION: • Minimum concrete strength is 15 MPa.

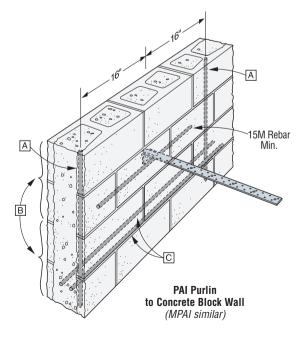
- Use all specified fasteners; some models have extra fastener holes.
 See General Notes.
- Wood splitting may occur when anchor is nailed to wood less than $3\frac{1}{2}$ " wide. To reduce splitting for widths less than $3\frac{1}{2}$ ", fill every other nail hole with $10dx1\frac{1}{2}$ " nails. Reduce the factored resistance based on the size and quantity of fasteners used. (See nail table on page 24.)

EDGE DISTANCE—Minimum concrete edge distance is 5". Minimum concrete block left-to-right edge distance is 20".


CONCRETE BLOCK WALLS—The masonry embedment line on PAI, MPAI allows for 4" of grout embedment in a standard 8" concrete masonry unit.


The minimum wall specifications are:

- A One 15M vertical rebar, 32" long, 16" each side of anchor;
- B Two courses of grout filled block above and below the anchor (no cold joints allowed);
- C A horizontal bond beam with two 15M rebars, 40" long, a maximum of two courses above or below the anchor.

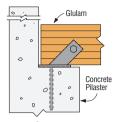

All cells grouted with 15MPa % aggregate grout. Grout shall be vibrated per the Code. Rebar quantities, sizes and lengths are minimum requirements and may be increased per any additional wall design requirements.

		Faste	eners	Factored Tensile Resistance (K _D = 1.15)					
					ir-L		P-F		
Model No.	L (in)	Manager	0	Masonry	Concrete	Masonry	Concrete		
NU.	(111)	Masonry	Concrete	lbs	lbs	lbs	lbs		
				kN	kN	kN	kN		
			No	Ledger					
PAI18	18	10-10dx1½	12-10dx1½	2910	3490	2580	3095		
PALIO	10	10-10ux 1 72	12-10ux 1 72	12.94	15.52	11.48	13.77		
PAI23	23	15-10dx1½	17-10dx1½	3980	4945	3870	4385		
1 AIZO	20	10 10ux172	17 10ux172	17.70	22.00	17.22	19.51		
PAI28	29	21-10dx1½	23-10dx1½	3980	5215	3980	5215		
1 AIZU	25	21 10ux172	20 100X172	17.70	23.20	17.70	23.20		
PAI35	35	26-10dx11/2	29-10dx1½	3980	5215	3980	5215		
171100		20 100/172	20 1000172	17.70	23.20	17.70	23.20		
MPAI32	32	16-10dx1½	_	3920	_	3615	_		
1411 7 1102		10 1000/172		17.44	_	16.08	_		
MPAI44	44	24-10dx1½	_	4055		4055	_		
				18.04	_	18.04	_		
				ınd <mark>2x L</mark> edge					
PAI18	18 9-10dx1½	11-10dx1½	2620	3200	2320	2840			
				11.65	14.23	10.32	12.63		
PAI23	23	14-10dx1½	16-10dx1½	3980	4655	3610	4130		
				17.70	20.71	16.06	18.37		
PAI28	29	20-10dx1½	22-10dx1½	3980	5215	3980	5215		
				17.70	23.20	17.70	23.20		
PAI35	35	26-10dx1½	28-10dx1½	3980	5215	3980	5215		
				17.70	23.20	17.70	23.20		
MPAI32	32	16-10dx1½	_	3920 17.44	_	3615 16.08	_		
				4055		4055			
MPAI44	44	24-10dx1½	_	18.04		18.04			
			2-2v an	d 4x Ledger		10.04			
				2035	2620	1805	2320		
PAI18	18	7-10dx1½	9-10dx1½	9.05	11.65	8.03	10.32		
				3490	3980	3095	3610		
PAI23	23	12-10dx1½	14-10dx1½	15.52	17.70	13.77	16.06		
5.116				3980	5215	3980	5160		
PAI28	29	18-10dx1½	20-10dx1½	17.70	23.20	17.70	22.95		
DAIGE	0	04.40	00.40.1.11	3980	5215	3980	5215		
PAI35	35	24-10dx1½	26-10dx1½	17.70	23.20	17.70	23.20		
1404100	00	10.10.1.11		3920	_	3615	_		
MPAI32	32	16-10dx1½	-	17.44	_	16.08	_		
MDALAA	4.4	04.40-1-4-4		4055	_	4055	_		
WPAI44	PAI44 44 24-10dx1½		-	18.04	_	18.04	_		

PAI Purlin to Concrete Wall (MPAI similar)

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed; reduce where other loads govern.
- 2. Factored resistances are for horizontal installation into the side of a concrete or masonry wall.
- 3. **NAILS:** 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

GLB/HGLB/GLBT Beam Seats


SIMPSON Strong-Tie

The GLB Series provides a connection between beam and concrete or CMU pilaster.

FINISH: Simpson Strong-Tie® gray paint

INSTALLATION: • Use all specified fasteners. See General Notes.

- Bolt holes shall be a minimum of 1/32" to a maximum of 1/16" larger than the bolt diameter (per 10.4.1.2 CSA 086-09).
- Check the rebar spacing requirements on all installations. OPTIONS: • Sawn timber and other sizes may be ordered by specifying
- special dimensions; use the letter designations shown on
 - Specify if two-bolt GLB model is desired; see illustration.

Typical GLB Installation

1406

62.54

8580

38.1

38.17

38.17

8580

38.17

33.14

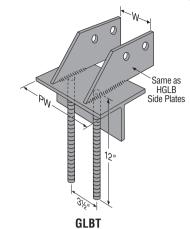
33.14 7510°

17465

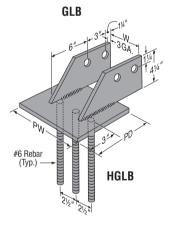
96.17

29105

See


foonote

3


See

foonote

3

- 1. Factored bearing resistances for concrete block masonry assume a compressive unit strength of 15.0 MPa (net area) using solid or grouted units as per Table 4 of CSA S304.1-04.
- 2. Factored bearing resistances for concrete assume a 28-day compressive strength (f'_{C}) of 20 MPa as per CSA A23.3-04.
- 3. Bearing resistance of wood member will govern for these applications. Calculate factored resistance in accordance with CSA 086-09.
- 4. Bearing resistances shown assume a glulam width of 101/2". For smaller widths, ensure that the factored bearing resistance of the wood member does not govern.
- 5. The GLBT5 has a WT4x9 structural tee; the GLTB6 has a WT4x12 structural tee.
- 6. Specify "W" dimension when ordering HGLB and GLTB beam seats.
- 7. Factored horizontal resistances include a 15% increase for short term loading; reduce if masonry or concrete is limiting.
- 8. For beam widths greater than or equal to 61/8", the factored horizontal resistance is 11.025 lbs (49.04 kN).

85/8 8 10 3/8" 2 3/4"

> 51/4 12

61/2 12 3/8" 2 3/4"

51/4 16 5/16 2 3/4"

61/2

51/4

61/2 20 3/8 2 3/4"

16 3/8" 2 3/4"

GLBT5124

GLBT6124

GLBT516

GLBT616

GLBT520

GLBT620

⁵/₁₆"

5/16" 20

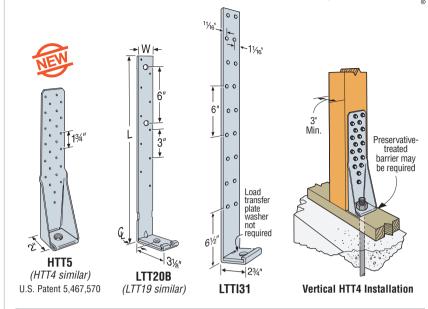
2 3/4"

2

LTT/HTT Tension Ties

SIMPSON
Strong-Tie

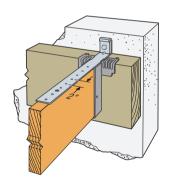
The HTT4 and HTT5 are the latest generation of tension ties. They feature an optimized nailing pattern which results in better performance with less deflection. Designed to meet new code standards, the HTT4 and HTT5 offer higher capacities than their predecessors.

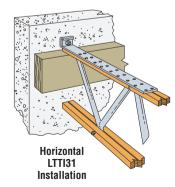

The LTT19 Light Tension Tie is designed for 2x joists or purlins and the LTT20B is for nail- or bolt-on applications. The 3" nail spacing makes the LTT20B suitable for wood I-joists with 10dx1½. The LTTI31 is designed for wood chord open web truss attachments to concrete or masonry walls and may also be installed vertically on a minimum 2x6 stud.

MATERIAL: See table FINISH: Galvanized

INSTALLATION: • Use all specified fasteners.

See General Notes.


- Use the specified number and type of nails to attach
 the strap portion to the top or side of purlin or beam
 (minimum 4x width (2-2x4 or 4x4), except LTT19).
 Bolt the base to the wall or foundation with a suitable
 anchor; see table for the required bolt diameter.
- . Do not install LTT tension ties raised off the mudsill.
- See Acrylic-Tie® Adhesive System, page 32.
- To tie multiple 2x members together, the Designer must determine the fasteners required to join members to act as one unit without splitting the wood.


For tension ties, per ASTM test standards, anchor bolt nut should be finger-tight plus $\frac{1}{2}$ to $\frac{1}{2}$ turn with a hand wrench, with consideration given to possible future wood shrinkage. Care should be taken to not over-torque the nut. Impact wrenches should not be used.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

		Di	mensio (in)	ns	Fast	eners	Minimum		ile Resistance 1.15)	Deflection ⁶ at Factored
Model No.	Ga				Anchor		Wood Thickness	D.Fir-L	S-P-F	Resistance
NU.		W	L	Ģ ¹⁰	Bolt Dia.	Fasteners	(in)	lbs	lbs	in
				_	(in)		()	kN	kN	mm
						8-10dx1½	3	1795	1645	0.243
1 TT10	16	13/4	191/8	1 ½16	3/4	0-100X172	3	7.98	7.32	6.17
LTT19	10	174	1978	I 7/16	94	8-10d	3	1930	1785	0.241
						0-100	3	8.59	7.94	6.12
						10-10dx1½	3	1900	1680	0.250
						10-10ux 1 72	3	8.45	7.47	6.35
LTT20B	12	2	19¾	11/2	3/4	10-10d	3	2100	1840	0.250
LITZUD	12		1374	172	74	10-100	J	9.34	8.19	6.35
						2-1/2" Bolts	3	2270	2115	0.250
						2-1/2" BOITS	J	10.10	9.41	6.35
						18-10dx1½	3	1890	1560	0.250
LTTI31	18	3¾	31	17/16	5/8	10-10ux172	J	8.41	6.94	6.35
LITIOI	10	374	01	1716	78	18-10dx1½	3	3120 ⁸	2845 ⁸	0.250
						10-10ux172	J	13.88 ⁸	12.668	6.35
						18-10dx1½	3	4580	4020	0.175
HTT4	11	21/2	12%	15/16	5/8	10-10ux172	3	20.37	17.88	4.45
11114	'''	2 /2	1278	1716	78	18-16d	3	6000	5265	0.225
						10-100	J	26.69	23.42	5.72
						26-10dx1½	3	6565	5760	0.250
						20-10ux172	J	29.20	25.62	6.35
HTT5	11	21/2	16	15/46	5/6	26-10d	3	6720	5895	0.250
11110	'''	<u>~</u> /2	10	15/16	5/8	26-10d	3	29.89	26.22	6.35
						26-16d	3	7125	6255	0.250
						20 100	U	31.69	27.82	6.35

Horizontal LTT19 Installation (LTT20B similar)

- Factored resistances have been increased 15% for short term load duration. Reduce where other load durations govern.
- The Designer must specify anchor bolt type, length and embedment to ensure adequate anchorage to concrete.
- Post design shall be by the Designer. Tabulated values are based on a minimum wood member thickness in the direction of the fastener penetration. Post may consist of multiple 2x members provided they are connected independently of the holdown fasteners.
- Holdowns shall be installed centred along the width of the attached post.
 Deflection at Factored Resistance includes fastener slip, holdown elongation
- 5. Deflection at Factored Resistance includes fastener slip, holdown elongation and anchor bolt elongation (L = 6"). Additional elongation of anchor bolts shall be accounted for by the designer when the length of the anchor bolt above the top of the concrete to the attachment at the holdown is longer than 6". Similar consideration for floor to floor connections must be addressed by the Designer.
- Deflection values may be reduced linearly for lesser loads including specified wind loads at h/500.
- 7. A ½" or ¾" diameter anchor bolt may be used for the LTT19 or the LTT20B. A standard cut washer is required between the anchor bolt nut and the bearing seat of the tension tie for this application.
- When the LTTI31 is installed with the base flush with the concrete or masonry wall this increased resistance applies.
- When using structural composite lumber columns, screws must be applied to the wide face of the column (see technical bulletin T-SCLCOLUMCAN for details).
- Centre line dimension is taken from the face of the post/framing member to the centre of anchor.
- 11. NAILS: 16d = 0.162" dia. x 3½" long, 10dx1½ = 0.148" dia. x 1½" long, 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

LSTHD/STHD Strap-Tie Holdown

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The STHD is an embedded strap-tie holdown offering high load capacity and a staggered nail pattern to help minimize splitting. The STHD incorporates many features that aid correct installation and improve performance. When installed on the forms with the StrapMate® strap holder the unique design of the STHD delivers enhanced stability before and during the pour to help prevent both parallel and perpendicular movement (relative to the form). This results in accurate positioning of the strap and reduced possibility of spalling.

FEATURES

GINEERED


- The nailing pattern allows for nailing to the edges of double 2x's
- Strap nail slots are countersunk to provide a lower nail head profile
- The slots below the embedment line enable increased front-to-back concrete bond and help to reduce spalling
- Rim joist models accommodate up to a 17" clear span without any loss of strap nailing

MATERIAL: LSTHD-14 gauge, STHD-12 gauge

FINISH: Galvanized

INSTALLATION: • Use all specified fasteners. See General Notes.

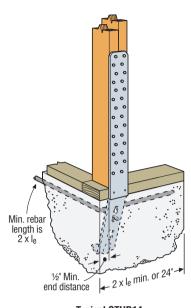
- Install before concrete pour with a StrapMate, or other holding device.
- Nail strap from the bottom up.
- Strap may be bent one full cycle (bent horizontal 90° then bent vertical) to aid wall placement, but may cause spalling behind the strap. If the spall is 1" or less, measured from the embedment line to the bottom of the spall, full values apply. Any portion of the strap left exposed should be protected against corrosion.
- Unless otherwise noted, do NOT install where: (a) a horizontal cold joint exists within the embedment depth between the slab and foundation wall or footing beneath, unless provisions are made to transfer the load, or the slab is designed to resist the load imposed by the anchor; or (b) slabs are poured over concrete block foundation walls.
- Additional studs attached to the shearwall studs or post may be required by the Designer for wall sheathing nailing.
- · Wood shrinkage after strap installation across horizontal members may cause strap to buckle outward.

Typical STHD14RJ Rim Joist Application

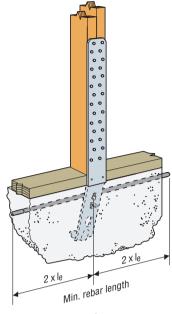
Factored Resistances for Wind and Seismic $I_eF_aS_a(0.2) < 0.35$

Min.	Mod	lel No.	Strap Le	ength				Factored '	Tensile Re	sistance ($K_D = 1.15$	
Stem	IVIUL	ICI NU.	(L) (i	n)			N	on Cracke	d		Cracked	
Wall				D:	le (in)	Fasteners	Midwall	Corner	Endwall	Midwall	Corner	Endwall
Width	Standard	Rim Joist	Standard	Rim Joist	(111)		lbs	lbs	lbs	lbs	lbs	lbs
(in)				JUIST			kN	kN	kN	kN	kN	kN
	LSTHD8	LSTHD8RJ	185%	321/8	8	20-10d	4625	4130	2515	3975	3550	2160
	LOTTIDO	LOTTIDONS	10 /8	32 /8		20-10u	20.57	18.37	11.19	17.68	15.79	9.61
6	STHD10	STHD10RJ	245%	381/8 10	24-10d	5485	5485	3045	4470	4470	2480	
0	3111010	נחטוטוווט	2478		24-10u	24.40	24.40	13.55	19.88	19.88	11.03	
	STHD14	STHD14RJ	261/8	395%	14	30-10d	7655	7655	4755	7655	7655	4755
	3111014	311101400	2078	3978	14	30-10u	34.05	34.05	21.15	34.05	34.05	21.15
	LSTHD8	LSTHD8RJ	18%	321/8	8	20-10d	4625	4015	3310	3975	3450	2845
	LOTTIDO	LOTTIDONO	1078	JZ /8	0	20-10u	20.57	17.86	14.72	17.68	15.35	12.66
8	STHD10	STHD10RJ	24%	381/6	10	24-10d	7400 ³	6320	4670	6070	5150	3810
0	3111010	פאטו פווו ט	∠ 1 78	381/8 10	2 4 -100	32.92 ³	28.11	20.77	27.00	22.91	16.95	
	STHD14	STHD14RJ	261/8	39%	14	30-10d	8800 ⁴	8195 ⁴	6185	7960 ⁴	7350	5550
	3111014	011101400	2078	JJ78	14	30-10u	39.15⁴	36.45 ⁴	27.51	35.414	32.70	24.69

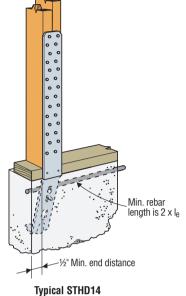
Factored Resistances for Seismic $I_eF_aS_a(0.2) \ge 0.35$

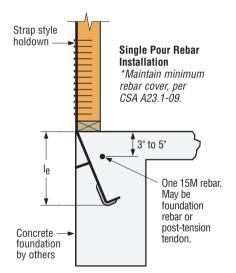

Min.	Mod	lel No.	Strap Le	ength				Factored [*]	Tensile Re	sistance ($K_D = 1.15$)
Stem	IVIOL	ICI NU.	(L) (i	n)			N	on Cracke	d		Cracked	
Wall				D:	le (in)	Fasteners	Midwall	Corner	Endwall	Midwall	Corner	Endwall
Width	Standard	Rim Joist	Standard	Rim Joist	(111)		lbs	lbs	lbs	lbs	lbs	lbs
(in)				JUIST			kN	kN	kN	kN	kN	kN
	LSTHD8	LSTHD8RJ	185%	321/8	8	20-10d	3470	3100	1885	2980	2660	1620
	LOTINDO	голироил	1078	3278	0	20-10u	15.44	13.79	8.39	13.26	11.83	7.21
6	6 STHD10 STHD10RJ 24	245%	381/8	10	24-10d	4110	4110	2280	3350	3350	1860	
0		2478	3078	10	24-10u	18.28	18.28	10.14	14.90	14.90	8.27	
	STHD14	STHD14RJ	261/8	39%	14	30-10d	5740	5740	3565	5740	5740	3565
	3111014	3111014110	2078	J378	14	30-10u	25.53	25.53	15.86	25.53	25.53	15.86
	LSTHD8	LSTHD8RJ	18%	321/8	8	20-10d	3470	3010	2485	2980	2585	2135
	LOTTIDO	LOTTIDONO	1078	JZ /8	0	20-10u	15.44	13.39	11.05	13.26	11.50	9.50
8	STHD10	STHD10RJ	24%	381/8 10	24-10d	5550	4740	3505	4525	3865	2855	
0	3111010	מחטומווט	∠ 1 78	JU 78	10	2 4 -100	24.69	21.09	15.59	20.13	17.19	12.70
	STHD14	STHD14RJ	261/8	39%	14	30-10d	6655	6145	4640	5970	5510	4160
	3111014	0111014NJ	2078	J J 78	14	30-10u	29.60	27.34	20.64	26.56	24.51	18.51

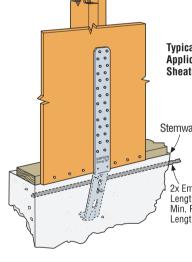
- 1 Factored resistances have been developed based on testing per ICC-ES AC 398 using the corresponding adjustment factors from CSA A23.3-04 Annex D.
- 2. Unless otherwise noted, tabulated values are applicable to D.Fir-L and S-P-F framing members. 3. S-P-F factored resistance is 7210 lbs (32.07 kN).
- 4. S-P-F factored resistance is 725 lbs (34.36 kN)
- 5. The minimum 28 day concrete compressive strength (f'c) shall be 2500 psi (17.25 MPa)
- 6. The minimum centre-to-centre spacing is 3 times the rquired embedment depth (S_{min} = 3xl_e)
- 7. See T-SCLCOLUMNCAN for installation on structural composite lumber posts or studs.
- 8. Deflection at the highest factored resistance for installation over double studs are as follows:

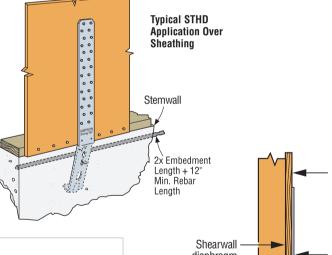

 - Installed on framing:
 - LSTHD8 = 0.094
 - STHD10 = 0.157STHD14 = 0.13
- Installed over structural sheathing: LSTHD8 = 0.15
- STHD10 = 0.201
- STHD14 = 0.290"
 Deflection values shown are applicable for D.Fir-L studs. For attachment to S-P-F studs multiply the deflection values by 1.13. Deflection values may be reduced
- linearly for lesser loads including specified wind loads at h/500.
- 10. Use the specified number of nails listed. In some cases, not all nail holes will be filled. Nail strap from
- 11. NAILS: 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

LSTHD/STHD Strap-Tie Holdown




Typical STHD14 Corner Installation




Typical STHD14 Mid Wall Installation

End Wall Installation

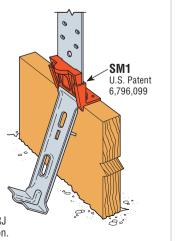
SPALL REDUCTION SYSTEM FOR STHD STRAP TIE HOLDOWN

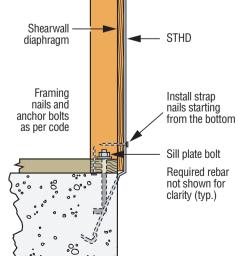
FEATURES

- · Built-in tab.
- StrapMate® locator line.
- · Additional diamond hole in RJ versions.

BENEFITS

Built-in Tab:


- · Reduces spalling and costly retrofits.
- No additional labor to install.
- · Holds STHD away from form board.


StrapMate Locator Line:

- Easy inspection to ensure proper location.
- Allows adjustment without removing STHD.

Additional Diamond Hole:

 One more fastener to help prevent the STHD RJ models from bowing out at the rim joist section.

STHD Over Shearwall Diaphragm Structural

sheathing

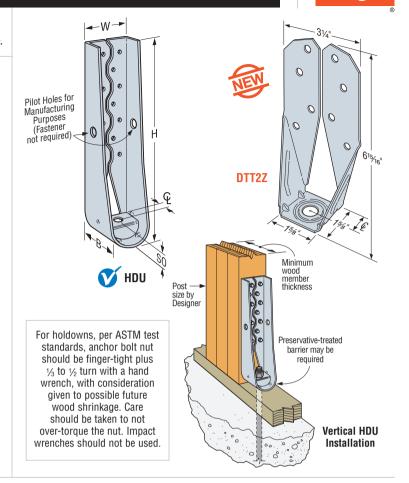
WEINEERED .

HDU/DTT2Z Holdown

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The HDU series of holdowns combine the advantages of low deflection and high capacity from the pre-deflected geometry with the ease of installation of Simpson Strong-Tie® patented SDS screws.

The DTT2Z tension tie is suitable for lighter-duty holdown applications on single or double 2x posts, and installs easily with Strong-Drive® SDS screws (included).


HDU SPECIAL FEATURES:

- Pre-deflected body virtually eliminates deflection due to material stretch.
- Uses SDS screws which install easily, reduce fastener slip, and provide a greater net section area of the post compared to bolts.
- SDS ¼"x2½" screws are supplied with the holdowns. (Lag screws will not achieve the same capacity.)
 This ensures the proper fasteners are used and is convenient for the installer.
- · No stud bolts to countersink at openings.

MATERIAL: See table FINISH: Galvanized

INSTALLATION: • Use all specified fasteners. See General Notes.

- · Place the holdown over the anchor bolt.
- No additional washer required for HDU, the DTT2Z requires standard cut washer (included) be installed between the nut and seat.
- To tie multiple 2x members together, the Designer must determine the fasteners required to join the members to act as one unit without splitting the wood. See page 26 for SDW values.
- See SB and SSTB Anchor Bolts on pages 38-42 for anchorage options.
- SDS screws install best with a low speed high torque drill with a %" hex head driver.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Model			Dim	ensio (in)	ons		F	asteners	Minimum Wood	Factored Resistance	Tensile (K _D = 1.15)	Deflection ^{7,8} at Factored
Mo.	Ga						Anchor	SDS	wood Thickness	D.Fir-L	S-P-F	Resistance
110.		W	Н	В	Ģ ¹¹	SO	Bolt Dia.	Screws	(in)	lbs	lbs	in
							(in)	OUICWS	(,	kN	kN	mm
								8-SDS 1/4"x11/2"	1½	2805	2520	0.25
DTT2Z								0-3D3 /4 X1/2	1 /2	12.48	11.21	6.35
DITZ	14	3½	615/16	15/8	15/16	3/16	1/2	8-SDS 1/4"x11/2"	3	3060	2565	0.25
	14	J /2	0 /16	1 /8	716	716	/2	0-0D0 74 X172	J	13.61	11.41	6.35
DTT2Z-SDS2.5								8-SDS 1/4"x21/2"	3	3060	2950	0.25
D1122 0002.0								0 0D0 74 XZ72	, o	13.61	13.12	6.35
HDU2-SDS2.5	14	21/8	811/16	31/4	13/8	13/8	5/8	6-SDS 1/4"x21/2"	3	3210	2900	0.092
11002 0002.0		270	0 710	074	170	170	70	0 0B0 74 XE72	Ŭ	14.28	12.90	2.34
HDU4-SDS2.5	14	27/8	1015/16	31/4	13/8	13/8	5/8	10-SDS 1/4"x21/2"	3	5350	4515	0.13
11001 0002.0		270	10 710	074	170	170	70	10 0B0 74 XE72	Ů	23.80	20.08	3.30
HDU5-SDS2.5	14	27/8	133/16	31/4	13/8	13/8	5/8	14-SDS 1/4"x21/2"	3	7485	6130	0.153
			.0710	0,.	.,,	.,,	, ,	050 / : //2/2		33.30	27.27	3.89
									3	9130	7330	0.124
HDU8-SDS2.5	10	3	165%	3½	13/8	1½	7/8	20-SDS ¼"x2½"		40.61	32.61	3.15
			.070	0,2	.,,	.,.	, ,	20 020 7 1 7 2 7 2	41/2	12890	9280	0.190
										57.34	41.28	4.83
									5½	14090	10145	0.196
HDU11-SDS2.5	2.5 10 3 22½ 3½ 1¾ 1½ 1 30-SDS	30-SDS 1/4"x21/2"		62.68	45.13	4.98						
110011-0002.0									71/4	16985	12230	0.197
										75.56	54.40	5.00
									71/4	20930	15070	0.250
HDU14-SDS2.5	7	31/8	2511/16	3½	1%6	1%16	1	36-SDS 1/4"x21/2"		93.10	67.04	6.35
HDU14-5D52.5									5½9	20850	15010	0.250
									- 7.2	92.75	66.77	6.35

 Factored resistances have been increased 15% for short term load duration. Reduce where other load durations govern.

SIMPSON

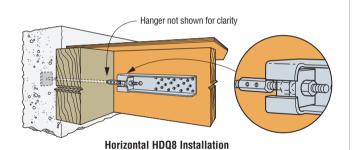
Strong-Tie

- The Designer must specify anchor bolt type, length and embedment to ensure dequate anchorage to concrete.
- 3. When using structural composite lumber columns, screws must be applied to the wide face of the column (see technical bulletin T-SCLCOLUMNCAN for details).
- 4. Post design shall be by the Designer. Tabulated values are based on a minimum wood member thickness in the direction of the fastener penetration. Post may consist of multiple 2x members provided they are connected independently of the holdown fasteners.
- 5. Holdowns shall be installed centred along the width of the attached post.
- 6. Tension values are valid for holdowns flush or raised off of the sill plate.
- 7. Deflection at Factored Resistance includes fastener slip, holdown elongation and anchor bolt elongation (L = 6"). Additional elongation of anchor bolts shall be accounted for by the Designer when the length of the anchor bolt above the top of the concrete to the attachment at the holdown is longer than 6". Similar consideration for floor to floor connections must be addressed by the Designer.

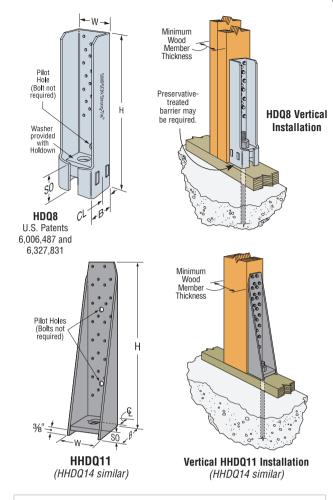
SDS 1/4"x21/2"
(See page 27 for more information)

- 8. Deflection values may be reduced linearly for lesser loads including specified wind loads at h/500.
- 9. Noted HDU14 factored resistances are based on a $5\frac{1}{2}$ wide (6x6) post. All other resistances assume $3\frac{1}{2}$ wide posts (minimum).
- 10. HDU14 requires heavy hex nut for anchor bolt (supplied with holdown).
- 11. Centre line dimension is taken from the face of the post/framing member to the centre of anchor.

HDQ8/HHDQ Holdowns


The HHDQ series of holdowns combines low deflection and high loads with ease of installation. The unique seat design of the HDQ8 greatly minimizes deflection under load. Both styles of holdown employ the Simpson Strong-Tie® Strong-Drive® SDS screws which install easily, reduce fastener slip and provide a greater net section area of the post when compared to bolts. They may be installed either flush or raised off the mudsill without a reduction in capacity.

SPECIAL FEATURES:


- · Uses SDS screws which install easily, reduce fastener slip, and provide a greater net section area of the post compared to bolts.
- SDS screws are supplied with the holdowns to ensure proper fasteners are used.
- · No stud bolts to countersink at openings.

MATERIAL: HDQ8—7 gauge; HHDQ—Body: 7 gauge, washer: ½" plate FINISH: HDQ8—Galvanized; HHDQ— Simpson Strong-Tie® gray paint INSTALLATION: • Use all specified fasteners. See General Notes.

- For use in vertical and horizontal applications.
- No additional washer is required.
- To tie multiple 2x members together, the Designer must determine the fasteners required to join members without splitting the wood.
- See SB and SSTB Anchor Bolts on pages 38-42 for anchorage options.
- SDS screws install best with a low speed high torque drill with a 3/8" hex head driver.
- HDQ8 has %" of adjustability perpendicular to the wall.
- HHDQ14 requires a heavy hex anchor nut (supplied with holdown).

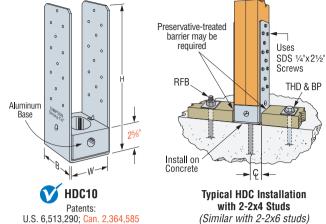
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

For holdowns, per ASTM test standards, anchor bolt nut should be finger-tight plus 1/3 to 1/2 turn with a hand wrench, with consideration given to possible future wood shrinkage. Care should be taken to not over-torque the nut. Impact wrenches should not be used.

	Model No.			Di	imensioi (in)	ns			Fasteners	Minimum Wood	Factored Tens (K _D =	ile Resistance 1.15)	Deflection ^{7,8} at Factored
	No.	Ga						Anchor		Thickness	D.Fir-L	S-P-F	Resistance
			W	Н	В	Ģ ¹¹	S0	Bolt Dia.	SDS Screws	(in)	lbs	lbs	in
								(in)			kN	kN	mm
										3	9825	7075	0.112
	HDQ8-SDS3	7	7 2½ 14 2½ 1¼ 2¾ ¾ 20-SDS		20 CDC 1/"v2"	3	43.71	31.47	2.84				
	11000-3033	'	278	14	2½ 1¼ 2¾ 76 20-SDS ¼"x3"	20-303 74 83	4½	13885	9995	0.139			
										4 72	61.77	44.46	3.53
	HHDQ11-SDS2.5	7	3	151/8	3½	1%6	7/8	1	24-SDS 1/4"x21/2"	5½	16285	12420	0.218
	11110011-3032.3	'	3	1378	372	1 716	78	'	24-3D3 74 X272	J 72	72.44	55.25	5.54
										71/4	17510	12610	0.168
	HHDQ14-SDS2.5	7	3	18¾	31/2	1%6	7/8	1	30-SDS ¼"x2½"	1 74	77.89	56.09	4.27
	ППЛИ 14-2032.3	1	3	1074	372	I 716	78	'	3U-3D3 74 XZ72	5½ ⁹	203559,10	162809,10	0.140
										∂ 72°	90.55	72.42	3.56
l											22,00		3.00

- 1. Factored resistances have been increased 15% for short term load duration. Reduce where other load durations govern.
- 2. The Designer must specify anchor bolt type, length and embedment to
- ensure adequate anchorage to concrete.

 3. When using structural composite lumber columns, screws must be applied to the wide face of the column (see technical bulletin T-SCLCOLUMNCAN for details).
- 4. Post design shall be by the Designer. Tabulated values are based on a minimum wood member thickness in the direction of the fastener penetration. Post may consist of multiple 2x members provided they are connected independently of the holdown fasteners.
- 5. Holdowns shall be installed centred along the width of the attached post.
- 6. Tension values are valid for holdowns flush or raised off of the sill plate.
- 7. Deflection at Factored Resistance includes fastener slip, holdown elongation and anchor bolt elongation (L = 6"). Additional elongation of anchor bolts shall be accounted for by the Designer when the length of the anchor bolt above the top of the concrete to the attachment at the holdown is longer than 6". Similar consideration for floor to floor connections must be addressed by the Designer.
- Deflection values may be reduced linearly for lesser loads including specified wind loads at h/500.
- 9. Noted HHDQ14 factored resistances are based on a 5½" wide (6x6) post. All other resistances assume 3½" wide posts (minimum).
- 10. Requires heavy hex nut for anchor bolt (supplied with holdown).
- Centre line dimension is taken from the face of the post/framing member to the centre of anchor.


This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost. or a combination of these features.

The unique design of the HDC holdowns eliminate eccentricity. They install with Simpson Strong-Tie® Strong-Drive® SDS screws (included) to reduce slip and provide a greater net section area of the post compared to bolts. MATERIAL: 10 gauge strap

FINISH: Galvanized strap, aluminum base

INSTALLATION: • Use all specified fasteners. See General Notes.

- · Install on concrete.
- For use in vertical and horizontal applications.
- Sized for 2-2x and 4x. Center posts on holdown.
- Uses SDS screws supplied with the holdowns to ensure proper fasteners are used.
- Slot in the seat allows for 3/8" of adjustment perpendicular to plate.
- Narrow cut washer with outside diameter of 13/4" required between base and anchor nut.
- · Witness slot in the base to inspect the nut .
- Maximum anchor bolt height above concrete is 21%".
- To tie multiple 2x members together, the Designer must determine the fasteners required to join members without splitting the wood.
- Aluminum standoff cannot be in contact with preservative-treated wood.
- · SDS screws install best with a low speed high torque drill with a 3/8" hex head driver.

For holdowns, per ASTM test standards, anchor bolt nut should be finger-tight plus ½ to ½ turn with a hand wrench, with consideration given to possible future wood shrinkage. Care should be taken to not over-torque the nut. Impact wrenches should not be used.

Model	Doct		Dimer (i			F	asteners	Factored Tens (K _D =		Deflection ^{5,6} at Factored	Concrete Bearing
Model No.	Post Size					Anchor		D.Fir-L	S-P-F	Resistance	(f'c = 20 MPa)
No. 0	0.20	W	Н	В	မ်	Bolt Dia.	SDS Screws	lbs	lbs	in	lbs
					_	(in)		kN	kN	mm	kN
HDC10/22-SDS2.5	2-2x4	31/8	14½	2	111/16	7/8	24-SDS ½"x2½"	11785	8485	0.086	12940
HDG10/22-3D32.3	2-284	378	1472	S	I '716	78	24-303 74 8272	52.42	37.74	2.18	57.56
HDC10/4-SDS2.5	4x4	3%16	141/4	3	17/8	7/8	24-SDS ½"x2½"	11785	8485	0.086	15755
	484	3 716	1474	S	1 78	78	24-303 74 X272	52.42	37.74	2.18	70.08

- 1. Factored resistances have been increased 15% for short term load duration. Reduce where other load durations govern.
- 2. The Designer must specify anchor bolt type, length and embedment to ensure adequate anchorage to concrete.
- When using structural composite lumber columns, screws must be applied to the wide face of the column (see technical bulletin T-SCLCOLUMNCAN for details)
- Concrete bearing resistance has been calculated in accordance with 10.8 CSA A23.3-04 and may be increased when HDC is not placed near an edge or with f'_c > 20 MPa to a maximum value of 21310 lbs (94.80 kN).
- 5. Deflection at Factored Resistance includes fastener slip, holdown elongation and anchor bolt elongation ($L = 6^{\circ}$). Additional elongation of anchor bolts shall be accounted for by the Designer when the length of the anchor bolt above the top of the concrete to the attachment at the holdown is longer than 6". Similar consideration for floor to floor connections must be addressed by the Designer.
- 6. Deflection values may be reduced linearly for lesser loads including specified wind loads at h/500.
- 7. The post capacity must be verified by the Designer.
- Centre line dimension is taken from the outside face of the HDC to the centre of anchor.

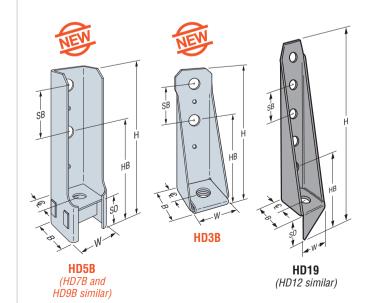
HDB/HD Holdowns

Simpson Strong-Tie offers a wide range of bolted holdowns offering lowdeflection performance for a range of load requirements. All of these holdowns have been tested in accordance with ICC-ES's AC 155 acceptance criteria.

The **NEW** HD3B is light-duty holdown designed for use in shearwalls and braced-wall panels, as well as other lateral applications.

The **NEW** HD5B, HD7B and HD9B bolted holdowns incorporate the proven design of our HDQ8 SDS-style holdown and feature a unique seat design which greatly minimizes deflection under load. HDB holdowns are self jigging, ensuring that a minimum of seven bolt diameters from the end of the post is met. They can be installed directly on the sill plate or raised above it and are suitable for back-to-back applications where eccentricity is a concern. HDBs are designed to provide resistances for intermediate-loadrange shearwalls, braced-wall panels and lateral applications.

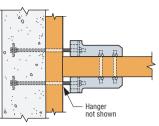
HD holdowns offer the highest bolted capacities for both vertical and horizontal applications. The HD12 and HD19 are self jigging, ensuring that a minimum of seven bolt diameters from the end of the post is met. They can be installed back-to-back when eccentricity is an issue.


MATERIAL: See table

FINISH: HD3B/HD5B/HD7B/HD9B - Galvanized;

HD - Simpson Strong-Tie® gray paint

INSTALLATION: • Use all specified fasteners. See General Notes.


- Bolt holes shall be a minimum of ½2" to a maximum of ¼6" larger than the bolt diameter (per 10.4.1.2 CSA 086-09).
- · Stud bolts should be snugly tightened with standard cut washers between the wood and nut.
- The Designer must specify anchor bolt type, length, and embedment. See SB and SSTB Anchor Bolts (pages 38-42).
- To tie multiple 2x members together, the Designer must determine the fasteners required to join members without splitting the wood.

HDB/HD Holdowns

Horizontal HDB Installation (Plan View)

Minimum wood member thickness Washers must be installed between bolt nuts and wood Stand off provides minimum end distance to end of post from post bolt Vertical HD19

Installation

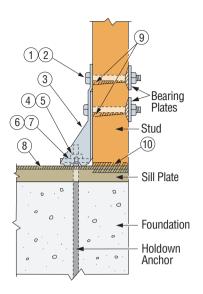
For holdowns, per ASTM test standards, anchor bolt nut should be finger-tight plus 1/3 to 1/2 turn with a hand wrench, with consideration given to possible future wood shrinkage. Care should be taken to not over-torque the nut. Impact wrenches should not be used.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

HD/HDB Holdown Resistances

						nsions			Fa	steners		Wood		ile Resistance	Deflection8,9
	Model	Body		1	(1	n)		I		041	D - U -	Member	`	1.15)	at Factored Resistance
	No.	Ga		0.0	147	١		011	Anchor	Stua	Bolts	Thickness	D.Fir-L	S-P-F	
			НВ	SB	W	Н	S0	မ် 11	Bolt Dia. (in)	Qty.	Dia.	(in)	lbs	lbs	in
									(111)	,	(in)		kN	kN	mm
												1½	1305	1030	0.118
													5.81	4.58	3.00
	HD3B	12	43/4	21/2	21/2	85/8	3/8	15/16	5/8	2	5/8	3	2610	2060	0.088
靈													11.61	9.16	2.24
												31/2	3055	2412	0.114
													13.59	10.73	2.90
												3	3100	2445	0.106
													13.79 3630	10.88 2865	2.69 0.116
	HD5B	10	51/4	3	21/2	9%	2	11/4	5/8	2	3/4	31/2	16.15	12.74	2.95
靊													4645	3670	0.142
2												41/2	20.66	16.33	3.61
													4645	3670	0.107
												3	20.66	16.33	2.72
													5440	4295	0.121
~												3½	24.20	19.11	3.07
画	HD7B	10	51/4	3	21/2	12%	2	11/4	7/8	3	3/4	5965	4710	0.130	
												41/2	26.53	20.95	3.30
													5965	4775	0.130
												5½	26.53	21.24	3.30
												01/	5415	4275	0.112
												3½	24.09	19.02	2.84
												417	8165	6445	0.155
Qi	HD9B	7	61/8	3½	27/8	14	2%	11/4	7/8	3	7/8	4½	36.32	28.67	3.94
	прав	1	0 78	3 7/2	Z'/8	14	278	1 74	78	3	78	5½	7915	6330	0.152
												372	35.21	28.16	3.86
												6	8320	6570	0.157
												U	37.01	29.23	3.99
												3½	9700	7660	0.150
												072	43.15	34.07	3.81
												41/2	12425	9810	0.166
	HD12	3	7	4	3½	205/16	35%	21/8	1	4	1	772	55.27	43.64	4.22
	11012		'		0,2	20710	070				'	51/27	12045 ⁷	9635 ⁷	0.134
												072	53.58	42.86	3.40
												67	16565 ⁷	13080 ⁷	0.171
												ŭ	73.69	58.19	4.34
												5½ ⁷	15060 ⁷	120457	0.187
	HD19	3	7	4	3½	241/2	3%	21/8	11//8	5	1		66.99	53.58	4.75
												67	20710 ⁷	16350 ⁷	0.229
													92.12	72.73	5.82

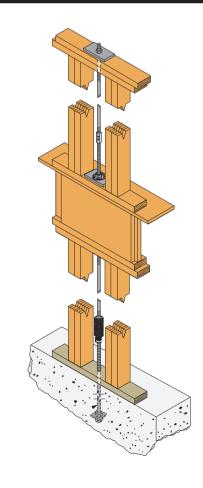
- 1. Factored resistances have been increased 15% for short term load duration. Reduce where other load durations govern.
- 2. The Designer must specify anchor bolt type, length and embedment to ensure
- adequate anchorage to concrete.


 3. When using structural composite lumber columns, bolts must be applied to the wide face of the column (see technical bulletin T-SCLCOLUMNCAN for details).
- 4. Post design shall be by the Designer. Tabulated values are based on a minimum wood member thickness in the direction of the fastener penetration. Post may consist of multiple 2x members provided they are connected independently of the holdown fasteners.
- 5. Holdowns shall be installed centred along the width of the attached post.
- Tension values are valid for holdowns flush or raised off of the sill plate.
 Noted HD12 and HD19 factored resistances are based on a 5½" wide post (6x6 or 4-2x6). All other resistances assume 3½" wide posts (minimum).
- 8. Deflection at Factored Resistance includes fastener slip, holdown elongation and anchor bolt elongation (L = 6"). Additional elongation of anchor bolts shall be accounted for by the Designer when the length of the anchor bolt above the top of the concrete to the attachment at the holdown is longer than 6°. Similar consideration for floor to floor connections must be addressed by the Designer.

 9. Deflection values may be reduced linearly for lesser loads including specified
- wind loads at h/500.
- The factored resistances shown are based on the lower of the assembly testing and the bolt calculations in accordance with 10.4 CSA 086-09. For applications where the HD or HDB holdowns are used on opposite sides of the post the capacity of the connection may be calculated using the lower of two times the tabulated value or the bolt calculations in accordance with 10.4 CSA 086-09 assuming double shear.
- Centre line dimension is taken from the face of the post/framing member to the centre of anchor.

SOURCES OF DEFLECTION AT SHEARWALL HOLDOWN CONNECTIONS

- 1. Bolt slip can occur at holdown stud bolts.
- Increased bolt slip can occur if oversized holes are drilled through the stud for holdown stud bolts (oversized holes are when the hole diameter is greater than the bolt diameter plus 2mm per 10.4.1.2 CSA 086-09).
- When a holdown is installed on only one side of the stud, an eccentricity exists during loading which can cause more movement in the shearwall system.
- Unrestrained anchor bolt nuts can spin loose during cyclic loading; using steel nylon locking nuts or thread adhesive may prevent nut spin.
- Movement can occur when nuts are not tightened enough. Retightening bolts before covering wall may prevent this.
- Deflection can occur in the holdown under load caused by stresses due to earthquake or high wind.
- Lateral displacement at the top of the wall rotates the stud around its base causing the holdown base plate to displace vertically.
- Wood shrinkage can occur due to drying of the sill plate, rim joist, and/or top plate; nuts may require retightening.
- 9. Uplift forces on the bolts can cause localized wood crushing at bolt bearing locations. Using larger bearing plates may prevent this.
- 10. Wood at the end of the studs (sill plates, rim joists, etc.) may crush under normal dead and live loading; additional compressive forces due to overturning during earthquake and high wind loads add to the deflection.

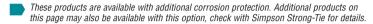

12 and 6 do not apply to the HDU.

NEED A HIGHER CAPACITY HOLDOWN?

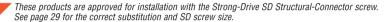
When one of our conventional holdowns doesn't offer enough overturning capacity for a multistorey project, consider specifying the Simpson Strong-Tie® Anchor Tiedown System (ATS). ATS is a high-capacity overturning-restraint system commonly used in 2-6 storey wood structures to anchor stacked shearwalls. This continuous rod system features our patented shrinkage take-up devices, extends from the foundation to the top of the structure and is restrained (tied off) at each level. Designed properly, it can provide over 50,000 lbs. of overturning restraint; important when designing for the cumulative overturning forces in multi-storey buildings.

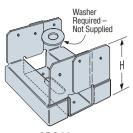
For more information see page 74 of this catalogue and for specification options see our *Anchor Tiedown Systems Canadian Limit States Design* catalogue (C-ATSCAN11) or visit *www.strongtie.com/ats*.

ABA/ABE/ABU Adjustable and Standoff Post Bases

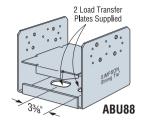

Post Bases provide tested capacity. They feature 1" standoff height above concrete floors. They reduce the potential for decay at post and column ends.

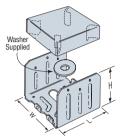
MATERIAL: See table

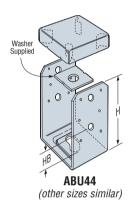

FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.


INSTALLATION: • Use all specified fasteners. See General Notes.

- Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).
- ABA, ABE and ABU—can be used with cast-in-place anchors. For epoxy or wedge anchors, select and install according to anchor manufacturer's recommendations; anchor diameter shown in table. Install required washer, which is not included for ABAs.
- ABU88 centre to centre dimension of anchors is 3%".
- See pages 31-32 for post-installed anchorage solutions.


Motorial Dimensions






Factored Resistance

ABE44 ABE44RZ, 46, 46R, 66 and 66RZ supplied with washer

Typical ABE46R Installation for Rough Lumber (ABE similar)

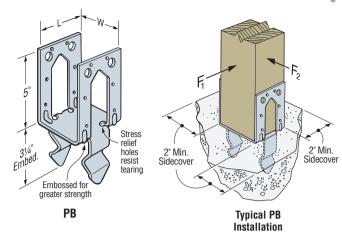
Nominal Nome				erial	Di	mensio	ns	Fact	eners		Factored F	Resistance		
Model No. Post Size Base Strap W L H Anchor Dia. (in) Nails (lbs lbs				(g	a)		(in)		I ast	GIIGIS	D.F	ir-L	S-I	P-F
ABA44			Post				_							
ABA44				Base	Strap	W	L	Н		Nails	lbs	lbs	lbs	lbs
ABA44									(111)		kN	kN	kN	kN
ABE44		10111		40	40	00/	01/	01/	1.6	0.40.1	1030	10375	730	8610
ABL44		ABA44	4x4	16	16	3%16	31/8	31/16	1/2	6-100	4.58	46.15	3.25	38.30
ABU44 4x4 16 12 3%6 3 5½ % 12-16d 2955 10940 2095 9070 ABA44R RGH 4x4 16 16 4¼6 3¼ 2½6 ½ 6-10d 925 10630 655 8810 ABE44RZ RGH 4x4 16 16 4 3½ 2%6 ½ 6-10d 575 12365 410 10220 ABE44RZ RGH 4x4 16 16 4 3½ 2%6 ½ 6-10d 575 12365 410 10220 ABE46 4x6 12 16 3%6 5¼6 4¼6 % 8-16d 7.98 69.73 5.67 57.63 ABA46 4x6 14 14 3%6 5¼6 3% % 8-16d 990 17200 705 14290 ABE46R RGH 4x6 12 12 3%6 5 7 % 12-16d 3490 20190 2480 16765 ABA46R RGH 4x6 12 16 4¼6 5¼6 3%6 % 8-16d 1055 15675 750 12955 ABA46R RGH 4x6 14 14 4¼6 5%6 2% % 8-16d 1005 15675 755 12951 ABA66Z 6x6 14 14 5½ 5¼6 3% % 8-16d 1005 15675 750 12955 ABB66 6x6 12 14 5½ 5¼6 3% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 14 14 6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 14 14 6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 14 14 6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6¼6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6¼6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6¼6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6¼6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6¼6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6¼6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6¼6 5%6 2% % 8-16d 1674 19655 1190 14135 ABU88 ⁴ 8x8 12 14 7½7 7 7 2-% 18-16d 3555 28275 2525 20805		1 DE 1 1	4×4	16	16	29/	21/	93/	1/	6 104		12365	585	10220
ABA44R RGH 4x4 16 16 4 4/6 3/6 21%6 ½ 6-10d 13.15 48.67 9.32 40.35 8810 92.5 10630 655 8810 4.11 47.29 2.91 39.19 39.19 ABE44RZ RGH 4x4 16 16 4 3½ 2%6 ½ 6-10d 2.56 55.00 1.82 45.46 10.220 2.56 55.00 1.82 45.46 10.220 1.82 45.46 1.		ADE44	484	10	10	3 716	372	274	72	0-10u				
ABA44R RGH 4x4 16 16 4/16 3/6 21/16 4/16 3/6 22/6 56-10d 4.11 47.29 2.91 39.19 ABE44RZ RGH 4x4 16 16 4 3/2 2/16 ½ 6-10d 5.75 12365 410 10220 ABE46 4x6 12 16 3/16 5/16 4/16 ½ 8-16d 7.95 15675 1275 12955 ABA46 4x6 14 14 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 3/16 5/16 5/16 3/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5		ARII44	4×4	16	12	39/16	3	51/2	5/8	12-16d				
ABA44R RGH 4x4 16 16 4 3½ 2½6 ½ 6-100 4.11 47.29 2.91 39.19 ABE44RZ RGH 4x4 16 16 4 3½ 2½6 ½ 6-10d 2.56 5.00 1.82 45.46 ABE46 4x6 12 16 3¾6 5¾6 3½ ¾8 8-16d 7.98 69.73 5.67 57.63 ABA46 4x6 14 14 3¾6 5¾6 5 7 ¾8 12-16d 990 17200 705 14290 ABE46R RGH 4x6 12 12 3¾6 5 7 ¾8 12-16d 15.52 89.81 11.03 74.58 ABE46R RGH 4x6 12 16 4¼6 5¾6 3¾6 ¾8 8-16d 4.69 69.73 3.34 57.63 ABA46R RGH 4x6 14 14 4¼6 5¾6 2½ ¾8 8-16d 4.69 69.73 3.34 57.63 ABA66Z 6x6 14 14 5½ 5¼6 3¾6 ¾8 8-16d 4.69 69.73 3.34 55.67 ABE66 6x6 12 14 5½ 5¼6 3¼6 ¾8 8-16d 4.54 78.45 3.23 58.07 ABE66 6x6 12 10 5½ 5 6¼6 ¾8 8-16d 1460 19655 1040 14420 ABA66R RGH 6x6 14 14 6 5¾6 5½6 3½ ¾8 8-16d 6.49 87.43 4.63 64.15 ABA66R RGH 6x6 14 14 6 5¾6 5½6 ½% ¾8 8-16d 11020 17635 725 13055 ABA66R RGH 6x6 14 14 6 5¾6 5½6 ½% ¾8 8-16d 1460 19655 1040 14420 ABA66R RGH 6x6 14 14 6 5¾6 5½6 ½% ¾8 8-16d 1460 19655 1040 14420 ABA66R RGH 6x6 14 14 6 5¾6 5½6 ½% ¾8 8-16d 15.97 110.68 11.34 82.05 ABA66R RGH 6x6 14 14 6 5¾6 5½6 ½% ¾8 8-16d 15.97 110.68 11.34 82.05 ABA66R RGH 6x6 14 14 6 5¾6 5½6 ½% ¾8 8-16d 1674 19655 1190 14135 ABB66R RGH 6x6 12 14 6½6 5½6 2½6 ¾8 8-16d 1674 19655 1190 14135 ABU884 8x8 12 14 7½ 7 7 2.5% 18-16d 15.81 125.78 11.23 92.55 ABU884 8x8 12 14 7½ 7 7 2.5% 18-16d 15.81 125.78 11.23 92.55 ABU888 8x8 12 14 7½ 7 7 2.5% 18-16d 15.81 125.78 11.23 92.55		715011	1/(1	-10		0710		0,2	,,,	12 100				
ABE44RZ RGH 4x4 16 16 4 3½ 2%6 ½ 6-10d 575 12365 410 10220 ABE46 4x6 12 16 3%6 5%6 4%6 % 8-16d 1795 15675 1275 12955 7.98 69.73 5.67 57.63 ABA46 4x6 14 14 3%6 5%6 3% % 8-16d 990 17200 705 14290 4.40 76.51 3.14 63.57 ABU46 4x6 12 12 3%6 5 7 % 12-16d 3490 20190 2480 16765 15.52 89.81 11.03 74.58 ABE46R RGH 4x6 12 16 4%6 5%6 3%6 % 8-16d 1055 15675 750 12955 4.69 69.73 3.34 57.63 ABA46R RGH 4x6 14 14 4%6 5%6 2% % 8-16d 1020 17635 725 13055 12515 4.40 67.13 3.14 55.67 ABE66 6x6 12 14 5½ 5%6 3%6 % 8-16d 1020 17635 725 13055 1040 14420		ABA44R	RGH 4x4	16	16	41/16	31/8	213/16	1/2	6-10d				
ABE46R RGH 4x6 12 16 4 3½ 2½ 6 10 2.56 55.00 1.82 45.46 ABE46 4x6 12 16 3¾ 5½ 6 4¼ 6 ¾ 8-16d 7.98 69.73 5.67 57.63 ABA46 4x6 14 14 3¾ 6 5¾ 8 16d 990 17200 705 14290 4.40 76.51 3.14 63.57 ABU46 4x6 12 12 3¾ 6 5 7 ¾ 12-16d 15.52 89.81 11.03 74.58 ABE46R RGH 4x6 12 16 4¼ 5¾ 8 1-6d 990 15090 705 12955 ABA46R RGH 4x6 14 14 4¼ 6 5¾ 8 1-6d 990 15090 705 12515 ABA46R RGH 4x6 14 14 5½ 5¼ 3¾ ¾ 8-16d 990 15090 705 12515 ABA66Z 6x6 14 14 5½ 5¼ 3¾ ¾ 8-16d 4.40 67.13 3.14 55.67 ABE66 6x6 12 14 5½ 5¼ 3¾ ¾ 8-16d 6.49 87.43 3.23 58.07 ABU66 6x6 12 10 5½ 5 6¼ 3¾ ¾ 8-16d 6.49 87.43 4.63 64.15 ABU66 6x6 12 10 5½ 5 6¼ 3¾ № 8-16d 6.49 87.43 4.63 64.15 ABA66R RGH 6x6 14 14 6 5¾ 8 2½ ¾ 8 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 14 14 6 5¾ 8 2½ ¾ 8 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 14 14 6 5¾ 8 2½ ¾ 8 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 10 5½ 5 6¼ 3¼ ¾ 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 10 5½ 5 6¼ 3¼ 35 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6 6 5¾ 8 2½ ¾ 8 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6 6 5¾ 8 2½ ¾ 8 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6 6 5¾ 8 2½ ¾ 8 8-16d 1020 17635 725 13055 ABU884 8x8 12 14 7½ 7 7 2-¾ 18-16d 155.81 125.78 11.23 92.55 ABU884 8x8 12 14 7½ 7 7 2-¾ 18-16d 3555 28275 2525 20805														
ABE46 4x6 12 16 3%6 5%6 4%6 % 8-16d 7.98 69.73 5.67 57.63 ABA46 4x6 14 14 3%6 5%6 3% % 8-16d 990 17200 705 14290 4.40 76.51 3.14 63.57 3490 20190 2480 16765 ABE46R RGH 4x6 12 12 3%6 5 7 % 12-16d 15.52 89.81 11.03 74.58 ABE46R RGH 4x6 12 16 4%6 5%6 3%6 % 8-16d 4.69 69.73 3.34 57.63 ABA46R RGH 4x6 14 14 4%6 5%6 2% % 8-16d 990 15090 705 12515 ABA66Z 6x6 14 14 5½ 5¼ 3% % 8-16d 990 15090 705 12515 ABE66 6x6 12 14 5½ 5%6 3% 8-16d 6.49 87.43 3.23 58.07 ABE66 6x6 12 10 5½ 5 6%6 % 8-16d 6.49 87.43 4.63 64.15 ABU66 6x6 12 10 5½ 5 6%6 % 8-16d 12.10 5½ 5 6%6 % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 14 14 6 5%6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 14 14 6 5%6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2% % 8-16d 1020 17635 725 13055 ABB66R RGH 6x6 12 14 6%6 5%6 2%6 5% 8-16d 1020 17635 725 13055		ABE44RZ	RGH 4x4	16	16	4	3½	2%16	1/2	6-10d				
ABE46														
ABA46 4x6 14 14 3%6 5%6 3%		ABE46	4x6	12	16	3%16	57/16	41/16	5/8	8-16d				
ABU46	_													
ABU46 4x6 12 12 3%6 5 7 % 12-16d 3490 20190 2480 16765 ABE46R RGH 4x6 12 16 4½6 5½6 3%6 ½ 8-16d 1055 15675 750 12955 ABA46R RGH 4x6 14 14 4½6 5¾6 2½6 ¾ 8-16d 990 15090 705 12515 ABA66Z 6x6 14 14 5½ 5¼ 3½8 ¾ 8-16d 1020 17635 725 13055 ABE66 6x6 12 14 5½ 5¾6 3½6 ¾ 8-16d 1460 19655 1040 14420 ABB66 6x6 12 10 5½ 5 6⅓6 ½ 12-16d 15.97 110.68 11.34 82.05 ABA66R RGH 6x6 14 14 6 5¾6 5½6 ½% ¾ 8-16d 15.97 110.68 11.34 82.05 ABB66RZ RGH 6x6 12 14 6½6 5½6 2½6 ¾ 8-16d 1020 17635 725 13055 ABB88 RGH 6x6 12 14 7½ 7 7 2-¾8 18-16d 1674 19655 1190 14135 ABU884 8x8 12 14 7½ 7 7 2-¾8 18-16d 3555 28275 2525 20805		ABA46	4x6	14	14	3%16	5¾16	31/8	5/8	8-16d				
ABE46R RGH 4x6 12 16 4½ 5½ 5¾ 3¾ 56 8-16d 1055 15675 750 12955 12515 125		A DU 140	40	40	40	00/			E/	40.40.1				
ABA46R RGH 4x6 12 16 4½6 5½6 ½6 ½6 8-16d 4.69 69.73 3.34 57.63 ABA46R RGH 4x6 14 14 4½6 5¾6 2½6 ½6 8-16d 4.40 67.13 3.14 55.67 ABA66Z 6x6 14 14 5½ 5¼ 3½6 ½6 8-16d 1020 17635 725 13055 ABE66 6x6 12 14 5½ 5¾6 3½6 ¾6 8-16d 6.49 87.43 4.63 64.15 ABU66 6x6 12 10 5½ 5 61¼6 ½6 12-16d 3590 24880 2550 18445 ABA66R RGH 6x6 14 14 6 5¾6 2½6 ½6 8-16d 1020 17635 725 13055 ABE66RZ RGH 6x6 12 14 61¼6 5½6 ½6 ¾6 8-16d 1020 17635 725 13055 ABE66RZ RGH 6x6 12 14 61¼6 5½6 ½6 ½6 8-16d 1020 17635 725 13055 ABU884 8x8 12 14 7½ 7 7 2-½8 18-16d 3555 28275 2525 20805 ABU888 RGH 8x8 12 14 8x 7 7 7 2-½6 18-16d 3555 28275 2525 20805		ABU46	4X6	12	12	3%16	5	/	9/8	12-160	15.52	89.81	11.03	74.58
ABA46R RGH 4x6		V DE 16D	DCH 4v6	10	16	41/	5 7/	29/	5/4	Q_16d	1055	15675	750	12955
ABA66R RGH 6x6 12 14 6\(\frac{14}{6}\) 5\(\frac{16}{6}\) 2\(\frac{16}{6}\) 5\(\frac{16}{6}\) 2\(\frac{16}{6}\) 5\(\frac{16}{6}\) 5\(ADL40N	NGI1 4X0	12	10	4 /16	J /16	3 / 16	78	0-100				
ABA66Z 6x6 14 14 5½ 5¼ 3⅓ 5% 8-16d 1020 17635 725 13055 4.54 78.45 3.23 58.07 ABE66 6x6 12 14 5½ 5¼ 3⅓ 5% 8-16d 6.49 87.43 4.63 64.15 ABU66 6x6 12 10 5½ 5 6⅓ 5% 12-16d 15.97 110.68 11.34 82.05 ABA66R RGH 6x6 14 14 6 5¾ 5⅓ 5⅓ 8-16d 1020 17635 725 13055 ABA66R RGH 6x6 12 14 6⅓ 5⅓ 5⅓ 8-16d 1020 17635 725 13055 ABE66RZ RGH 6x6 12 14 6⅓ 5⅓ 5⅓ 8-16d 1674 19655 1190 14135 ABU884 8x8 12 14 7½ 7 7 2-5% 18-16d 3555 28275 2525 20805 ABU888 RGH 8x8 12 14 8x 7 7 7 2-5% 18-16d 3555 28275 2525 20805		ARA46R	RGH 4x6	14	14	Δ1/4c	53/16	27%	5%	8-16d				
ABA662 6x6 14 14 5½ 5¼ 3¾ ¾ 8-16d 4.54 78.45 3.23 58.07 ABE66 6x6 12 14 5½ 5¼ 3¾ ¾ 8 8-16d 6.49 87.43 4.63 64.15 ABU66 6x6 12 10 5½ 5 6¼ 12-16d 3590 24880 2550 18445 ABA66R RGH 6x6 14 14 6 5¾ 8 12-16d 15.97 110.68 11.34 82.05 ABE66RZ RGH 6x6 12 14 6¼ 5¾ 8 8-16d 4.54 78.45 3.23 58.07 ABE66RZ RGH 6x6 12 14 6¼ 5¾ 8 8-16d 1674 19655 1190 14135 ABU884 8x8 12 14 7½ 7 7 2-¾ 18-16d 3555 28275 2525 20805 ABU888 RGH 8x8 12 14 8 7 7 7 2-¾ 18-16d 3555 28275 2525 20805		/\D/\\\\	Hall 4x0	1.7	17	4710	0710	270	76	0 100				
ABE66 6x6 12 14 5½ 5¾6 3⅓ 5% 8-16d 6.49 87.43 4.63 64.15 ABU66 6x6 12 10 5½ 5 6¼6 5% 12-16d 3590 24880 2550 18445 ABA66R RGH 6x6 14 14 6 5¾6 2½ 5% 8-16d 1020 17635 725 13055 ABE66RZ RGH 6x6 12 14 6¼6 5¾6 2½ 5% 8-16d 1674 19655 1190 14135 ABU884 8x8 12 14 7½ 7 7 2-5% 18-16d 3555 28275 2525 20805 ABU888 RGH 8x8 12 14 8 7 7 7 2-5% 18-16d 3555 28275 2525 20805		ABA66Z	6x6	14	14	5½	51/4	31/8	5/8	8-16d				
ABLOSO ABUSE RIGHESTS ABUSE STATES ABUSE STATES ABUSE AB														
ABU66 6x6 12 10 5½ 5 6¼6 5% 12-16d 3590 24880 2550 18445 ABA66R RGH 6x6 14 14 6 5¾6 2% 5% 8-16d 1020 17635 725 13055 ABE66RZ RGH 6x6 12 14 6¼6 5¾6 2% 5% 8-16d 1674 19655 1190 14135 ABU884 8x8 12 14 7½ 7 7 2-5% 18-16d 3555 28275 2525 20805 ABU889 RGH 8x8 12 14 8 7 7 7 2-5% 18-16d 3555 28275 2525 20805		ABE66	6x6	12	14	5½	57/16	31/8	5/8	8-16d				
ABU884 8x8 12 14 7½ 7 7 2-% 18-16d 15.97 110.68 11.34 82.05 11.34														
ABA66R RGH 6x6 14 14 6 5% 8 8-16d 1020 17635 725 13055 4.54 78.45 3.23 58.07 ABE66RZ RGH 6x6 12 14 6% 5% 8 8-16d 1674 19655 1190 14135 7.45 87.43 5.29 62.88 ABU884 8x8 12 14 7½ 7 7 2-% 18-16d 3555 28275 2525 20805 15.81 125.78 11.23 92.55		ABU66	6x6	12	10	5½	5	61/16	5/8	12-16d				
ABA66R RGH 6x6 14 14 6 5% 2% % 8-16d 4.54 78.45 3.23 58.07 ABE66RZ RGH 6x6 12 14 6% 5% 2% % 8-16d 1674 19655 1190 14135 ABU884 8x8 12 14 7½ 7 7 2-% 18-16d 3555 28275 2525 20805 ABU88B RGH 8x8 12 14 8 7 7 7 2-% 18-16d 3555 28275 2525 20805														
ABU884 8x8 12 14 7½ 7 7 2-% 18-16d 15.81 125.78 11.23 92.55 ABU88B RGH 8x8 12 14 8 7 7 7 2-% 18-16d 3555 28275 2525 20805		ABA66R	RGH 6x6	14	14	6	53/16	21//8	5/8	8-16d				
ABU884 8x8 12 14 7½ 7 7 2-% 18-16d 3555 28275 2525 20805 15.81 125.78 11.23 92.55 28275 2525 20805		A DECCED 7	DOLLO: O	40	4.4	01/	F7/	07/	E /	0.40.1				
ABU88 ⁴ 8x8 12 14 7½ 7 7 2-% 18-16d 15.81 125.78 11.23 92.55 ABU88B RGH 8x8 12 14 8 7 7 2.5% 18-16d 3555 28275 2525 20805		ABEOORZ	RGH 6X6	12	14	b 1/16	5 1/16	21/8	³ /8	8-160	7.45	87.43	5.29	62.88
ARIJSR PCH 8/8 12 14 8 7 7 2.5% 18-16d 3555 28275 2525 20805		A DI 10 04	0,70	10	1/	71/	7	7	2.5/	2-5/- 19-16d	3555	28275	2525	20805
		ADU00'	0.00	12	14	1 72	_ ′	1	Z-78	10-100				
15.81 125.78 11.23 92.55		ABI188B	RGH 8×8	12	14	8	7	7	2-5/8	2-5% 18-16d				
								•		.0 100	15.81	125.78	11.23	92.55

- 1. Uplift and lateral factored resistances have been increased 15% for short term loading, no further increase is allowed.
- 2. Factored Normal resistances may not be increased for short term loading.
- 3. Specifier to design concrete for shear capacity.
- 4. ABU88 and ABU88R may be installed with 8-SDS 1/4"x3" wood screws for same tabulated values.
- 5. Factored resistances shown assume No.1/No.2 for 4x4 and 4x6 and No.2 for 6x6 and 8x8.
- 6. Factored resistances shown assume a minimum concrete compressive strength of 15 MPa with a concrete surface area of four times the bearing area of the connector. See 10.8.1 CSA A23.3-04.
- 7. Factored resistances shown assume dry service condition ($K_{SF} = 1.00$). Multiply table values by 0.67 for wet service conditions.
- 8. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. Values in the tables reflect installation into the wide face. 9. **NAILS:** $16d = 0.162^{\circ}$ dia. \times $3\frac{1}{2}^{\circ}$ long, $10d = 0.148^{\circ}$ dia. \times 3° long.
- See page 24-25 for other nail sizes and information.

PB/PBS Regular and Standoff Post Bases

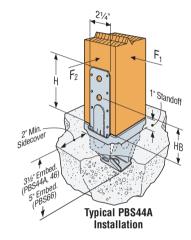
SIMPSON
Strong-Tie

The PBS features a 1" standoff height. It reduces the potential for decay at post and column ends.


MATERIAL: PB—12 gauge; PBS44A, PBS46—14 gauge strap, 12 gauge standoff; PBS66—12 gauge

FINISH: Galvanized. Some products available in ZMAX® or HDG coating; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.


- Install either nails or bolts (see page 21, note d).
- Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).
- Holes are provided for installation with either 16d commons or ½" bolts. A 2" minimum sidecover is required to obtain the full capacity.
- PBS: Embed into wet concrete up to the bottom of the 1" standoff base plate. A 2" minimum side cover is required to obtain the full capacity. Holes in the bottom of the straps allow for free concrete flow.

OPTIONS: PBS available in rough sizes, contact Simpson Strong-Tie.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

	Din	nensio	ons	Eor	tener	•		Fact	ored Resist	ance (K _D =	1.15)	
0.01 - 1		(in)		ras	tener	S		D.Fir-L			S-P-F	
Model No.					Во	Its	Uplift	F ₁	F ₂	Uplift	F ₁	F ₂
	W	L	Н	Nails	O+v	Dia.	lbs	lbs	lbs	lbs	lbs	lbs
					Qty.	(in)	kN	kN	kN	kN	kN	kN
PB44	3%16	31/4	5	12-16d	2	1/2	1935	1445	1655	1375	1025	1655
FD44	3716	374	5	12-10u	2	72	8.61	6.43	7.36	6.12	4.56	7.36
PB44R	4	31/4	5	12-16d	2	1/2	1935	1445	1655	1375	1025	1655
FD44N	4	3 /4	J	12-100		/2	8.61	6.43	7.36	6.12	4.56	7.36
PB46	5½	31/4	5	12-16d	2	1/2	1935	1445	1655	1375	1025	1655
F D 4 0	372	374	J	12-10u		72	8.61	6.43	7.36	6.12	4.56	7.36
PB66	5½	51/4	5	12-16d	2	1/2	1935	1445	1655	1375	1025	1655
F D 0 0	J 72	J 74	3	12-10u		/2	8.61	6.43	7.36	6.12	4.56	7.36
PB66R	6	51/4	5	12-16d	2	1/2	1935	1445	1655	1375	1025	1655
LDOOM	0	J 74	3	12-100	~	/2	8.61	6.43	7.36	6.12	4.56	7.36

- 1. Uplift and lateral resistances have been increased 15% for short term load duration. No further increase is allowed.
- 2. Download capacity is the lower of the concrete or post capacity per CSA A23.3-04 or CSA 086-09.
- Structural composite lumer columns have sides that show either the wide face or the edges of the lumber strands/veneers. For SCL columns, the fasteners should be installed through the wide face.
- Factored resistances shown assume dry service condition (K_{SF} = 1.00). Multiply table values by 0.67 for wet service conditions.
- 5. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

	Dii	mensio	ns	Enr	steners					Factored F	Resistance			
		(in)		газ	steller 2			D.F	ir-L			S-I	P-F	
Model					Во	lte	Uplift	F ₁	F ₂	Normal	Uplift	F ₁	F ₂	Normal
No.	w		н	Nails	DU	118	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	VV		п	Naiis	Qtv.	Dia.	lbs							
					uty.	(in)	kN							
PBS44A	3%16	3½	61/4	14-16d 2	1/2	2745	1650	1345	10920	1950	1170	955	9125	
FD344A	J 716	3 72	0 74	14-10u	6d 2	72	12.21	7.34	5.98	48.58	8.67	5.20	4.25	40.59
PBS46	3%16	5 ½16	6%6	14-16d 2	1/2	2745	1650	1345	15835	1950	1170	955	13155	
FD340	3 716	3 716	U 716	14-10u		72	12.21	7.34	5.98	70.44	8.67	5.20	4.25	58.52
PBS66	5½	5%	6½	14-164	1-16d 2	1/2	2745	1650	1345	15835	1950	1170	955	13155
F D 3 0 0	J 72	J78	U 72	14-10u		72	12.21	7.34	5.98	70.44	8.67	5.20	4.25	58.52

- 1. Uplift and lateral resistances have been increased 15% for short term load duration. No further increase is allowed.
- Structural composite lumer columns have sides that show either the wide face or the edges of the lumber strands/veneers.For SCL columns, the fasteners should be installed through the wide face.
- 3. Specifier shall design concrete for shear capacity.
- 4. Normal loads (gravity) may not be increased for short term load duration.
- 5. PBS66 factored upliff resistance is 4650 lbs (20.68 kN) D.Fir-L and 3720 lbs (16.55 kN) S-P-F when installed with two ½" diameter bolts.
- 6. Factored resistances shown assume dry service condition (KSF = 1.00). Multiply table values by 0.67 for wet service conditions.
- 7. **NAILS:** 16d = 0.162" dia. $\times 3\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

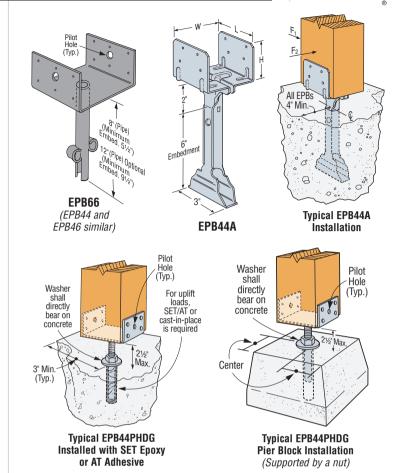
EPB Elevated Post Bases

SIMPSON
Strong-Tie

The EPB44A is a single-piece, non-welded elevated post base. The EPB44PHDG can be used both for pier block and cast-in-place installations for 4x4 posts.

MATERIAL: EPB44A—14 gauge; EPB44, EPB46, EPB66—12 gauge base plate, 11/16" OD x 8" pipe; EPB44PHDG—12 gauge base plate, 3/4"x6" threaded rod support (nut and washer are shipped assembled)

FINISH: EPB44A—Galvanized; EPB44, EPB46, EPB66— Simpson Strong-Tie® gray paint (may be ordered HDG); EPB44PHDG—Hot-dip galvanized, see Corrosion Information, page 18-19.


INSTALLATION: • Use all specified fasteners. See General Notes.

- Allows 1" to 2½" clearance above concrete, 2" for EPB44A. Insert EPB into concrete after screeding.
- Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).
- Provide a minimum side cover of 3" for EPB44PHDG and 4" for all others.

EPB44PHDG

- Secured with Epoxy—Drill a %" diameter hole 4" deep minimum and fill the hole halfway with SET epoxy or drill a $^1\%$ 16" diameter hole 4" deep minimum and fill the hole halfway with AT adhesive. Insert the EPB44PHDG and adjust to the desired height. The threaded rod shall be embedded a minimum of $3\frac{1}{2}$ ".
- Supported by a Nut—Drill a 1" diameter hole 3½" deep minimum. Insert the EPB44PHDG and adjust to the desired height.
- Embedded in Wet Concrete—Embed the %" diameter rod a minimum of 3%".
- · Fully engage at least three threads in the base.

OPTIONS: 12" long pipe available for EPB44, EPB46, EPB66; specify "-12" after model number.

These products are available with additional corrosion protection.

Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

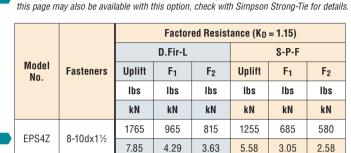
These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

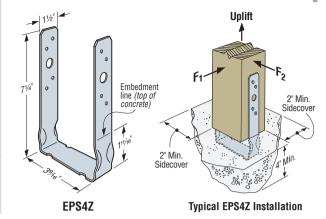
	Di	imensio	ns					Factored F	Resistance			
		(in)				D.F	ir-L			S-I	P-F	
Model				Nails	Uplift	F ₁	F ₂	Down	Uplift	F ₁	F ₂	Down
No.	w		н	Ivalis	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	VV	-	"		lbs							
					kN							
EPB44PHDG	3%16	31/4	21/4	8-16d	1045³			5660	1045³	_	_	5660
EFB44FNDG	3 716	374	Z 74	0-10u	4.65	_	_	25.18	4.65	_	_	25.18
EPB44A	3%16	3	2%	8-16d	1965	1340	1530	4370	1395	950	1085	3640
LFD44A	3 716	3	Z78	0-10u	8.74	5.96	6.81	19.44	6.21	4.23	4.83	16.19
EPB44	3%16	31/4	25/16	8-16d	1270	1945	1700	8465	900	1380	1205	6995
LFD44	3 716	374	Z716	0-10u	5.65	8.65	7.56	37.66	4.00	6.14	5.36	31.12
EPB46	51/2	35/16	3	12-16d	1270	1390	1635	8465	900	990	1160	6980
LFD40	J /2	3 716	J	12-100	5.65	6.18	7.27	37.66	4.00	4.40	5.16	31.05
EPB66	5½	5½	3	12-16d	1570	1390	1635	8465	1115	990	1160	6225
LFDUU	J 72	J 72	٥	12-100	6.98	6.18	7.27	37.66	4.96	4.40	5.16	27.69

- 1. Uplift and lateral resistances have been increased 15% for short term loading. No further increase is allowed.
- 2. EPB44 and EPB46 have extra nail holes; only eight must be filled to achieve the resistances shown.
- 3. Uplift resistances for EPB44PHDG require the threaded rod to be set in wet concrete or attached to cured concrete with SET epoxy or AT adhesive. Uplift values do not apply to connection with pier block.
- 4. Specifier shall design concrete for shear capacity.
- Factored resistances shown assume dry service condition (K_{SF} = 1.00). Multiply table values by 0.67 under wet service conditions.
- Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. Values in the tables reflect installation into the wide face.
- 7. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

EPS4Z Column Bases


The EPS4Z provides a light-duty connector for attachment of posts to concrete.


MATERIAL: 14 gauge FINISH: ZMAX® coating: see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

- Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).
- Embed into wet concrete up to the embedment line.
 A 2" minimum side cover is required to obtain the full load.
- Posts shall be preservative-treated wood to meet building code requirements.

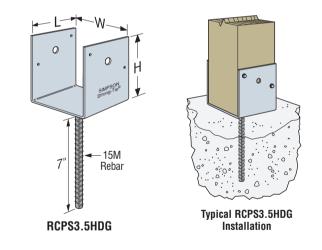
These products are available with additional corrosion protection. Additional products on

SIMPSON

Strong-Tie

- 1. Uplift and lateral resistances have been increased 15% for short term loading. No further increase is allowed.
- Download capacity is the lower of the concrete or post capacity per CSA A23.3-04 or CSA 086-09.
- Structural composite lumer columns have sides that show either the wide face or the edges of the lumber strands/veneers. For SCL columns, the fasteners should be installed through the wide face.
- Factored resistances shown assume dry service condition (K_{SF} = 1.00) Multiply table values by 0.67 under wet service conditions.
- 5. NAILS: 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

RCPS Rebar Carport Saddles

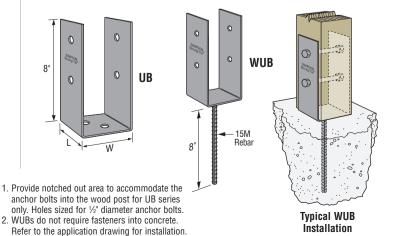

Rebar saddle bracket for connecting post to concrete.

MATERIAL: 13 gauge FINISH: Hot-dip galvanized, use HDG fasteners INSTALLATION: • Use all specified fasteners. See General Notes.

 Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).

Model	С	imensions (in	1)	Fasteners
No.	W	L	Н	rastellers
RCPS3.5HDG	35%	31/4	3½	4-16d
RCPS4HDG	41/8	4	3½	4-16d
RCPS46HDG	41/8	6	3½	4-16d
RCPS4.5HDG	45%	31/2	3½	4-16d
RCPS5.5HDG	5%	5½	3½	4-16d
RCPS6HDG	61//8	6	3½	4-16d
RCPS7.5HDG	75%	7½	3½	4-16d
RCPS8HDG	81//8	8	3½	4-16d

1. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.


UB/WUB Post Brackets

Saddle bracket for connecting post to concrete.

MATERIAL: 3 gauge **FINISH**: Hot-dip galvanized, use HDG fasteners **INSTALLATION**: • Use all specified fasteners. See General Notes.

 Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).

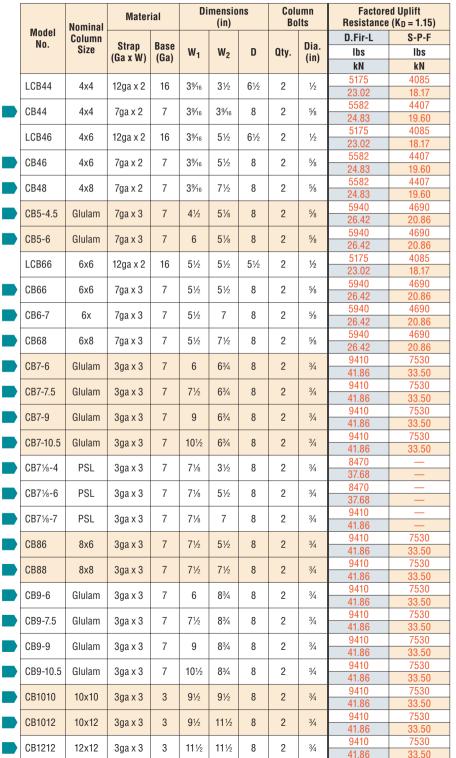
Model	Post	Dimens	ions (in)	Fasteners
No.	Size	W	L	Post
UB44HDG	4x4	35/8	3	2-1/2" MB
UB44RHDG	4x4R	41//8	3	2-1/2" MB
UB66HDG	6x6	5%	4	2-1/2" MB
UB66RHDG	6x6R	61//8	4	2-1/2" MB
WUB44HDG	4x4	35/8	3	2-1/2" MB
WUB44RHDG	4x4R	41/8	3	2-1/2" MB
WUB66HDG	6x6	5%	4	2-1/2" MB
WUB66RHDG	6x6R	61//8	4	2-1/2" MB

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

LCB/CB Column Bases

CB—For columns that require high structural values and rugged performance.

MATERIAL: See table


FINISH: LCB, CB44, CB46, CB48, CB66, CB68, CB86—galvanized; all other CB (including all CBGT)—Simpson Strong-Tie® gray paint or HDG. Some models available in stainless steel.

INSTALLATION: • Use all specified fasteners. See General Notes.

- For full loads, minimum side cover required is 3" for CB, 2" for LCB.
- Install all models with bottom of base plate flush with concrete.
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).
- Contact engineered wood manufacturers for connections that are not through the wide face.

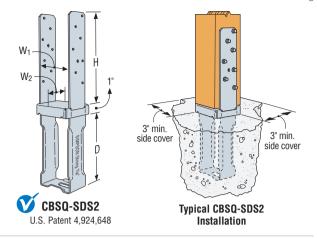
OPTIONS: • The LCB may be shipped unassembled; specify "Disassembled".

- LCB and CB are available in rough size. Other sizes available for CB specify W₁ and W₂ dimensions. Consult Simpson Strong-Tie for bolt sizes and factored resistances. See PBS.
- For rebar option add "GT" to the model name, i.e., CBGT44.
 (Base plate comes 3 ga for all CBGTs)

- Factored uplift resistances have been increased 15% for earthquake or wind loading, with no further increase allowed; reduce where other loads govern.
- 2. PSL is parallel strand lumber.
- Factored resistances shown assume dry service condition (K_{SF} = 1.00). Multiply table values by 0.67 for uplift under wet service conditions.
- 4. Factored uplift resistance for CBGT option is 4350 lbs (19.35 kN).
- 5. LCB products must be installed with bolts to achieve table values.
- 6. Designer is responsible for concrete design.
- 7. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. Values in the tables reflect installation into the wide face.
- 8. NAILS: 16d = 0.162" dia. x 3½" long. See page 24-25 for other nail sizes and information.

CBSQ Column Bases

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.


The CBSQ uses Simpson Strong-Tie® SDS screws, which allows for fast installation, reduced reveal, high capacity and provides a greater net section area of the column compared to bolts.

MATERIAL: See table

FINISH: Galvanized, available in HDG

INSTALLATION: • Use all specified fasteners. See General Notes.

- Install Simpson Strong-Tie SDS 1/4"x2" wood screws, which are provided with the column base. (Lag screws will not achieve the same load.)
- Minimum 3" side cover on concrete is required.
- Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

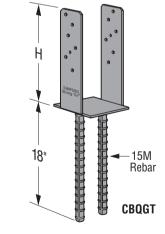
		N.	/laterial		Dime	sions				Factored F	Resistance	
	Naminal	IV	iaiciiai		(i	n)		Number of	D.F	ir-L	S-I	P-F
Model No.	Nominal Column Size	Base	Strap	W ₁	W ₂	D	н	Simpson Strong-Tie SDS 1/4"x2"	Uplift (K _D = 1.15)	Normal (K _D = 1.00)	Uplift (K _D = 1.15)	Normal (K _D = 1.00)
		(Ga)	(Ga x W)	VVI	W 2	٠,	l ''	Screws	lbs	lbs	lbs	lbs
									kN	kN	kN	kN
CBSQ44-SDS2	4x4	12	10 Ga x 21/4	3%16	3½	71/16	8%	14	7310	16195	5265	11660
003044-3032	484	12	10 Ga X 274	J 716	372	2 7 716 078		14	32.56	72.14	23.45	51.94
CBSQ46-SDS2	4x6	12	10 Ga x 3	3%16	55/16	73/4 811/16		14	7310	21280	5265	15320
003040-3032	480	12	10 da x 3	3 716	J716	174	0.716	14	32.56	94.79	23.45	68.24
CBSQ66-SDS2	6x6	12	10 Ga x 3	51/2	51/2	67/8	83/4	14	7310	21280	5265	15320
003000-3032	0.00	12	10 da x 3	J /2	J /2	0 /8	074	14	32.56	94.79	23.45	68.24
CBSQ86-SDS2	6x8	12	7 Ga x 3	7½	53/8	61/8	811/16	10	6220	25140	4475	18100
000000-0002	0.00	12	7 Ud X U	1 /2	J /8	0 /8	/8 8 ''/16	16 12	27.71	111.98	19.93	80.62
CBSQ88-SDS2	8x8	12	7 Ga x 3	7½	73/8	61/8	811/16	12	6730	26545	4845	19115
000000-0002	0.00	12	1 Ud X U	1 /2	1 78	U /8	0 /16	12	29.98	118.24	21.58	85.14

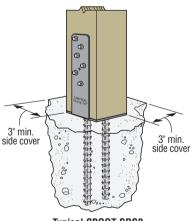
1. For higher factored normal resistances, solidly pack grout under 1" standoff plate before installing CBSQ into concrete. Base factored normal resistances on column or concrete. according to the code.

SIMPSON

Strong-Tie

- 2. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers Values in the tables reflect installation into the wide face.
- 3. Designer is responsible for concrete and column design.
- Factored resistances shown assume dry service condition (K_{SF} = 1.00). Multiply table values by 0.67 under wet service conditions.


CBQGT Column Bases


The CBQGT uses Simpson Strong-Tie® SDS screws, which allows for fast installation, reduced reveal, high capacity and provides a greater net section area of the column compared to bolts.

MATERIAL: See table

FINISH: Simpson Strong-Tie® gray paint, available in HDG INSTALLATION: • Use all specified fasteners. See General Notes.

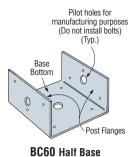
- Install Simpson Strong-Tie SDS 1/4"x2" wood screws, which are provided with the column base. (Lag screws will not achieve the same load.)
- Minimum 3" side cover on concrete is required.
- · Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Typical CBQGT-SDS2 Installation

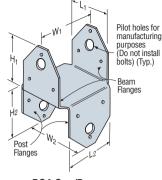
80 - 4 - 1	Nominal	Material		Di	imensio (in)	ns	Number of Simpson		d Uplift (K _D = 1.15)
Model No.	Post Size	Base	Strap	W ₁	W ₂	н	Strong-Tie SDS 1/4"x2"	D.Fir-L lbs	S-P-F lbs
	0.20	(Ga)	(Ga x W)	VV]	W2	"	Screws	kN	kN
CBQGT44-SDS2	4x4	7	7 Ga x 2	3%16	3%16	811/16	12	4350	4350
UDQU144-3D32	484	1	1 Ga X Z	3716	3716	0.716	12	19.35	19.35
CBQGT46-SDS2	4x6	7	7 Ga x 2	3%16	5½	811/16	12	4350	4350
UDQU140-3D32	480	,	1 Ga X Z	3716	372	0.716	12	19.35	19.35
CBQGT66-SDS2	eve	7 7000		51/2 51/2	51/2 811/16		12	4350	4350
UBQQ100-3D32	QGT66-SDS2 6x6		7 7 Ga x 3		372	0.716	12	19.35	19.35

- 1. Factored uplift resistances have been increased 15% for earthquake or wind loading, with no further increase allowed; educe where other loads govern
- 2. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/ veneers. Values in the tables reflect installation into the wide face.
- 3. Designer is responsible for concrete design.
- Factored resistances shown assume dry service condition (KSF = 1.00). Multiply table values by 0.67 under wet service conditions.

BC/HBC/BCS Post Caps and Bases

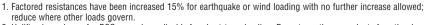

The BCS allows for the connection of 2-2x's to a 4x post or 3-2x's to a 6x post. Double shear nailing between beam and post gives added strength! The BC/HBC series offers dual purpose post cap/base for light cap or base connections.

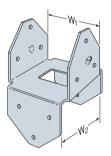
MATERIAL: HBC—12 gauge; all others—18 gauge


FINISH: HBC—HDG; all others—galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.

INSTALLATION:

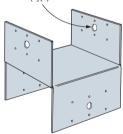
- Use all specified fasteners. See General Notes.
- Do not install bolts into pilot holes.
- BCS—install dome nails on beam; drive nails at an angle through the beam into the post below to achieve the table loads
- BC—install with 16d commons or 16dx2½" nails.
- Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).



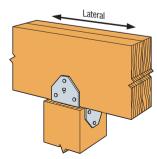

BC4 Cap/Base (BC46, BC6 similar)

- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

		Dimensions (in)							astener		Fact	ored Resist	ance (K _D =	1.15)
	Model			(iı	n)				astellel		D.F	ir-L	S-I	P-F
	No.									Base	Uplift	Lateral	Uplift	Lateral
		W ₁	W ₂	L ₁	L_2	H ₁	H ₂	Beam	Post	Bottom	lbs	lbs	lbs	lbs
										Dottoiii	kN	kN	kN	kN
									CAPS					
	BC4	3%16	3%16	21/8	21/8	3	3	6-16d	6-16d		875	1495	620	1060
	D04	3716	3716	2/8	Z /8	3	J	0-10u	0-10u		3.90	6.66	2.76	4.72
	BC46	3%16	5½	47/8	21/8	3½	2½	12-16d	6-16d	_	1415	1495	1005	1060
	5010	0710	072	170		072	-/-	12 100	0 100		6.30	6.66	4.48	4.72
	BC4R	4	4	4	4	3	3	12-16d	12-16d	_	875	1495	620	1060
		•	•	·		_	_				3.90	6.66	2.76	4.72
	BC6	5½	5½	43/8	43/8	3%	33/8	12-16d	12-16d	_	1450	3145	1030	2765
_											6.46	14.01	4.59	12.32
	BC6R	6	6	6	6	3	3	12-16d	12-16d	_	1560	3145	1110	2765
											6.94	14.01	4.94	12.32
	BC8	7½	71/2	71/2	71/2	4	4	12-16d	12-16d	_	2545 11.34	3145	1810	2765 12.32
											11.34	14.01 1560	8.06 845	1370
	BCS2-2/4	31/8	3%16	21/8	21/8	215/16	215/16	8-10d	6-10d	_	5.30	6.95	3.76	6.09
}											1370	2445	970	1735
	BCS2-3/6	45/8	5%16	4 3/8	21/8	35/16	215/16	12-16d	6-16d	_	6.10	10.89	4.32	7.73
									BASES		0110	10100	1102	1110
									57.020		510	1050	360	960
	BC40	3%16	_	31/4	_	21/4	_	6-16d	_	4-16d	2.27	4.68	1.60	4.28
											510	1050	360	960
	HBC40	3%16	_	31/4	_	21/4	_	6-16d	_	4-16d	2.27	4.68	1.60	4.28
	DO 40D	4		4		_		C 1C1		1 104	510	1050	360	960
	BC40R	4	_	4	_	3	_	6-16d	_	4-16d	2.27	4.68	1.60	4.28
	BC460	5½		3%		3		6-16d	_	4-16d	510	1050	360	960
	DC400	J 72		378		3		0-10u		4-10u	2.27	4.68	1.60	4.28
	BC60	5½	_	5½	_	3	_	6-16d	_	4-16d	510	1050	360	960
	D000	072		072		J		0 100		4 10u	2.27	4.68	1.60	4.28
	HBC60	5½	_	5½	_	3	_	6-16d	_	4-16d	510	1050	360	960
	110000	072		072				0 100		1 100	2.27	4.68	1.60	4.28
	BC60R	6	_	6	_	3	_	6-16d	_	4-16d	510	1050	360	960
				-							2.27	4.68	1.60	4.28
	BC80	7½	_	7½	_	4	_	6-16d	_	4-16d	510	1050	360	960
											2.27	4.68	1.60	4.28
	BC80R	8	—	8	_	4	_	6-16d	_	4-16d	510 2.27	1050	360	960
Į											2.21	4.68	1.60	4.28



- 2. Uplift values shown for BCO are only applicable for short-term loading. Do not use these products for other load durations.
- 3. Uplift resistances do not apply where Bases are nailed into the end grain of post as per 10.9.3.4 CSA 086-09.
- 4. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. Values in the tables reflect installation into the wide face (see technical bulletin T-SCLCOLUMNCAN for details).
- 5. Factored resistances shown assume dry service condition (K_{SF} = 1.00). Multiply table values by 0.67 under wet service conditions.
- 6. NAILS: 16d = 0.162" dia. x 31/2" long, 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.



BCS2-2/4 U.S. Patent 5,603,580

BC8 Cap/Base (BC4R, BC6R similar)

Typical BCS Installation

Installation

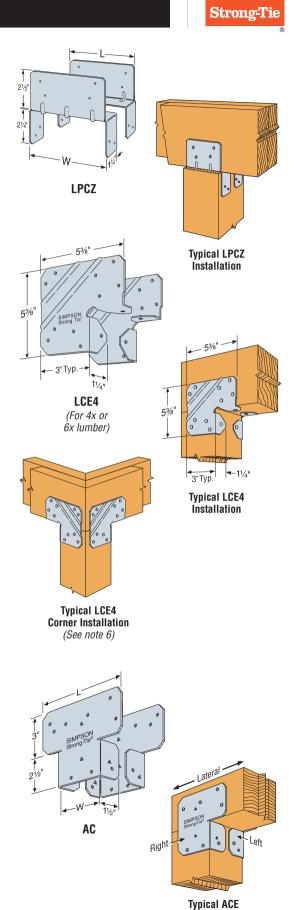
AC/ACE/LPCZ/LCE Post Caps

The LCE4's universal design provides high capacity while eliminating the need for

rights and lefts. For use with 4x or 6x lumber.

The AC MAX design allows for higher load capacity to match comparable post bases.

LPCZ—Adjustable design allows greater connection versatility.


MATERIAL: LCE4—20 gauge; AC, ACE, LPC4Z—18 gauge; LPC6Z—16 gauge FINISH: Galvanized. Some products available in ZMAX® coating and stainless steel; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

- · Install all models in pairs.
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

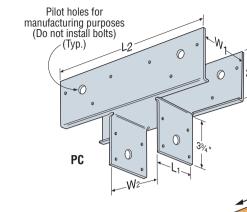
	Dimer	sions	Faste	nore	Facto	red Resist	ance (K _D :	= 1.15)
	(i	n)	rasit	SIICI S	D.F	ir-L	S-I	P-F
Model No.					Uplift	Lateral	Uplift	Lateral
110.	W	L	Beam	Post	lbs	lbs	lbs	lbs
					kN	kN	kN	kN
LPC4Z	3%16	3½	8-10d	8-10d	1225	460	870	325
LFU4Z	3716	372	0-10u	0-10u	5.46	2.05	3.88	1.45
LCE4		5%	14-16d	10-16d	2560	2300	2315	1910
LUL4		J78	14-10u	10-100	11.40	10.24	10.31	8.51
AC4 (Min)	3%16	6½	8-16d	8-16d	2095	2290	1920	1625
AU4 (WIIII)	J / 16	072	0-10u	0-10u	9.33	10.20	8.55	7.24
AC4 (Max)	3%16	6½	14-16d	14-16d	3670	2850	3360	2025
AOT (WAX)	0716	072	14 100	14 100	16.35	12.69	14.97	9.02
ACE4 (Min)	_	41/2	6-16d	6-16d	1570	695	1220	495
AOL4 (WIIII)		7/2	0 100	0 100	6.99	3.10	5.43	2.20
ACE4 (Max)	_	41/2	10-16d	10-16d	2225	900	1580	640
NOL+ (Wax)		772	10 100	10 100	9.91	4.01	7.04	2.85
AC4R (Min)	4	7	8-16d	8-16d	2095	2290	1920	1625
710 111 (141111)	•			0 100	9.33	10.20	8.55	7.24
AC4R (Max)	4	7	14-16d	14-16d	3670	2850	3360	2025
no m (max)	•	,	11 100	11100	16.35	12.69	14.97	9.02
LPC6Z	5%16	5½	8-10d	8-10d	1040	695	735	495
	07.0	0,,,			4.63	3.10	3.27	2.20
AC6 (Min)	5½	81/2	8-16d	8-16d	2095	1925	1855	1365
7100 (11111)	072	072	0 100	0 100	9.33	8.57	8.26	6.08
AC6 (Max)	5½	81/2	14-16d	14-16d	3670	3670	3030	2845
	0,2				16.35	16.35	13.50	12.67
ACE6 (Min)	_	6½	6-16d	6-16d	1570	1300	1440	1070
7.020 ()		0,,,		0 .00	6.99	5.79	6.41	4.77
ACE6 (Max)	_	6½	10-16d	10-16d	2620	2075	2400	1800
(·······/)					11.67	9.24	10.69	8.02
AC6R (Min)	6	9	8-16d	8-16d	2095	1925	1920	1365
()	_				9.33	8.57	8.55	6.08
AC6R (Max)	6	9	14-16d	14-16d	3670	3670	3360	2845
					16.35	16.35	14.97	12.67

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed; reduce where other loads govern.
- 2. Resistances apply only when used in pairs.
- 3. LPCZ lateral resistance is in the direction parallel to the beam.
- 4. MIN nailing quantity and resistances fill all round holes;
 MAX nailing quantities and resistances fill round and triangle holes.
- 5. Uplift values do not apply to splice conditions.
- LCE4 uplift capacity for mitered corner conditions is 1615 lbs (7.18 kN) D.Fir-L and 1145 lbs (5.09 kN) S-P-F.
- 7. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. Values in the tables reflect installation into the wide face. See technical bulletin T-SCLCOLUMNCAN for values on the narrow face (edge).
- 8. NAILS: $16d = 0.162^{\circ}$ dia. x $3\frac{1}{2}^{\circ}$ long, $10d = 0.148^{\circ}$ dia. x 3° long. See page 24-25 for other nail sizes and information.

SIMPSON

PC/EPC Post Caps

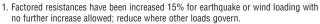
PC and EPC caps provide a custom connection for post-beam combinations at medium design loads.

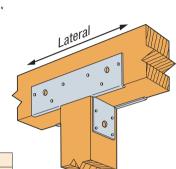

MATERIAL: PC—12 gauge; PC-16—16 gauge FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners; see General Notes.

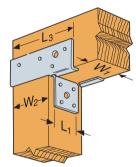
• Do not install bolts into pilot holes.

OPTIONS: • For end conditions, specify EPC post caps, provided dimensions are in accordance with table; see illustration.


- Some PC and EPC models are available in rough sizes.
- · For heavy duty applications, see CC and CCQ series.


These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

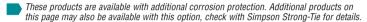

			Din	nensi	ons		Fasteners			Factore	d Resist	ance (Kı) = 1.15)		
				(in)				astellel	3		D.Fir-L			S-P-F	
Model	Min. Post									Uplift	Late	eral	Uplift	Lat	eral
No.	Size	W₁	W ₂	L ₁	L,		Post	Beam	Beam	Орин	PC	EPC	Opini	PC	EPC
		W1	w 2	4	<u> </u>	L ₃	1 031	PC	EPC	lbs	lbs	lbs	lbs	lbs	lbs
										kN	kN	kN	kN	kN	kN
PC44-16	4x4	3%16	3%16	25/8	11	75/16	8-16d	12-16d	8-16d	1460	925	860	1040	655	610
1 044 10	7/7	0716	0716	270	'''	1 / 10	0 100	12 100	0 100	6.50	4.12	3.83	4.63	2.92	2.72
PC44	4x4	3%16	3%16	25/8	11	75/16	8-16d	12-16d	8-16d	1995	1095	1215	1415	775	865
1 0 1 1	17.1	0710	0710	270		7 7 10	0 100	12 100	0 100	8.89	4.88	5.41	6.30	3.45	3.85
PC46-16	4x6	3%16	5½	25/8	13	91/4	8-16d	12-16d	8-16d	1460	925	860	1040	655	610
101010	1/(0	0710	072	270	10	074	0 100	12 100	0 100	6.50	4.12	3.83	4.63	2.92	2.72
PC46	4x6	3%16	5½	25/8	13	91/4	8-16d	12-16d	8-16d	1995	1095	1215	1415	775	865
1010	17.0	0710	072	270	10	074	0 100	12 100	0 100	8.89	4.88	5.41	6.30	3.45	3.85
PC48-16	4x8	3%16	7½	25/8	15	111/4	8-16d	16-16d	12-16d	1460	1225	1225	1040	870	870
		07.10	. / .				0 .00			6.50	5.46	5.46	4.63	3.88	3.88
PC48	4x8	3%16	7½	25/8	15	111/4	8-16d	16-16d	12-16d	1995	1900	1755	1415	1350	1245
		07.10	. / -				0 .00			8.89	8.46	7.82	6.30	6.01	5.55
PC64-16	4x6	5½	3%16	4%16	11	73/8	8-16d	12-16d	8-16d	1460	925	860	1040	655	610
										6.50	4.12	3.83	4.63	2.92	2.72
PC64	4x6	5½	3%16	4%16	11	73/8	8-16d	12-16d	8-16d	1995	1095	1215	1415	775	865
										8.89	4.88	5.41	6.30	3.45	3.85
PC66-16	6x6	5½	5½	4%16	13	91/4	8-16d	12-16d	12-16d	1460	1225	1225	1040	870	870
										6.50	5.46	5.46	4.63	3.88	3.88
PC66	6x6	5½	5½	4%16	13	91/4	8-16d	12-16d	12-16d	1995	1900	1755	1415	1350	1245
										8.89	8.46	7.82	6.30	6.01	5.55
PC68	6x8	5½	7½	4%16	15	111/4	8-16d	12-16d	12-16d	1995	1900	1755	1415	1350	1245
										8.89	8.46	7.82	6.30	6.01	5.55
PC84	4x8	7½	3%16	6%16	11	73/8	8-16d	12-16d	12-16d	1995	1900	1755	1415	1350	1245
										8.89	8.46	7.82	6.30	6.01	5.55
PC86	6x8	71/2	5½	6%16	13	91/4	8-16d	12-16d	12-16d	1995 8.89	1900 8.46	1755 7.82	1415 6.30	1350 6.01	1245 5.55
										1995	1900	1755	1415	1350	1245
PC88	8x8	71/2	7½	6%16	15	111/4	8-16d	16-16d	12-16d	8.89	8.46	7.82	6.30	6.01	5.55
										0.09	0.40	1.02	0.30	0.01	5.55

- 2. Factored lateral resistances are in the direction parallel to the beam.
- 3. Factored resistances are for nails only.
- Factored uplift resistances do not apply to splice conditions.
 Spliced conditions must be detailed by the Designer to transfer tension resistances. between spliced members by means other than the post cap.
- 6. Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. Values in the tables reflect installation into the wide face. See technical bulletin T-SCLCOLUMNCAN for values on the narrow face (edge)
- 7. NAILS: 16d = 0.162" dia. x 3½" long. See page 24-25 for other nail sizes and information.

Typical PC Post Cap **Installation**

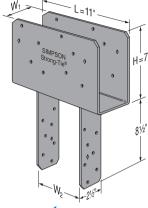
Typical EPC End Post Cap Installation

CCQ Column Caps WEINEERED

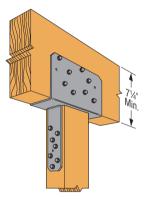

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

This design uses SDS screws to provide faster installation. The SDS screws provide for a lower profile compared to standard through bolts. MATERIAL: CCQ3, CCQ4, CCQ4.62, CCQ6—7 gauge; all others—3 gauge. FINISH: Simpson Strong-Tie® gray paint, available in HDG; CCOQ—uncoated INSTALLATION: Fasteners provided. See General Notes.

• Install Simpson Strong-Tie® SDS 1/4"x21/2" wood screws, which are provided with the column cap. (Lag screws will not achieve the same load.)


OPTIONS: Straps may be rotated 90° where $W_1 \ge W_2$.

- CCOQ—may be ordered for field welding to pipe or other columns (no loads apply).
- Custom sizes are available. Contact Simpson Strong-Tie for more information.
- See page 71 for CCCQ and CCTQ options.



	Dime	nsions		. of			ored Resist		
Model	1	n)		"x2½"		D = 1.15)		$rmal(K_D = 1.$	
No.	,	,	Scr	ews	D.Fir-L	S-P-F	D.Fir-L	S-P-F	SCL
	W ₁	W ₂	Beam	Post	lbs	lbs	lbs	lbs	lbs
	***	2	200		kN	kN	kN	kN	kN
CCQ3-4SDS2.5	31/4	35/8	16	14	9500 42.26	7705 34.27	23075 102.65	18955 84.32	_
					9500	8855	27915	22545	
CCQ3-6SDS2.5	31/4	5½	16	14	42.26	39.39	124.18	100.29	_
CCQ44SDS2.5	35%	35/8	16	14	9500	7705	25845	21230	39100
	-				42.26 9500	34.27 8855	114.97 31260	94.44 23660	173.93 42040
CCQ46SDS2.5	35/8	5½	16	14	42.26	39.39	139.06	105.25	187.01
CCQ48SDS2.5	35/8	7½	16	14	9500	8855	31260	23660	42040
000400002.0	378	1 /2	10	14	42.26	39.39	139.06	105.25	187.01
CCQ4.62-3.62SDS2.5	45/8	35/8	16	14	9500 42.26	7705 34.27	33230 147.82	27295 121.42	_
0004004000000	45/	AE/	40	4.4	9500	7705	40195	30420	_
CCQ4.62-4.62SDS2.5	45/8	45/8	16	14	42.26	34.27	178.80	135.32	_
CCQ4.62-5.5SDS2.5	45/8	5½	16	14	9500	8855	40195	30420	_
					42.26 10700	39.39 7705	178.80 37845	135.32 31090	_
CCQ5-4SDS2.5	51/4	35/8	16	14	47.60	34.27	168.35	138.30	_
CCQ5-6SDS2.5	51/4	5½	16	14	13285	9500	45775	36975	_
	074	072	10	17	59.10	42.26	203.63	164.48	_
CCQ5-8SDS2.5	51/4	71/2	16	14	13285 59.10	9500 42.26	45775 203.63	37885 168.53	_
000040000	F1/	05/	10	-1.4	9500	7705	40615	33360	58660
CCQ64SDS2.5	5½	3%	16	14	42.26	34.27	180.67	148.40	260.94
CCQ66SDS2.5	5½	5½	16	14	9500 42.26	8855	49125	37175	63065
					9500	39.39 8855	218.53 49125	165.37 37175	280.54 63065
CCQ6-7.1SDS2.5	5½	71/8	16	14	42.26	39.39	218.53	165.37	280.54
CCQ68SDS2.5	5½	7½	16	14	9500	8855	49125	37175	63065
	1072	. / -			42.26 10700	39.39 7705	218.53 49845	165.37 40940	280.54
CCQ74SDS2.5	67/8	35/8	16	14	47.60	34.27	221.73	182.12	
CCQ76SDS2.5	67/8	5½	16	14	13285	9500	60290	48695	_
000703032.3	078	J 72	10	14	59.10	42.26	268.19	216.61	_
CCQ77SDS2.5	67/8	6%	16	14	13285 59.10	9500 42.26	60290 268.19	49895 221.95	
000700000	07/	71/	40	44	13285	9500	60290	49895	
CCQ78SDS2.5	6%	7½	16	14	59.10	42.26	268.19	221.95	_
CCQ7.1-4SDS2.5	71/8	35/8	16	14	10700	7705		_	78205
					47.60 13285	34.27 9500		_	347.89 84085
CCQ7.1-6SDS2.5	71/8	5½	16	14	59.10	42.26	_	_	374.04
CCQ7.1-7.1SDS2.5	71/8	71/8	16	14	13285	9500	_	_	84085
	170	170	10		59.10	42.26		_	374.04
CCQ7.1-8SDS2.5	71/8	7½	16	14	13285 59.10	9500 42.26	_	_	84085 374.04
CCQ86-SDS2.5	71/2	5½	16	14	13285	9500	66990	50695	—
00000-3032.3	1 /2	J /2	10	14	59.10	42.26	298.00	225.51	_
CCQ88-SDS2.5	71/2	7½	16	14	13285 59.10	9500 42.26	66990 298.00	50695 225.51	_
00000 0000 5	03/	F1/	10	1.1	13285	9500	75920	61320	
CCQ96-SDS2.5	83/4	5½	16	14	59.10	42.26	337.72	272.78	_
CCQ98-SDS2.5	83/4	7½	16	14	13285	9500	75920	62830	_
000100 0000					59.10 13285	42.26 9500	337.72 84855	279.49 64215	_
CCQ106-SDS2.5	9½	5½	16	14	59.10	42.26	377.47	285.65	_

Typical CCQ46SDS2.5 Installation

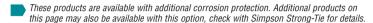
NOTE: Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. Values in the tables reflect installation into the wide face.

- 1 Factored down resistances are determined using φF_{CP} equal to: 812 psi (5.6 MPa) for D.Fir-L and 672 psi (4.64 MPa) for Spruce-Pine glulam sizes; 1092 psi (7.53 MPa) for SCL sizes; reduce where end grain bearing or buckling capacity of post governs.
- 2. Spliced conditions must be detailed by the Designer to transfer tension loads between spliced members by means other than the column cap.
- 3. Factored uplift resistances do not apply to splice conditions.
- 4. Post sides are assumed to lie in the same vertical plane as the beam sides.
- 5. Loads may not be increased for short-term loading.
- 6. Uplift loads have been increased 15% for earthquake or wind loading; reduce for other loading conditions in accordance with the code.
- 7. Designer to design beam for factored uplift resistance based on effective shear depth as per 10.2.1.4 CSA 086-09.
- 8. SCL assumes SG = 0.50
- 9. Beam depth must be greater than 71/4".
- 10. For uplift values when using SCL, use either D.Fir-L or S-P-F factored resistances based on SCL manufacturers recommendations.

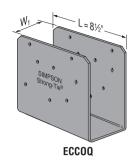
SIMPSON

GINEERED This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

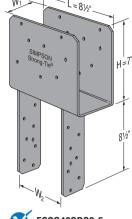
This design uses SDS screws to provide faster installation. The SDS screws provide for a lower profile compared to standard through bolts. MATERIAL: ECCQ3, ECCQ4, ECCQ4.62, ECCQ6—7 gauge; all others—3 gauge. FINISH: Simpson Strong-Tie® gray paint, available in HDG; ECCOQ—uncoated. INSTALLATION: Fasteners provided. See General Notes.

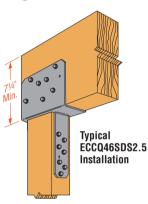

• Install Simpson Strong-Tie® SDS ½"x2½" wood screws, which are provided with the column cap. (Lag screws will not achieve the same load.)

OPTIONS: Straps may be rotated 90° where $W_1 \ge W_2$.


• ECCOQ—may be ordered for field welding to pipe or other columns (no loads apply).

No. of


- Custom sizes are available. Contact Simpson Strong-Tie for more information.
- See page 71 for ECCLQ options.


	Dimensions (in) W ₁ W ₂		. UI :"x2½"	Unlift (K	D = 1.15)	Mor	mal (K _D = 1.	UU)	
Model	(i	n)		ews	D.Fir-L	S-P-F	D.Fir-L	S-P-F	SCL
No.			-		lbs	lbs	lbs	lbs	lbs
	W ₁	W ₂	Beam	Post	kN	kN	kN	kN	kN
ECCQ3-4SDS2.5	31/4	35/8	14	14	6965	5015	8880	7350	_
EUUQ3-43D32.3	374	378	14	14	30.98	22.31	39.50	32.70	_
ECCQ3-6SDS2.5	31/4	5½	14	14	7615 33.87	5480 24.38	13955 62.08	11550 51.38	_
					6965	5015	9945	7530	13375
ECCQ44SDS2.5	35%	35%	14	14	30.98	22.31	44.24	33.50	59.50
ECCQ46SDS2.5	35%	5½	14	14	7615	5480	15630	11830	21020
	-				33.87 7615	24.38 5480	69.53 21315	52.62 16130	93.51 28665
ECCQ48SDS2.5	35/8	7½	14	14	33.87	24.38	94.82	71.75	127.51
ECCQ4.62-3.62SDS2.5	45/8	35/8	14	14	6965	5015	12790	9680	_
	7/0	078	14	17	30.98	22.31	56.90	43.06	_
ECCQ4.62-4.62SDS2.5	45/8	45/8	14	14	6965 30.98	5015 22.31	16445 73.15	12445 55.36	
	457	E4 (44	7615	5480	20095	15210	
ECCQ4.62-5.5SDS2.5	4%	5½	14	14	33.87	24.38	89.39	67.66	_
ECCQ5-4SDS2.5	51/4	35/8	14	14	6965	5015	14565	12055	_
					30.98	22.31	64.79 22890	53.63 18490	
ECCQ5-6SDS2.5	51/4	5½	14	14	7835 34.85	5640 25.09	101.82	82.25	
CCCOE OCDCO E	E1/	71/	1.1	1.1	7835	5640	31210	25830	_
ECCQ5-8SDS2.5	51/4	7½	14	14	34.85	25.09	138.83	114.90	_
ECCQ64SDS2.5	5½	35%	14	14	6965	5015	15630	11830	20065
					30.98 7615	22.31 5480	69.53 24565	52.62 18590	89.26 30100
ECCQ66SDS2.5	5½	5½	14	14	33.87	24.38	109.27	82.70	133.90
ECCQ6-7.1SDS2.5	5½	71/8	14	14	7615	5480	31260	23660	40130
L00Q0-7.10D02.0	J /2	1 /8	14	14	33.87	24.38	139.06	105.25	178.51
ECCQ68SDS2.5	5½	7½	14	14	7615 33.87	5480 24.38	33495 149.00	25350 112.77	43000 191.28
5000740000 5	07/	05/	4.4		6965	5015	19185	15875	
ECCQ74SDS2.5	6%	35%	14	14	30.98	22.31	85.34	70.62	_
ECCQ76SDS2.5	6%	5½	14	14	7835	5640	30145	24950	
					34.85 7835	25.09 5640	134.10 36995	110.99 30620	
ECCQ77SDS2.5	6%	6%	14	14	34.85	25.09	164.57	136.21	_
ECCQ78SDS2.5	6%	7½	14	14	7835	5640	41110	34020	_
L00Q703D32.3	078	1 /2	14	14	34.85	25.09	182.87	151.33	_
ECCQ7.1-4SDS2.5	71/8	35/8	14	14	6965 30.98	5015 22.31			26755 119.02
500074 00D00 5	747	F4 (4.4	44	7835	5640			40130
ECCQ7.1-6SDS2.5	71/8	5½	14	14	34.85	25.09	_	_	178.51
ECCQ7.1-7.1SDS2.5	71/8	71/8	14	14	7835	5640	_	_	53510
					34.85 7835	25.09 5640	_		238.03 57330
ECCQ7.1-8SDS2.5	71/8	7½	14	14	34.85	25.09			255.03
ECCQ86-SDS2.5	7½	5½	14	14	7835	5640	33495	25350	_
L00Q00-0D02.0	1 /2	J /2	14	14	34.85	25.09	149.00	112.77	_
ECCQ88-SDS2.5	7½	7½	14	14	7835 34.85	5640 25.09	45675 203.18	34565 153.76	_
F00000 0F00 F	027	F1/	4.	4.4	7835	5640	37960	31415	
ECCQ96-SDS2.5	8¾	5½	14	14	34.85	25.09	168.86	139.75	_
ECCQ98-SDS2.5	83/4	7½	14	14	7835	5640	51765	42840	
					34.85 7835	25.09 5640	230.27 42425	190.57 32110	
ECCQ106-SDS2.5	9½	5½	14	14	34.85	25.09	188.72	142.84	

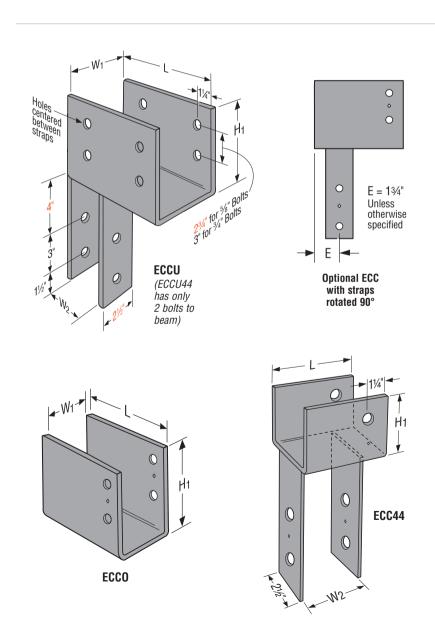
Factored Resistance

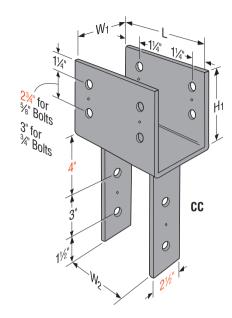
NOTE: Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers. Values in the tables reflect installation into the wide face.

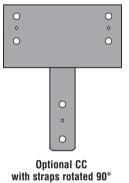
- 1. Factored down resistances are determined using ϕ Fcp equal to: 812 psi (5.6 MPa) for D.Fir-L and 672 psi (4.64 MPa) for Spruce-Pine glulam sizes; 1092 psi (7.53 MPa) for SCL sizes; reduce where end grain bearing or buckling capacity of post governs.
- 2. Spliced conditions must be detailed by the Designer to transfer tension loads between spliced members by means other than the column cap.
- 3. Factored uplift resistances do not apply to splice conditions.
- 4. Post sides are assumed to lie in the same vertical plane as the beam sides.
- 5. Loads may not be increased for
- short-term loading.
 6. Uplift loads have been increased 15% for earthquake or wind loading; reduce for other loading conditions in accordance with the code.
- 7. ECCQ downloads assume a post of W₁ x W₂.
- 8. Designer to design beam for factored uplift resistance based on effective shear depth as per 10.2.1.4 CSA 086-09.
- 9. SCL assumes SG = 0.50
- 10. Beam depth must be greater than 71/4".
- 11. For uplift values when using SCL, use either D.Fir-L or S-P-F factored resistances based on SCL manufacturers recommendations.

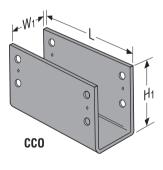
CC/ECC/ECCU Column Caps

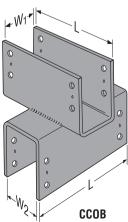
The industry standard column caps. Precision factory gang-punched holes speed installation on this product line.

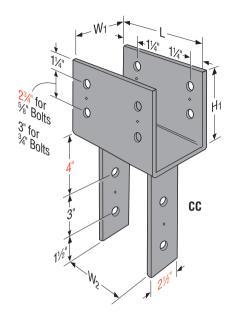

MATERIAL: CC31/4, CC44, CC4.62, CC6, ECC31/4, ECC4, ECC4.62, ECC6—7 gauge; all others—3 gauge

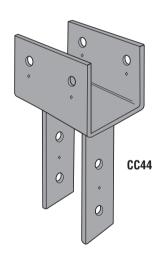

FINISH: Simpson Strong-Tie® gray paint; may be ordered HDG; CCO, ECCO—uncoated INSTALLATION: • Use all specified fasteners. See General Notes.


- Bolt holes shall be a minimum of $\frac{1}{32}$ " to a maximum of $\frac{1}{16}$ " larger than the bolt diameter (per 10.4.1.2 CSA 086-09).
- Contact engineered wood manufacturer for connections that are not through the wide face.


OPTIONS: • Straps may be rotated 90° where $W_1 \ge W_2$ (see illustration).


- For special, custom, or rough cut lumber sizes, provide dimensions. An optional W₂ dimension may be specified with any column size given (note that the W₂ dimension on straps rotated 90° is limited by the W₁ dimension).
- CCO/ECCO—Column cap only (no straps) may be ordered for field-welding to pipe or other columns. No resistances apply. CCO/ECCO dimensions are the same as CC/ECC.
- CCOB—Any two CCO's may be specified for back-to-back welding to create a cross beam connector. Use the tabulated resistances; the resistance is no greater than that of the lesser element employed.
- **ECCU**—Order when uplift resistance is required for end column cap applications.
- See page 71 for CCC, CCT and ECCL options.

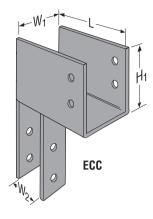


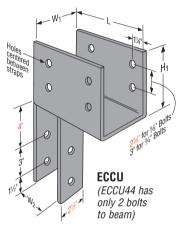

CC/ECC/ECCU Column Caps

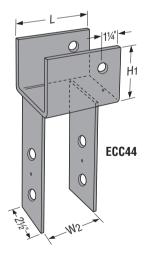
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

	Dimensions (in) W ₁ W ₂ L H ₁			Faste	eners			ctored Norn tance (K _D =			
Model					Be	am	Po	st	D.Fir-L	S-P-F	SCL
No.	W ₁	W ₂	L	H ₁	_	Dia.	_	Dia.	lbs	lbs	lbs
					Qty.	(in)	Qty.	(in)	kN	kN	kN
0001/ 4	01/	05/	44	01/	4	E /	0	<i>E</i> /	23080	18955	_
CC31/4-4	31/4	35/8	11	6½	4	5/8	2	5/8	102.67	84.32	_
CC3½-6	31/4	5½	11	6½	4	5/8	2	5/8	27915	23100	_
00074 0	074	072	''	072		70		76	124.18	102.76	
CC44	35/8	35/8	7	4	2	5/8	2	5/8	19895	15055	26755
									88.50 31260	66.97 23660	119.02 42040
CC46	35/8	5½	11	6½	4	5/8	2	5/8	139.06	105.25	187.01
0040	05/	71/	44	61/	1	5/	_	5/	31260	23660	42040
CC48	35/8	7½	11	6½	4	5/8	2	5/8	139.06	105.25	187.01
CC4.62-3.62	4 ⁵ / ₈	35/8	11	6½	4	5/8	2	5/8	33235	27295	
									147.84	121.42	_
CC4.62-4.62	45/8	45/8	11	61/2	4	5/8	2	5/8	40195 178.80	30420 135.32	_
									40195	30420	
CC4.62-5.5	45/8	5½	11	6½	4	5/8	2	5/8	178.80	135.32	_
CC51/4-4	51/4	35/8	13	8	4	3/4	2	3/4	37850	31085	_
00374-4	374	378	13	0	4	94		94	168.37	138.28	_
CC51/4-6	51/4	5½	13	8	4	3/4	2	3/4	51810	36980	_
									230.47	164.50	_
CC51/4-8	51/4	7½	13	8	4	3/4	2	3/4	54100 240.66	44770 199.15	
									40620	33360	58655
CC64	5½	35/8	11	6½	4	5/8	2	5/8	180.69	148.40	260.92
CC66	5½	5½	11	6½	4	5/8	2	5/8	49125	37175	63065
0000	J /2	372	- ' '	072	7	78		78	218.53	165.37	280.54
CC6-71/8	5½	71//8	11	6½	4	5/8	2	5/8	49125	37175	63065
									218.53 49125	165.37 37175	280.54 63065
CC68	5½	7½	11	6½	4	5/8	2	5/8	218.53	165.37	280.54
00=4		0-1		_		- 1			49850	40940	_
CC74	67/8	35/8	13	8	4	3/4	2	3/4	221.75	182.12	_
CC76	67/8	5½	13	8	4	3/4	2	3/4	68235	48710	
	070	072	10		'	/ 7	_	,,	303.54	216.68	_
CC77	67/8	67/8	13	8	4	3/4	2	3/4	71255 316.97	58970	
									71255	262.32 58970	
CC78	67/8	7½	13	8	4	3/4	2	3/4	316.97	262.32	_
CC71/8-4	71/8	35/8	13	8	4	3/4	2	3/4	_	_	78205
007 /8-4	1 /8	378	10	0	7	74		74	_	_	347.89
CC <mark>71</mark> /8-6	71//8	5½	13	8	4	3/4	2	3/4			99370
									_	_	442.04 99370
CC71/8-71/8	71/8	71//8	13	8	4	3/4	2	3/4	_	_	442.04
0000	71/	F1/	40	0	4	27	0	27	75820	54120	_
CC86	7½	5½	13	8	4	3/4	2	3/4	337.28	240.75	_
CC88	7½	7½	13	8	4	3/4	2	3/4	79170	59915	
									352.18	266.53	_
CC96	87/8	5½	13	8	4	3/4	2	3/4	85925 382.23	61335 272.84	_
									89725	74255	
CC98	81//8	7½	13	8	4	3/4	2	3/4	399.13	330.32	_
CC106	9½	5½	13	8	4	3/4	2	3/4	96035	68550	_
00100	3/2	J /2	13	0	4	74		/4	427.20	304.94	_

- 1. Post sides are assumed to lie in the same vertical plane as the beam sides.
- Factored resistances may not be increased for short-term load duration.
- Factored resistances are determined using φF_{Cp} equal to: 812 psi (5.6 MPa) for D.Fir-L and 672 psi (4.64 MPa) for Spruce-Pine glulam sizes; 1092 psi (7.53 MPa) for SCL sizes; reduce where end grain bearing or buckling capacity of post govern
- end grain bearing or buckling capacity of post governs.


 4. Spliced conditions must be detailed by the Designer to transfer tension loads between spliced members by means other than the column cap.
- 5. SCL assumes SG = 0.50.
- 6. Beam depth must be greater than H₁.
- 7. Contact Simpson Strong-Tie for uplift resistances.


CC/ECC/ECCU Column Caps


SIMPSON Strong-Tie

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

			Di	mensio (in)	ns			F	astene	rs		_	ctored Norn tance (K _D =	
	Model			ı	L			Beam		Po	st	D.Fir-L	S-P-F	SCL
	No.	W ₁	W ₂			H ₁	Q	ty.	Dia.	۵.	Dia.	lbs	lbs	lbs
				ECC	ECCU		ECC	ECCU	(in)	Qty.	(in)	kN	kN	kN
ECC	C3½-4	31/4	35%	7½	9½	61/2	2	4	5/8	2	5/8	8880	7350	_
200	7374-4	374	378	1 72	972	0 72		4	78		98	39.50	32.70	_
ECC	31/4-6	31/4	5½	7½	9½	6½	2	4	5/8	2	5/8	13955	11550	_
												62.08 9945	51.38 7530	13375
ECC	C44	35/8	3%	5½	61/2	4	1	2	5/8	2	5/8	44.24	33.50	59.50
F00	240	05/	F1/	01/	01/	01/		4	<i>E /</i>		5/	15630	11830	21020
ECC	40	35/8	5½	8½	9½	6½	2	4	5/8	2	5/8	69.53	52.62	93.51
ECC	C48	35/8	7½	8½	9½	6½	2	4	5/8	2	5/8	21315	16130	28665
												94.82	71.75	127.51
ECC	04.62-3.62	45/8	35/8	8½	91/2	6½	2	4	5/8	2	5/8	12780 56.85	9680 43.06	_
												16445	12445	
ECC	04.62-4.62	45/8	4%	8½	9½	6½	2	4	5/8	2	5/8	73.15	55.36	_
ECC	C4.62-5.5	45/8	5½	8½	91/2	6½	2	4	5/8	2	5/8	20095	15210	_
200	74.02 0.0	770	372	072	372	072	-	7	70		70	89.39	67.66	_
ECC	C51/4-4	51/4	35/8	9½	10½	8	2	4	3/4	2	3/4	14565	12055	_
												64.79 22890	53.63 18940	
ECC	C5¼-6	51/4	5½	9½	10½	8	2	4	3/4	2	3/4	101.82	84.25	
F00	251/ 0	F1/	71/	01/	401/				2.4		2.6	31210	25830	_
ECC	C5¼-8	51/4	7½	9½	10½	8	2	4	3/4	2	3/4	138.83	114.90	_
ECC	264	5½	35%	7½	9½	6½	2	4	5/8	2	5/8	15630	11830	20065
	, ,	0,2	070	172	0,2	072	_		,,,	_	,,,	69.53	52.62	89.26
ECC	266	5½	5½	7½	9½	6½	2	4	5/8	2	5/8	24565 109.27	18590 82.70	30100 133.90
												31260	23660	40130
ECC	C6-7 ¹ / ₈	5½	71/8	9½	9½	6½	2	4	5/8	2	5/8	139.06	105.25	178.51
ECC	260	5½	7½	9½	9½	6½	2	4	5/8	2	5/8	33495	25350	43000
	,00	J /2	1 /2	372	372	072		7	/8		/8	149.00	112.77	191.28
ECC	074	61/8	3%	10½	10½	8	2	4	3/4	2	3/4	19185	15875	_
												85.34 30145	70.62 24950	
ECC	276	61/8	5½	10½	10½	8	2	4	3/4	2	3/4	134.10	110.99	_
ECC	777	61/8	67%	10½	10½	8	2	4	3/4	2	3/4	36995	30620	_
200)	078	078	1072	1072	0		4	74		74	164.57	136.21	_
ECC	278	6%	7½	10½	10½	8	2	4	3/4	2	3/4	41110	34020	
												182.87	151.33 —	26755
ECC	C71/8-4	71/8	35/8	10½	10½	8	2	4	3/4	2	3/4			119.02
F00	271/ 0	71/	F1/	401/	101/	0	_	4	2/	_	2/	_	_	42040
E00	C71/4-6	71/8	5½	10½	10½	8	2	4	3/4	2	3/4	-	_	187.01
ECC	71/8-71/8	71/8	71/8	10½	10½	8	2	4	3/4	2	3/4	_	_	53510
												22405		238.03
ECC	286	7½	5½	10½	10½	8	2	4	3/4	2	3/4	33495 149.00	112.77	_
F00	200	71/	71/	101/	101/	0	_	4	2/	0	2/	45675	34565	_
ECC	δοσ	7½	7½	10½	10½	8	2	4	3/4	2	3/4	203.18	153.76	_
ECC	096	81/8	5½	10½	10½	8	2	4	3/4	2	3/4	37960	31415	_
	-											168.86	139.75	_
ECC	098	81/8	7½	10½	10½	8	2	4	3/4	2	3/4	51765 230.27	42840 190.57	_
	2400	64	E1:	457	101				0.4		0.4	42425	32110	_
ECC	C106	9½	5½	10½	10½	8	2	4	3/4	2	3/4	188.72	142.84	_

- 1. Post sides are assumed to lie in the same vertical plane as the beam sides.
- 2. Factored resistances may not be increased for short-term load duration.
- 3. Factored resistances are determined using \$\phi F_{Cp}\$ equal to: 812 psi (5.6 MPa) for D.Fir-L and 672 psi (4.64 MPa) for Spruce-Pine glulam sizes; 1092 psi (7.53 MPa) for SCL sizes; reduce where end bearing or buckling capacity of post governs.
- 4. ECC downloads assume a post of W₁ x W₂.
- 5. SCL assumes SG = 0.50.
- 6. Beam depth must be greater than H_1 .
- 7. Contact Simpson Strong-Tie for uplift resistances.

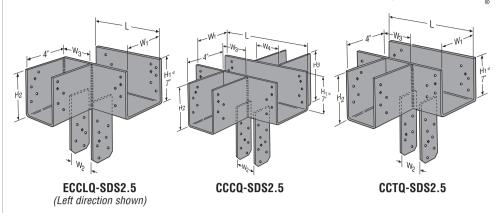
ECCLQ/CCCQ/CCTQ Column Caps

The ECCLQ, CCCQ and CCTQ column caps provide high capacity, multiple beam to column connector options. The design uses SDS screws to provide faster installation and a lower profile compared to standard through bolts. Screws are configured to provide high uplift design values.

MATERIAL: 7 gauge

FINISH: Simpson Strong-Tie® gray paint, also available in HDG

INSTALLATION:


- Install Simpson Strong-Tie® SDS ¼ "x2½" wood screws, which are provided, in all round holes. (Lag screws will not achieve the same load.)
- · No additional welding is allowed.

OPTIONS:

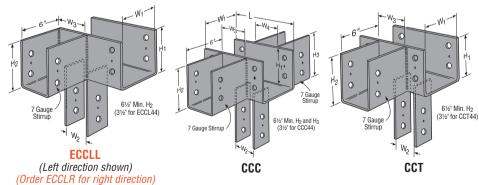
- Many combinations of beam and post sizes can be manufactured (refer to worksheet T-CCQLTC-WS).
- Available in widths up to 8" wide.
- ECCLQ is available in left or right side beam orientations. Specify ECCLLQ or ECCLRQ.

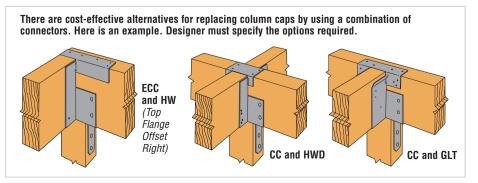
ORDERING:

- The L dimension varies depending on the width of the side stirrup (W₃ or W₄). Contact Simpson Strong-Tie for exact dimensions.
- Main beam stirrup height (H₁) is
 7". Side beam stirrups (H₂ or H₃) can vary in height with the minimum height of 7". Specify the side stirrup height from the top of the cap.
- Example Order: End condition with a 4x main beam, 4x side beam and 4x post oriented to the left is an ECCLLQ44.

		Facto	red Uplift Res	sistance (K _D =	1.15)		
00 - 4 - 1	Main	Beam	Side	Beam	Total		
Model No.	D.Fir-L	S-P-F	D.Fir-L	S-P-F	D.Fir-L	S-P-F	
140.	lbs	lbs	lbs	lbs	lbs	lbs	
	kN	kN	kN	kN	kN	kN	
ECCLQ-SDS2.5	5345	3845	3075	2215	6335	4560	
LUULQ-3D32.3	23.78	17.10	13.68	9.85	28.18	20.28	
CCCQ-SDS2.5	7200	5185	3920	2825	7200	5185	
000Q-3D32.3	32.03	23.06	17.44	12.57	32.03	23.06	
CCTQ-SDS2.5	8140	5900	3920	2825	8875	6390	
001Q-3D32.3	36.21	26.25	17.44	12.57	39.48	28.43	

- 1. Factored resistances are per seat. Side beams must be loaded symmetrically for the CCCQ.
- The combined uplift loads applied to all beams in the connector must not exceed the total factored resistance listed in the table.
- 3. The combined factored download for all of the carried beams shall not exceed the factored normal resistance for the unmodified product on pages 66-67 (CCQ value for CCCQ and CCTQ, or ECCQ value for ECCLQ). The maximum factored download for each side beam shall not exceed 35% of the maximum factored normal resistance for the unmodified product or 11100 lbs (49.38 kN).


ECCL/CCC/CCT Column Caps


Column to beam connections often have multiple beams framing on top of a column. L, T, and Cross column caps provide design solutions for this application. Many combinations of beam and post sizes can be manufactured (refer to worksheet T-CCLTC-WS for details) with the following criteria applied:

- The factored resistance shall be determined from the capacity for the unmodified product (see pages 69-70). The side beam can take a maximum of 40% of the download and shall not exceed 13,640 lbs (60.68 kN). The sum of the loads for the side beam(s) and main beam can not exceed the tabulated values.
- The column width in the direction of the main beam width must be the same as the main beam width (W₁).
- Specify the stirrup height from the top of the cap. The minimum side stirrup heights (H₂ or H₃) is 6½" (3½" for 44's).
- The L dimension may vary depending on the width of the side stirrup (W₃ or W₄).
- Column caps may be ordered without the column straps for field welding to a column.
 No loads apply. Specify CCOC/CCOT/ECCOL.

Ordering Examples:

- A CCC66C with $W_3 = 5\frac{1}{2}$ ", H_2 and $H_3 = 6\frac{1}{2}$ " is a CC66C column cap with $5\frac{1}{2}$ " beams on each side with all beam seats flush.
- An ECCL66C with W₃ = 35%, H₂ = 7½ is an ECC66C end column cap with a 4x beam on the right side (specify direction left (which is shown) or right for stirrup) and stirrup seat 1" below the cap seat.



Lateral Systems

2nd-Storey Applications

As the industry leader in Lateral Systems innovation and testing, Simpson Strong-Tie is in a unique position to gain insight from Designers and builders as to what they need in a pre-fabricated shearwall. This insight continues to drive innovation in our Steel and Wood Strong-Wall® product lines resulting in new products and expanded code-listed solutions.

For more information on Strong-Wall Shearwalls, contact Simpson Strong-Tie at (800) 999-5099 or visit our website at www.strongtie.com.

Solutions

Applications

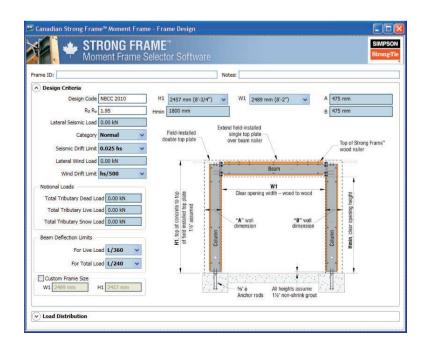
(Standard, Raised Floor and Two-Storey)

Lateral Systems

STRONG FRAME™ Moment Frame

Easy to Specify and Install – 336 Solutions Meeting the Requirements of CSA S16-09 and the NBCC 2010

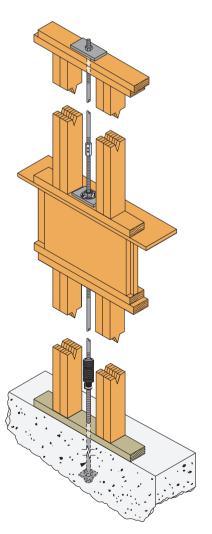
The Simpson Strong-Tie® Strong Frame™ moment frame provides designers with the flexibility and performance they need while offering contractors the speed and efficiency of bolted connections. Now we have nearly doubled our offering by adding a new 16'-tall column and 14', 18' and 20'-wide beams, resulting in a total of 336 frame configurations to choose from.



New Custom Sizes

If one of our standard sizes of Strong Frame doesn't suit your project, have no fear — we now offer custom sizes to fit almost any project. Using our standard Strong Frame column and beam profiles we can manufacture frames to your size specifications in widths ranging from 6' to 20'-4" and heights from 6' to 19'-10½". Now you can get just the right size Strong Frame for your new or retrofit project with lead times that are typically less than six weeks. Call your local Simpson Strong-Tie representative for more details on the ordering process and lead times.

Canadian Strong Frame™ Selector Software


The Simpson Strong-Tie® Strong Frame™ Selector software is designed to help the Designer select an appropriate frame for their given geometry and loading. Only minimum inputs are required for the software to select an appropriate frame for the available space. Based on input geometry, the Strong Frame Selector software will narrow down from the 336 available stock frames to a handful of possible solutions. It can also help with custom frame designs. Download your free copy at www.strongtie.com/strongframe.

SIMPSON
Strong-Tie

The Simpson Strong-Tie® Anchor Tie-down System (ATS) is designed to anchor stacked shearwalls in multi-storey wood-frame buildings while compensating for shrinkage effects commonly seen in these types of structures. The system is comprised of threaded rods, bearing plates, couplers and nuts, used in combination with our proprietary shrinkage take-up devices to resist shearwall overturning forces. ATS serves the same purpose as conventional holdowns, though it can be configured to provide significantly higher resistances (up to 60,000 lbs).

THE ATS ADVANTAGE

Proven Product Performance:

The ATS products have been thoroughly tested in full-scale wall systems and structures to develop proven products and design philosophies.

High-Quality Products:

All ATS components are manufactured and assembled in the USA to the highest quality standards to ensure consistent performance.

No-Equal Support:

Simpson Strong-Tie has dedicated sales and engineering staff to support ATS as well as our unmatched field service from our national sales force. Any field issues or questions, about any of our products, are resolved quickly and professionally by our highly-trained staff.

Specifications Made Easy:

Specifying ATS is more complex than specifying other products in our line as one can't just turn to a page in a catalogue with a single load and select the product. To best serve our customers and to assist engineers in specifying the product we have developed multiple methods of specification and a support service.

For more information on specification, please see our *Anchor Tiedown Systems Canadian Limit States Design* catalogue (C-ATSCAN11) or visit *www.strongtie.com/ats*.

FACE MOUNT HANGERS LUCZ/LU/U/HU Standard Joist Hangers

LUCZ concealed flange hanger is available for 2x6, 2x8, 2x10 and 2x12 lumber. Ideal for end of ledger/ header or post conditions, the LUCZ also provides cleaner lines for exposed conditions such as overhead decks.

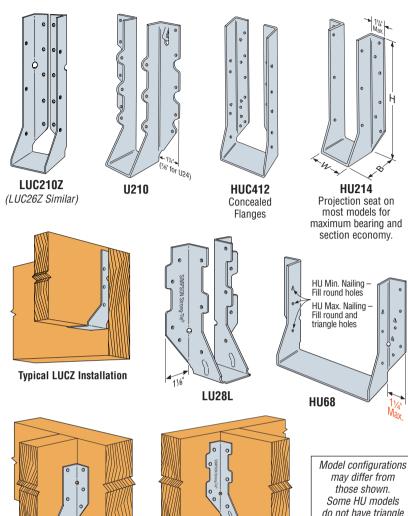
See Hanger tables on pages 77-82. See Hanger Options on page 212 for hanger modifications, which may result in reduced resistances.

LU—Value engineered for strength and economy. Precision-formed—engineered for installation ease and design value.

U—The standard U hanger provides flexibility of joist to header installation. Versatile fastener selection with tested factored resistances.

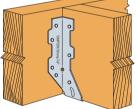
HU—Most models have triangle and round holes. To achieve maximum resistances, fill both round and triangle holes with common nails. These heavy-duty connectors are designed for schools and other structures requiring additional strength, longevity and safety factors.

MATERIAL: See tables on pages 77-82.


FINISH: Galvanized. Some products available in ZMAX® coating.

INSTALLATION:

- · Use all specified fasteners. See General Notes.
- HU—can be installed filling round holes only, or filling round and triangle holes for maximum values.
- Joists sloped up to 1/4:12 achieve tabulated values.
- · For installations to masonry or concrete see page 186.
- HU hangers can be welded to a steel member refer to technical bulletin T-HUHUC-W.


OPTIONS: • HU hangers available with the header flanges turned in for 25/16" width and larger, with no reduction in resistances-order HUC hanger.

- See Hanger Options on page 212 for sloped and/or skewed U/HU models, and HUC (concealed flange) models.
- HU only—rough beam sizes available by special order.
- See page 82 for stocked U hanger rough sizes tables. Rough sizes are not available in 8x.
- · Also see LUS and HUS series.

Typical LU28L Installation

do not have triangle holes. Contact Simpson Strong-Tie.

JOIST FACTORED SHEAR RESISTANCES

The maximum capacity of a horizontal joist or rafter may be limited by its factored shear resistance (V_r). This table gives the capacity for common sizes.

	I	Factored Shear	Resistance (Vr)
Joist	D.F	ir-L	S-I	P-F
or	(K _D =1.00)	$(K_D=1.15)$	(K _D =1.00)	$(K_D=1.15)$
Rafter	lbs	lbs	lbs	lbs
	kN	kN	kN	kN
2x4	1470	1695	1160	1335
2X 4	6.54	7.54	5.18	5.95
2x6	1900	2200	1505	1730
2X0	8.51	9.79	6.71	7.71
2x8	2150	2475	1695	1945
ZXO	9.59	11.02	7.54	8.67
0.40	2515	2895	1985	2280
2x10	11.21	12.89	8.83	10.16
2x12	2785	3205	2195	2525
ZX Z	12.41	14.27	9.78	11.25

- 1. Factored shear resistances shown assume a single member system factor (KH=1.00). Resistances may be increased as per 5.4.4 CSA 086-09 for Case 1 and Case 2 systems.
- 2. Resistances shown are for No. 1/No. 2 grades.

FACE MOUNT HANGERS LUS/HUS Double Shear Joist Hangers

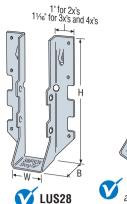
SIMPSON Strong-Tie

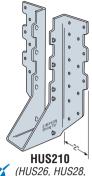
GINEERED This product is preferable to similar connectors because of a) easier installation. b) higher capacities. c) lower installed cost. or a combination of these features.

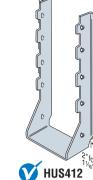
See Hanger tables on pages 77-82. See Hanger Options on page 212 for hanger modifications, which may result in reduced resistances.

All hangers in this series have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation, and the use of standard nails for all connections. (Do not bend or remove tabs.)

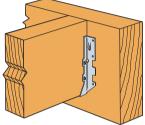
MATERIAL: See tables, pages 77-82.

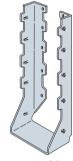

FINISH: Galvanized. Some products available in stainless steel or ZMAX® coating: see Corrosion Information, page 18-19.


INSTALLATION: • Use all specified fasteners. See General Notes.


- Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances.
- Not designed for welded or nailer applications.
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated resistance.
- With 3x carrying members, use 16dx2½" nails into the header and 16d commons into the joist with no reduction in resistances. With a single 2x carrying member, use 10dx1½" nails into the header and 10d commons into the joist, reduce the resistance to 0.64 of the table value.

OPTIONS: • LUS hangers cannot be modified.


- HUS hangers available with the header flanges turned in for 2-2x (31/8") and 4x only, with no reduction in resistances. See the HUSC Concealed Flange illustration.
- See Hanger Options, page 212.



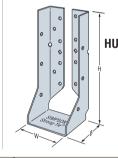
Typical LUS28 Installation Standard LUS28 Installation use .148x3" (10d common)

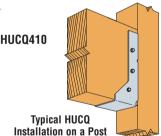
HUSC **Concealed Flanges** (not available for HHUS. HGUS and HUS2x)

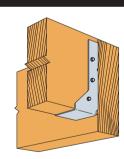
Double Shear Nailing Top View

Double Shear Nailing Side View Do not bend tab back

Dome Double Shear Nailing prevents tabs breaking off (available on some models) U.S. Patent 5,603,580


HUCQ Heavy Duty Joist Hangers


The HUCQ series are heavy duty joist hangers that incorporate Simpson Strong-Tie® SDS wood screws. Designed and tested for installation at the end of a beam or on a post, they provide a strong connection with fewer fasteners than nailed hangers.


MATERIAL: 14 gauge FINISH: Galvanized

INSTALLATION: • Use all specified fasteners. See General Notes.

- · SDS screws supplied.
- For use on solid sawn or engineered wood products.
- These products are available with additional corrosion protection.

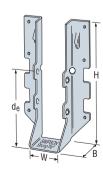
Typical HUCQ Installation on a Beam

Additional products option, check with S					th this
	Din	nensi (in)	ons	Faste	ners
Model No.	w	н	B	Face	Jois

	Model No.	Dimensions (in)			Fasteners		Factored Resistance			
							D.Fir-L		S-P-F	
		w	Н	В	Face	Joist	Uplift	Normal	Uplift	Normal
							$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
							lbs	lbs	lbs	lbs
							kN	kN	kN	kN
	HUCQ310-SDS	2%16	9	3	8-SDS 1/4"x21/2"	4-SDS 1/4"x21/2"	2140	5235	1930	3770
							9.52	23.29	8.59	16.77
	HUCQ210-2-SDS	31/4	9	3	12-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	7270	2900	6825
							14.28	32.34	12.90	30.36
	HUCQ410-SDS	3%16	9	3	12-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	7270	2900	6825
							14.28	32.34	12.90	30.36
	HUCQ412-SDS	3%16	11	3	14-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	9090	2900	7645
							14.28	40.43	12.90	34.01
	HUCQ210-3-SDS	4%	9	3	12-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	7270	2900	6825
							14.28	32.34	12.90	30.36
	HUCQ610-SDS	5½	9	3	12-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	7270	2900	6825
							14.28	32.34	12.90	30.36
	HUCQ612-SDS	5½	11	3	14-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	9090	2900	7645
							14.28	40.43	12.90	34.01

1. Factored uplift resistances have been increased

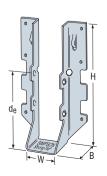
further increase allowed. Reduce by 15% for standard term loading such as cantilever construction 2. When using structural composite lumber


15% for earthquake or wind loading with no

columns, screws must be applied to the wide face of the column.

- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

				Dimer				Fasten	ers		Factored F	Resistance		
				(i	n)			1 431011	013		ir-L		P-F	Installed
Joist	Model	Ga								Uplift	Normal	Uplift	Normal	Cost
Size	No.		W	н	В	de ⁶	Min/	Header	Joist		$(K_D = 1.00)$. ,	` ,	Index
							Max			lbs	lbs	lbs	lbs	
										kN	kN	kN	kN	
							SA	NN LUME	ER SIZES					
	LU24L	22	1%16	31/8	1%	211/16	_	4-10d	2-10dx1½	360	1020	320	725	Lowest
	_									1.60	4.54	1.42	3.22	
	LUS24	18	1%16	31/8	13/4	21/4	—	4-10d	2-10d	710 3.16	1625 7.23	645 2.87	1155 5.14	+11%
2x4										450	1340	355	1030	
	U24	16	1%16	31/8	1½	1 13/16	—	4-10d	2-10dx1½	2.00	5.96	1.58	4.58	+90%
	HU26	14	1%6	31/16	21/4	11/16	_	4-16d	2-10dx1½	490	1525	450	1080	+490%
	11020	14	I 716	3 / 16	2 /4	I /16		4-10u	Z-100X172	2.18	6.78	2.00	4.80	+430 /0
	LUS24-2	18	31/8	31/8	2	1 17/32	_	4-16d	2-16d	835	2020	590	1435	Lowest
DDI										3.71 480	8.99 1340	2.62 445	6.38 1030	
DBL 2x4	U24-2	16	31/8	3	2	1 15/16	—	4-10d	2-10d	2.14	5.96	1.98	4.58	+59%
ZXT	HU24-2/	.				244.6				525	1710	490	1585	
	HUC24-2	14	31/8	31/16	2½	211/16	_	4-16d	2-10d	2.34	7.61	2.18	7.05	+244%
	LU26L	22	1%16	5	15/8	419/32		6-10d	4-10dx1½	720	1605	645	1140	Lowest
	LUZUL	22	1716	J	178	7 732		0-10u	4-100X172	3.20	7.14	2.87	5.07	LUWEST
	LUS26	18	1%16	43/4	13/4	325/32	_	4-10d	4-10d	1420	2170	1290	1630	+10%
										6.32 895	9.65	5.74 780	7.25	
2x6	U26	16	1%16	43/4	2	315/16	-	6-10d	4-10dx1½	3.98	2005 8.92	3.47	1860 8.27	+70%
										830	1605	710	1140	
	LUC26Z	18	1%16	43/4	1¾	4	—	6-10d	4-10dx1½	3.69	7.14	3.16	5.07	+74%
	HUS26	16	15/8	5%	3	315/16	_	14-16d	6-16d	2705	4940	2065	3875	+320%
	110320	10	1 78	J78	J	J 716		14-10u	0-10u	12.03	21.97	9.20	17.24	TJ20 /0
	LU26-2L	20	31/8	5	1%	419/32	_	6-10d	4-10dx1½	760	1605	680	1140	Lowest
										3.38 1720	7.14 2595	3.02 1545	5.07 1920	
	LUS26-2	18	31//8	47/8	2	41/32	—	4-16d	4-16d	7.65	11.54	6.87	8.54	+24%
DBL	1100.0	10	01/	_		012/		0.40.1	4.40.1	960	2675	890	2475	40.40/
2x6	U26-2	16	31/8	5	2	313/16	_	8-10d	4-10d	4.27	11.90	3.96	11.01	+124%
							Min	8-16d	4-10d	1055	3420	980	2845	+358%
	HU26-2/	14	31/8	5%	2½	5		0.00		4.69	15.21	4.36	12.66	100070
	HUC26-2						Max	12-16d	6-10d	1580 7.03	4415 19.64	1470 6.54	3135 13.95	+372%
	_									1720	2595	1545	2340	
	LUS26-3	18	45/8	41/8	2	31/32	—	4-16d	4-16d	7.65	11.54	6.87	10.41	Lowest
	U26-3	16	45%	41/4	2	311/16	_	8-10d	4-10d	960	2675	890	2475	+87%
TPL	020-3	10	478	474		3.716		0-10u	4-10u	4.27	11.90	3.96	11.01	+07 /0
2x6							Min	8-16d	4-10d	1055	3420	980	2845	+193%
	HU26-3/ HUC26-3	14	411/16	5%	21/2	5				4.69 1580	15.21 4415	4.36 1470	12.66	
	110020-3						Max	12-16d	6-10d	7.03	19.64	6.54	3135 13.95	+198%
	111001	00	40/	_	457	4407		0.40.1	4.401.447	720	1605	645	1140	
	LU26L	22	1%16	5	15/8	419/32	—	6-10d	4-10dx1½	3.20	7.14	2.87	5.07	Lowest
	LUS26	18	1%	43/4	13/4	325/32	_	4-10d	4-10d	1420	2170	1290	1630	+10%
	20020	10	1710	7/4	1 /4	0 732		4 100	4 100	6.32	9.65	5.74	7.25	+1070
	LU28L	20	1%16	6¾	1%	5%	_	8-10d	6-10dx1½	1140	2185	1020	1550	+29%
										5.07 1420	9.72 2520	4.54 1290	6.89 1790	
	LUS28	18	1%16	6%	13/4	325/32	—	6-10d	4-10d	6.32	11.21	5.74	7.96	+42%
2x8	LIDE	10	40/	437	0	015/		6 10 1	4.404417	895	2005	780	1860	.700/
	U26	16	1%6	4¾	2	315/16	_	6-10d	4-10dx1½	3.98	8.92	3.47	8.27	+70%
	LUC26Z	18	1%6	43/4	13/4	4	_	6-10d	4-10dx1½	830	1605	710	1140	+70%
-		.0	1710	- ''	1/4	'		- 100	. 100X172	3.69	7.14	3.16	5.07	1.070
	HU28	14	1%16	51/4	21/4	47/8	—	6-16d	4-10dx1½	980 4.36	2565 11.41	905 4.03	2380 10.59	+415%
				_		_			_	3605	5365	2675	4345	
	HUS28	16	1%	73/32	3	63/32	—	22-16d	8-16d	16.04	23.86	11.90	19.33	+457%
											-			


- 1. 10d common nails may be used instead of the specified 16d nails at 0.83 of the tabulated value.
- 2. Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading such as in cantilever construction.
- 3. MIN nailing quantity and factored resistances—fill all round holes; MAX nailing quantity and factored resistances—fill all round and triangle holes.
- 4. D.Fir-L factored resistances can be used for most LVL. Verify with manufacturer prior to selecting hanger.
- 5. See page 24 for hangers with reduced capacity due to installation with different nails. 6. de is the distance from the bearing seat to the top joist nail.
- 7. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

^{*}Hangers do not have an Installed Cost Index.

		0																	
					Dimer				Fasten	iers			Resistance						
					(iı	n)			T doton	1010		ir-L		P-F	Installe				
	Joist	Model	Ga								Uplift	Normal	Uplift	Normal	Cost				
	Size	No.		W	н	В	de ⁶	Min/	Header	Joist	, - ,	,	(K _D = 1.15)	,	Index				
								Max			lbs	lbs	lbs	lbs					
											kN	kN	kN	kN					
ļ								SA	WN LUME	BER SIZES									
Ы		LUS26-2	18	31/8	47/8	2	41/32	_	4-16d	4-16d	1720	2595	1545	1920	Lowest				
		20020 2	1.0	078	770		1732		7 100	7 100	7.65	11.54	6.87	8.54	Lowost				
		LU28-2L	20	31/8	63/4	15/8	5%	_	8-10d	6-10dx1½	1140	2185	1020	1550	+5%				
		L020-2L	20	J /8	0 /4	178	J /8		0-100	0-10ux172	5.07	9.72	4.54	6.89	TJ /0				
		LUS28-2	18	31/8	7	2	41/32	_	6-16d	4-16d	1720	3325	1545	2575	+10%				
		20020 2	10	070	'		7/32		0 100	7 100	7.65	14.79	6.87	11.45	+10 /0				
	DBL	U26-2	16	31/8	5	2	313/16		8-10d	4-10d	960	2675	890	2475	+84%				
	2x8	020-2	10	J /8	J		J 716		0-100	4-10u	4.27	11.90	3.96	11.01	T04 /0				
		HUS28-2	14	31/8	73/16	2	515/16		6-16d	6-16d	2540	3620	1805	2570	+214%				
		110320-2	14	3 /8	1 716		J 716		0-100	0-10u	11.30	16.10	8.03	11.43	+214/0				
								Min	10-16d	4-10d	1055	4270	980	3135	+296%				
		HU28-2/	14	31/8	7	2½	65%	IVIIII	10-100	4-10u	4.69	18.99	4.36	13.95	TZ30%				
		HUC28-2	14	378	'	2 72	098	Max	1/164	6 104	1580	5780	1470	4225	. 2070/				
								Max	14-16d	6-10d	7.03	25.71	6.54	18.79	+307%				
		LUS28-3	10	45/	61/	2	3%2		6 164	4-16d	1720	3325	1545	2375	Lowest				
7	TPL	LUS20-3	18	45/8	61/4		3732	_	6-16d	4-10u	7.65	14.79	6.87	10.56	Lowest				
	2x8	HU26-3/	4.4	A++ /	F2/	01/	_		0.404	4 40 4	1055	3420	980	2845	4000/				
		HUC26-3	14	411/16	5%	21/2	5	_	8-16d	4-10d	4.69	15.21	4.36	12.66	+192%				
Ī									40.40.1	4.40.1	1230	4270	1140	3135	*				
	QUAD	HU28-4/		01/	_	01/	07/	Min	10-16d	4-16d	5.47	18.99	5.07	13.95	<u> </u>				
•		HUC28-4	14	61//8	7	2½	67/16		44401	0.401	1840	5780	1710	4225	*				
								Max	14-16d	6-16d	8.18	25.71	7.61	18.79	Î				
ľ											1140	2185	1020	1550					
		LU28L	20	1%16	6%	1½	5½	—	8-10d	6-10dx1½	5.07	9.72	4.54	6.89	Lowest				
											1420	2520	1290	1790					
•		LUS28	18	1%16	65/8	13/4	325/32	—	6-10d	4-10d	6.32	11.21	5.74	7.96	+10%				
											1140	2495	1020	1770					
		LU210L	20	1%16	8	1%	715/32	—	10-10d	6-10dx1½	5.07	11.10	4.54	7.87	+18%				
											1420	2785	1290	2210					
		LUS210	18	1%16	713/16	1¾	3%	—	8-10d	4-10d	6.32	12.39	5.74	9.83	+23%				
	2x10										1240	2495	1130	1770					
		LUC210Z	18	1%16	7¾	13/4	5½	—	10-10d	6-10dx1½	5.52	11.10	5.03	7.87	+85%				
											1345	2755	1235	1955					
		U210	16	1%16	713/16	2	5¾	—	10-10d	6-10dx1½	5.98	12.25	5.49	8.70	+92%				
											980	3420	905	2865					
		HU210	14	1%16	71/8	21/4	6¾	—	8-16d	4-10dx1½	4.36	15.21	4.03	12.74	+300%				
											4505	5795	4010	4740					
		HUS210	16	1%	93/32	3	731/32	—	30-16d	10-16d	20.04	25.78	17.84	21.08	+472%				
											1720	3325	1545	2575					
		LUS28-2	18	31/8	7	2	41/32	<u> </u>	6-16d	4-16d	7.65	14.79	6.87	11.45	Lowest				
											1140	2495	1020	1770					
		LU210-2L	20	31/8	8	15/8	715/32	—	10-10d	6-10dx1½	5.07	11.10	4.54	7.87	+16%				
											2580	4500	2320	3195					
		LUS210-2	18	31//8	9	2	61/32	_	8-16d	6-16d	11.48	20.02	10.32	14.21	+30%				
											1440	4355	1340	3090					
	DDI	U210-2	16	31/8	81/2	2	611/16	—	14-10d	6-10d	6.41	19.37	5.96	13.75	+99%				
	DBL 2x10										3795	5690	3450	4570					
		HUS210-2	14	31/8	93/16	2	715/16	—	8-16d	8-16d	16.88	25.31	15.35	20.33	+252%				
											1580	5780	1470	4225					
		LILIDAD D/						Min	14-16d	6-10d	7.03	25.71	6.54	18.79	+339%				
			U210-2/		14	31/8	813/16	21/2	87/16						2450				
		HUC210-2/										Max	18-16d	10-10d	2635	5780	2400	4690	+352%

- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

See footnotes on page 77.

HHUS210-2

14 35/16 93/16

3

8

30-16d

10-16d

11.72 4745

21.11

25.71

9660

42.97

10.90

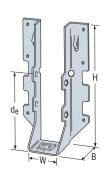
4310

19.17

20.86

7000

31.14


+385%

SIMPSON
Strong-Tie
R

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

					Dimer	sions						Factored F	Resistance		
						n)			Fasten	ers	D.F		S-I	P-F	
	Joist	Model			<u> </u>						Uplift	Normal	Uplift	Normal	Installed
	Size	No.	Ga					Min/					(K _D = 1.15)		Cost
				W	Н	В	de ⁶	Max	Header	Joist	lbs	lbs	lbs	lbs	Index
											kN	kN	kN	kN	
ŀ								2/1	MN LIIME	ER SIZES					
								ואט	WIN LOWIL	LII SIZES	1720	3325	1545	2375	
		LUS28-3	18	45/8	61/4	2	31/32	l —	6-16d	4-16d	7.65	14.79	6.87	10.56	Lowest
	-										2580	3345	2320	2375	
		LUS210-3	18	45/8	83/16	2	5%16	—	8-16d	6-16d	11.48	14.88	10.32	10.56	+9%
	-										1440	4355	1340	3090	
	TPL	U210-3	16	45/8	73/4	2	5¾	—	14-10d	6-10d	6.41	19.37	5.96	13.75	+130%
	2x10							D. 41	4440:1	0.40.1	1580	5780	1470	4225	0000/
		HU210-3/	11	A117	09/	01/	07/	Min	14-16d	6-10d	7.03	25.71	6.54	18.79	+296%
		HUC210-3	14	411/16	8%16	2½	87/16	Max	18-16d	10-10d	2635	5780	2450	4690	+303%
								Max	10-100	10-100	11.72	25.71	10.90	20.86	+303%
		HHUS210-3	14	411/16	9	3	715/16	_	30-16d	10-16d	4745	10545	4310	7485	+690%
				. 7.0		Ŭ	. ,		00 .00		21.11	46.91	19.17	33.29	
								Min	14-16d	6-16d	1840	5780	1710	4225	Lowest
		HU210-4/ HUC210-4	14	61/8	8%16	2½	87/16				8.18	25.71 5780	7.61	18.79	
	Quad 2x10	1100210-4						Max	18-16d	10-16d	2455 10.92	25.71	2280 10.14	4690 20.86	+3%
	2,10										4745	10545	4310	7485	
		HHUS210-4	14	61/8	8%	3	713/16	—	30-16d	10-16d	21.11	46.91	19.17	33.29	+275%
ŀ		1110401	00	407	7107	457	715/		10.10.1	0.401.41/	1140	2495	1020	1770	
		LU210L	20	1%6	713/16	1%	715/32	—	10-10d	6-10dx1½	5.07	11.10	4.54	7.87	Lowest
		1110010	18	1%6	713/16	13/4	37/8		8-10d	4-10d	1420	2785	1290	2210	+5%
		LUS210	10	I 716	1 716	174	378	_	0-10u	4-10u	6.32	12.39	5.74	9.83	+370
Ы		LUC210Z	18	1%16	73/4	13/4	5½	_	10-10d	6-10dx1½	1240	2495	1130	1770	+56%
	2x12	2002102		1710	1,74	174	072		10 100	0 10ux172	5.52	11.10	5.03	7.87	10070
		U210	16	1%16	713/16	2	5¾	_	10-10d	6-10dx1½	1345	2755	1235	1955	+63%
	-										5.98	12.25	5.49	8.70	
		HUS210	16	15/8	93/32	3	731/32	—	30-16d	10-16d	4505 20.04	5795 25.78	4010 17.84	4740 21.08	+384%
	-										1470	4020	1360	3135	
		HU212	14	1%16	9	21/4	8%	—	10-16d	6-10dx1½	6.54	17.88	6.05	13.95	+487%
ŀ							=45.4				1140	2495	1020	1770	
		LU210-2L	20	31/8	8	1%	715/32	—	10-10d	6-10dx1½	5.07	11.10	4.54	7.87	Lowest
		LUS210-2	18	31/8	9	2	61/32		8-16d	6-16d	2580	4500	2320	3195	+12%
		LU3210-2	10	3 78	9		U 732		0-10u	0-10u	11.48	20.02	10.32	14.21	+1270
		U210-2	16	31/8	81/2	2	611/16	l	14-10d	6-10d	1440	4355	1340	3090	+72%
		0210 2	10	078	072		0 710		14 100	0 100	6.41	19.37	5.96	13.75	17270
		LUS214-2	18	31/8	1015/16	2	61/16	l —	10-16d	6-16d	2580	5355	2320	3875	+110%
	DBL 2x12										11.48	23.82	10.32	17.24	
	۷۸۱۷	HUS210-2	14	31/8	93/16	2	715/16	—	8-16d	8-16d	3795 16.88	5690 25.31	3450 15.35	4570 20.33	+203%
											4745	7015	3650	4980	
		HUS212-2	14	31/8	10¾	2	9%	—	10-16d	10-16d	21.11	31.20	16.24	22.15	+235%
								N 4 ·	10 10 1	0.40	1580	5780	1470	4225	.00001
		HU212-2/	11	21/	109/	21/	103/	Min	16-16d	6-10d	7.03	25.71	6.54	18.79	+333%
		HUC212-2	14	31/8	10%6	2½	10¾6	Max	22-16d	10-10d	2635	5780	2450	4690	+347%
								ividX	22-10U	10-100	11.72	25.71	10.90	20.86	TJ4170
		LUS210-3	18	45/8	83/16	2	5%16	_	8-16d	6-16d	2580	3345	2320	2375	Lowest
				.,,	0,10	_	3710		- 100	0.00	11.48	14.88	10.32	10.56	20.1001
	TO	U210-3	16	45/8	73/4	2	5¾	_	14-10d	6-10d	1440	4355	1340	3090	+112%
	TPL 2x12										6.41 1580	19.37 5780	5.96 1470	13.75 4225	
	2X1Z	U11010 07						Min	16-16d	6-10d	7.03	25.71	6.54	18.79	+378%
		HU212-3/ HUC212-3	14	411/16	105/16	21/2	915/16				2635	5780	2450	4690	
		7.002120						Max	22-16d	10-10d	11.72	25.71	10.90	20.86	+386%
-	Quad				-	_				46.1	4745	10545	4310	7485	
	2x12	HHUS210-4	14	61/8	8%	3	713/16	—	30-16d	10-16d	21.11	46.91	19.17	33.29	*
-		1104	10	09/	03/	0	03/		1 10-1	0.1045417	450	1340	355	1030	Louiset
	3x4	U34	16	2%16	3%	2	2%	_	4-10d	2-10dx1½	2.00	5.96	1.58	4.58	Lowest
- 1	0.14	HU34/	14	2%16	3%	2½	3	_	4-16d	2-10dx1½	490	1710	455	1585	+101%
		HUC34									2.18		2.02		

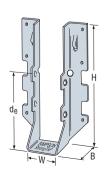
See footnotes on page 77.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

EACE MOUNT	LIVIUCEDO CULI	ID CAWAI I IIMDED
CAUSE MIDURI	- 6612DMAT	ID SAWN LUMBER

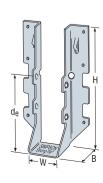
					Dimer	sions			Fastan			Factored I	Resistance		
					(i				Fasten	ers	D.F	ir-L	S-I	P-F	
	Joist	Model	Ga								Uplift	Normal	Uplift	Normal	Installed Cost
	Size	No.	ua	w	н	В	de ⁶	Min/	Header	Joist	· - /	, - ,	$(K_D = 1.15)$,	Index
					"	_	ue	Max	liouuoi	00101	lbs	lbs	lbs	lbs	
											kN	kN	kN	kN	
								SAI	WN LUME	ER SIZES					
		U36	16	29/16	5%	2	45/16	_	8-10d	4-10dx1½	895	2675	780	2475	Lowest
											3.98	11.90	3.47	11.01	
	3x6	LUS36	18	29/16	51/4	2	45/16	—	4-16d	4-16d	1720 7.65	2290 10.19	1545 6.87	1630 7.25	+26%
		HU36/									980	3420	905	2845	
		HUC36	14	2%16	5%	2½	5	—	8-16d	4-10dx1½	4.36	15.21	4.03	12.66	+185%
Ì		U36	16	2%16	5%	2	415/16		8-10d	4-10dx1½	895	2675	780	2475	Lowest
	3x8	030	10	Z716	378		4 716		0-10u	4-10UX172	3.98	11.90	3.47	11.01	Lowest
	OAO	HU38/	14	29/16	71/8	2½	63/4	_	10-16d	4-10dx1½	980	4270	905	3135	+153%
		HUC38									4.36	18.99	4.03	13.95	
		LUS310	18	2%16	71/4	2	45/16	—	6-16d	4-16d	1720 7.65	3325 14.79	1545 6.87	2575 11.45	Lowest
											1345	4355	1235	3090	
	3x10	U310	16	2%16	87/8	2	5¾	—	14-10d	6-10dx1½	5.98	19.37	5.49	13.75	+39%
		HU310/	14	2%16	87/8	2½	8½		14-16d	6-10dx1½	1470	5780	1360	4225	+151%
		HUC310	14	Z716	078	2 72	0 72		14-16u	0-10ux 1 /2	6.54	25.71	6.05	18.79	+13170
		U310	16	29/16	87/8	2	53/4	_	14-10d	6-10dx1½	1345	4355	1235	3090	Lowest
	3x12	11110407									5.98 1470	19.37 5780	5.49 1360	13.75 4225	
		HU312/ HUC312	14	29/16	10%	2½	101/4	—	16-16d	6-10dx1½	6.54	25.71	6.05	18.79	+114%
					_	_					835	2020	590	1435	
		LUS44	18	3%16	3	2	123/32	-	4-16d	2-16d	3.71	8.99	2.62	6.38	Lowest
	4x4	U44	16	3%16	27/8	2	111/16		4-10d	2-10d	480	1340	445	1030	+34%
	7/4	044	10	3 / 16	2/8		11716		4-100	Z-10u	2.14	5.96	1.98	4.58	TJ4 /0
		HU44/ HUC44	14	3%16	27/8	2½	2½	_	4-16d	2-10d	525	1710	490	1585	+180%
		110044									2.34 1720	7.61 2595	2.18 1545	7.05 1920	
		LUS46	18	3%16	43/4	2	313/16	—	4-16d	4-16d	7.65	11.54	6.87	8.54	Lowest
		1146	16	29/	47/		213/		0.104	4 104	960	2675	890	2475	. 400/
		U46	16	3%16	47/8	2	313/16		8-10d	4-10d	4.27	11.90	3.96	11.01	+40%
	4x6	HUS46	14	3%16	5	2	35%	_	4-16d	4-16d	1745	2845	1240	2570	+175%
											7.76 1055	12.66 3420	5.52 980	11.43 2845	
		HU46/						Min	8-16d	4-10d	4.69	15.21	4.36	12.66	+186%
		HUC46	14	3%16	5¾16	2½	413/16		10.10.1	0.40.1	1580	4415	1470	3135	1070/
								Max	12-16d	6-10d	7.03	19.64	6.54	13.95	+197%
Ы		LUS46	18	3%16	43/4	2	313/16	_	4-16d	4-16d	1720	2595	1545	1920	Lowest
		20010		0710	174		0 710		1 100	1 100	7.65	11.54	6.87	8.54	Lowoot
		LUS48	18	3%16	6¾	2	313/16	—	6-16d	4-16d	1720 7.65	3325 14.79	1545 6.87	2575 11.45	+29%
											960	2675	890	2475	
		U46	16	3%16	47/8	2	313/16	—	8-10d	4-10d	4.27	11.90	3.96	11.01	+38%
	4x8	HUS48	14	3%16	615/16	2	53/4		6-16d	6-16d	2540	3620	1805	2570	+199%
		110340	14	3 / 16	0 /16		J 74	_	0-100	0-100	11.30	16.10	8.03	11.43	+13370
								Min	10-16d	4-10d	1055	4270	980	3135	+299%
		HU48/ HUC48	14	3%16	613/16	21/2	67/16				4.69 1580	18.99 5780	4.36 1470	13.95 4225	
		110040						Max	14-16d	6-10d	7.03	25.71	6.54	18.79	+250%
		111040	40	00/	02/	_	0127		0.40.1	4.40.4	1720	3325	1545	2575	1
7		LUS48	18	3%16	6¾	2	313/16		6-16d	4-16d	7.65	14.79	6.87	11.45	Lowest
•		LUS410	18	3%16	83/4	2	527/32	_	8-16d	6-16d	2580	4500	2320	3195	+22%
											11.48	20.02	10.32	14.21	
		U410	16	3%16	8%	2	61/4	—	14-10d	6-10d	1440 6.41	4355 19.37	1340 5.96	3090 13.75	+72%
	4x10			601	0.55				0.15	0 : 5 :	3795	5690	3450	4570	,
		HUS410	14	3%16	815/16	2	73/4	_	8-16d	8-16d	16.88	25.31	15.35	20.33	+195%
								Min	14-16d	6-10d	1580	5780	1470	4225	+228%
		HU410/	14	3%16	85%	2½	81/4		17100	3 100	7.03	25.71	6.54	18.79	/0
		HUC410						Max	18-16d	10-10d	2635	5780	2450	4690	+239%

11.72

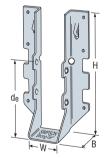

25.71

10.90

20.86


These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.


						nsions			Fasten	ers			Resistance		
	laiat	Madal			(I)	n)	I				Uplift	ir-L Normal	Uplift	P-F Normal	Installed
	Joist Size	Model No.	Ga					Min/				$(K_D = 1.00)$	<u> </u>		Cost
				W	Н	В	de ⁶	Max	Header	Joist	lbs	lbs	lbs	lbs	Index
											kN	kN	kN	kN	
								SAV	WN LUMB	ER SIZES					
		LUS410	18	3%16	83/4	2	527/32	_	8-16d	6-16d	2580	4500	2320	3195	Lowest
		L00410	10	3 716	074		J /32		0-100	0-100	11.48	20.02	10.32	14.21	LUWEST
		LUS414	18	3%16	10¾	2	5%11	—	10-16d	6-16d	2580 11.48	5355 23.82	2320 10.32	3875 17.24	+28%
						_	211				1440	4355	1340	3090	4=0/
		U410	16	3%16	8%	2	61/4	-	14-10d	6-10d	6.41	19.37	5.96	13.75	+47%
	4x12	HUS410	14	3%16	815/16	2	73/4	_	8-16d	8-16d	3795	5690	3450	4570	+142%
											16.88 4745	25.31 7015	15.35 3650	20.33 4980	
		HUS412	14	3%16	10½	2	9¾	—	10-16d	10-16d	21.11	31.20	16.24	22.15	+154%
								Min	16-16d	6-10d	1580	5780	1470	4225	+208%
		HU412/	14	3%16	105/16	2½	915/16	IVIIII	10-100	0-10u	7.03	25.71	6.54	18.79	+200%
		HUC412						Max	22-16d	10-10d	2635 11.72	5780 25.71	2450 10.90	4690 20.86	+220%
					_	_					960	2675	890	2475	_
		U66	16	5½	5	2	4%	—	8-10d	4-10d	4.27	11.90	3.96	11.01	Lowest
	6x6							Min	8-16d	4-16d	1230	3420	1140	2845	+37%
		HU66/ HUC66	14	5½	43/16	2½	313/16				5.47 1840	15.21 4415	5.07 1710	12.66 3135	
		110000						Max	12-16d	6-16d	8.18	19.64	7.61	13.95	+41%
		U66	16	5½	5	2	45/8	_	8-10d	4-10d	960	2675	890	2475	Lowest
			10	3 72	3		7/0		0 100	7 100	4.27	11.90	3.96	11.01	LOWUST
	6x8	ппсо/						Min	10-16d	4-16d	1230 5.47	4270 18.99	1140 5.07	3135 13.95	+41%
		HU68/ HUC68	14	5½	513/16	2½	57/16		44.40.1	0.40.1	1840	5780	1710	4225	4.40/
								Max	14-16d	6-16d	8.18	25.71	7.61	18.79	+44%
		U610	16	5½	81/2	2	715/16	_	14-10d	6-10d	1440	4355	1340	3090	Lowest
			_								6.41 1840	19.37 5780	5.96 1710	13.75 4225	
	6x10	HU610/						Min	14-16d	6-16d	8.18	25.71	7.61	18.79	+53%
		HUC610	14	5½	75/8	2½	71/4	Max	18-16d	8-16d	2455	5780	2280	4690	+56%
								IVIAX	10-100	0-10u	10.92	25.71	10.14	20.86	+30%
		LILICAD/						Min	16-16d	6-16d	1840 8.18	5780 25.71	1710 7.61	4225 18.79	*
	6x12	HU612/ HUC612	14	5½	9%	21/2	9				2455	5780	2280	4690	*
								Max	22-16d	8-16d	10.92	25.71	10.14	20.86	*
								Min	18-16d	8-16d	2455	5780	2280	4690	*
	6x14	HU614/ HUC614	14	5½	11%	2½	111/4				10.92	25.71	10.14	20.86	
		1100014						Max	24-16d	12-16d	3685 16.39	7025 31.25	3420 15.21	5780 25.71	*
								Min	20-16d	8-16d	2455	5780	2280	4690	*
	6x16	HU616/	14	5½	1211/16	2½	125/16	IVIIII	20-10u	0-10u	10.92	25.71	10.14	20.86	
		HUC616						Max	26-16d	12-16d	3685 16.39	7025 31.25	3420 15.21	5780 25.71	*
									10.10.1	4.40.1	1230	4270	1140	3135	*
	8x8	HU88/	14	7½	65%	2½	61/4	Min	10-16d	4-16d	5.47	18.99	5.07	13.95	*
	0.00	HUC88	14	1 /2	078	2/2	074	Max	14-16d	6-16d	1840	5780	1710	4225	*
											8.18 1840	25.71 5780	7.61 1710	18.79 4225	
	0.40	HU810/		71/	02/	01/		Min	14-16d	6-16d	8.18	25.71	7.61	18.79	*
	8x10	HUC810	14	71/2	8%	2½	8	Max	18-16d	8-16d	2455	5780	2280	4690	*
								IVIUX	10 100	0 100	10.92	25.71	10.14	20.86	
		HU812/						Min	16-16d	6-16d	1840 8.18	5780 25.71	1710 7.61	4225 18.79	*
	8x12	HUC812	14	71/2	101/8	2½	9¾	N/a	00.404	0.404	2455	5780	2280	4690	*
								Max	22-16d	8-16d	10.92	25.71	10.14	20.86	
		11110447						Min	18-16d	8-16d	2455	5780	2280	4690	*
	8x14	HU814/ HUC814	14	71/2	11%	2½	11½				10.92 3685	25.71 7025	10.14 3420	20.86 5780	
								Max	24-16d	12-16d	16.39	31.25	15.21	25.71	*
								Min	20-16d	8-16d	2455	5780	2280	4690	*
	8x16	HU816/ HUC816	14	7½	13%	2½	131/4			- 100	10.92	25.71	10.14	20.86	
		1100010						Max	26-16d	12-16d	3685 16.39	7025 31.25	3420 15.21	5780 25.71	*
-		I	1			L	L			1	.0.00	J 1	.0.21	20.71	

FACE MOUNT HANGERS – ROUGH LUMBER

Dist No. No.					Dime	nsions		Eac	tonore		Factored F	Resistance	
No. Ga					(i	n)		ras	oreners		1		
No. No.			Ga									•	
ROUGH SAWN LUMBER SIZES	Size	No.		W	Н	В	de ⁶	Header	Joist		` - ,	, - ,	, - ,
ROUGH SAWN LUMBER SIZES													
LU24R-18										KN	kN	kN	kN
LU24R-18						RO	UGH SA	WN LUMB	ER SIZES		1		
2x4 (R)		LU24R-18	18	2	311/16	1½	2½	4-16d	2-10dx1½				
U24R	2x4 (R)												
LU26R-18		U24R	16	2	35/8	2	25/8	4-16d	2-10dx1½				
LU26R-18													
U26R		LU26R-18	18	2	4%16	1½	313/16	6-16d	4-10dx1½				
LU28R-18 18 2 6% 1½ 5% 8-16d 6-10dx1½ 5.52 9.72 4.54 6.89 U26R 16 2 5% 2 4% 8-16d 4-10dx1½ 3.98 11.90 3.47 11.01 U210R 16 2 9½ 2 7½ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 U210R 16 2 9½ 2 7½ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 U210R 16 2 9½ 2 7½ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 U210R 16 2 9½ 2 7½ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 U210R 16 2 9½ 2 7½ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 U210R 16 2 9½ 2 7½ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 U210R 16 2 9½ 2 7½ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 U210R 16 2 9½ 2 11½ 4-16d 6-10dx1½ 5.98 19.37 5.49 13.75 U210R 16 4 2½ 2 11½ 4-16d 2-16d 5.65 1340 520 1030 U44R 16 4 4½ 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x8 (R) U46R 16 4 8½ 2 6½ 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 4 8½ 2 6½ 14-16d 6-16d 1695 4355 1495 3090 6x6 (R) U66R 16 6 5 2 31¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 6x8 (R) U66R 16 6 5 2 31¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 6x10 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090	2x6 (R)						4-7						
2x8 (R) LU28R-18 18 2 6% 1½ 5% 8-16d 6-10dx1½ 5.52 9.72 4.54 6.89 LU210R-18 16 2 5% 2 4% 8-16d 4-10dx1½ 895 2675 780 2475 2x10 (R) LU210R-18 18 2 7%6 2 5%6 10-16d 6-10dx1½ 1140 2495 1020 1770 2x12 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 2x12 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 2x14 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 4x4 (R) U44R 16 4 2% 2 11¼ 4-16d 6-10dx1½ 5.98		U26R	16	2	5%	2	4%	8-16d	4-10dx1½	3.98	11.90	3.47	11.01
2x8 (R) U26R 16 2 5% 2 4% 8-16d 4-10dx1½ 3,98 11.90 3.47 11.01 2495 1020 1770 5.07 11.10 4.54 7.87 5.52 2475 780 780 780 780 780 780 780 780 780 780		1 1100D 10	10	2	C 3/.	11/	E 5/.	0 164	6 10dv11/	1240	2185	1020	1550
	2×8 (B)	LU20K-10	10	2	0%	1 72	3%8	0-100	0-100X172	5.52	9.72	4.54	6.89
2x10 (R)	2X0 (N)	II26R	16	2	55%	2	45%	8-16d	4-10dx11/6				2475
2x10 (R) LU210R-18 18 2 7% 2 5% 50 10-16d 6-10dx1½ 5.07 11.10 4.54 7.87 2x12 (R) U210R 16 2 9½ 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 2x12 (R) U210R 16 2 9½ 2 7¼ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 2x14 (R) U210R 16 2 9½ 2 7¼ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 4x4 (R) U44R 16 4 2% 2 11½ 4-16d 6-10dx1½ 5.98 19.37 5.49 13.75 4x6 (R) U44R 16 4 2% 2 11½ 4-16d 6-10dx1½ 5.98 19.37 5.49 13.75 4x6 (R) U46R 16 4 4% 2 3¼ 8-16d 4-16d 565 13.40 520 1030 4x10 (R) U410R 16 4 8½ 2 6		02011	10	_	070	_	170	0 100	1 100/172				
2x10 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 2x12 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 2x14 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 2x14 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 4x4 (R) U44R 16 4 2% 2 11½6 4-16d 2-16d 565 1340 520 1030 4x6 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03		LU210R-18	18	2	7%16	2	5%16	10-16d	6-10dx1½				
U210R	2x10 (R)												
2x12 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 2x14 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 4x4 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 5.98 19.37 5.49 13.75 4x4 (R) U44R 16 4 2% 2 11½ 4-16d 2-16d 565 1340 520 1030 4x6 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x10 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 7.54 <		U210R	16	2	91/8	2	71/4	14-16d	6-10dx1½				
2x12 (R) U210R													
2x14 (R) U210R 16 2 9% 2 7¼ 14-16d 6-10dx1½ 1345 4355 1235 3090 4x4 (R) U44R 16 4 2% 2 11½6 4-16d 2-16d 565 1340 520 1030 4x6 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 565 1340 520 1030 4x6 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x10 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 4x12 (R) U410R 16 4 8% 2 6¼	2x12 (R)	U210R	16	2	91/8	2	71/4	14-16d	6-10dx1½				
4x4 (R) U44R 16 4 2% 2 11½6 4-16d 2-16d 5.98 19.37 5.49 13.75 4x4 (R) U46R 16 4 2% 2 11½6 4-16d 2-16d 565 1340 520 1030 4x6 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 503 14.01 4.65 11.01 4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x10 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 7.54 19.37 6.65 13.75 4x12 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 7.54 19.37 6.65 13.75 6x6 (R) U66R 16 5 2 31¾ 8-16d 4-16d 5.03 14.01 4	0.44(D)	110400	40	_	01/		71/	44401	0.401.41/				
4x4 (R) U44R 16 4 2% 2 11½6 4-16d 2-16d 2.51 5.96 2.31 4.58 4x6 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x10 (R) U410R 16 4 8½ 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 4 8½ 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 4 8½ 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 6 5 2 31¾6 8-16d 4-16d 5.03 14.0	2x14 (R)	U210R	16	2	91/8	2	1 1/4	14-160	6-100X1½	5.98	19.37	5.49	13.75
4x6 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 1130 3150 1045 2475 5.03 14.01 4.65 11.01 4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 1130 3150 1045 2475 5.03 14.01 4.65 11.01 4x10 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 4x12 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 6x6 (R) U66R 16 5 2 31¾/6 8-16d 4-16d 1130 3150 1045 2475	1v1 (B)	IIIII	16	1	25/6	2	111/4	1-16d	2-16d	565	1340	520	1030
4x6 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x10 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 4 8% 2 6¼ 14-16d 6-16d 7.54 19.37 6.65 13.75 4x12 (R) U410R 16 6 5 2 3¹³¾6 8-16d 4-16d 7.54 19.37 6.65 13.75 6x6 (R) U66R 16 5 2 3¹³¾6 8-16d 4-16d 130 3150 1045 2475 6x8 (R) U66R 16 6 5 2 3¹³¾6 8-16d 4-16d 1695 4355 <t< td=""><td>4,4 (11)</td><td>04411</td><td>10</td><td>7</td><td>278</td><td></td><td>11/16</td><td>4-10u</td><td>Z-10u</td><td></td><td></td><td></td><td></td></t<>	4,4 (11)	04411	10	7	278		11/16	4-10u	Z-10u				
4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 1130 3150 1045 2475 4x10 (R) U410R 16 4 8½ 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 4 8½ 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 4 8½ 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 6x6 (R) U66R 16 5 2 3½% 8-16d 4-16d 1130 3150 1045 2475 5.03 14.01 4.65 11.01 130 3150 1045 2475 6x8 (R) U66R 16 5 2 3½% 8-16d 4-16d 5.03 14.01 4.65 11.01 6x12 (R) U610R 16 6 8½ 2 8	4x6 (R)	U46R	16	4	45/8	2	3¾	8-16d	4-16d				
4x8 (R) U46R 16 4 4% 2 3¾ 8-16d 4-16d 5.03 14.01 4.65 11.01 4x10 (R) U410R 16 4 8½ 2 6¼ 14-16d 6-16d 7.54 19.37 6.65 13.75 4x12 (R) U410R 16 4 8½ 2 6¼ 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 19.37 6.65 13.75 6x6 (R) U66R 16 6 5 2 3¹¾6 8-16d 4-16d 1130 3150 1045 2475 5.03 14.01 4.65 11.01 130 3150 1045 2475 1045 2475 1045 2475 1045 2475 1045 2475 1130 3150 1045 2475 1045 1045 2475 1045 2475 1045 2475 1045 2475 1045				·		_							-
4x10 (R) U410R 16 4 81/8 2 61/4 14-16d 6-16d 1695 4355 1495 3090 4x12 (R) U410R 16 4 81/8 2 61/4 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 1695 4355 1495 3090 7.54 19.37 6.65 13.75 1893 1893 1895 1895 1895 1895 3090 1895 1895 1895 3090 1895 1895 3090 1895 1895 3090 1895 1895 3090 1895 1895 3090 1895 1895 1895 1895 1895 1895 3090 1895 1895 1895 1895 1895 3090 1895 1895 1895 1895 1895 3090 1895 1895 1895 1895 1895 1895 1895 1895 1895 1895	4x8 (R)	U46R	16	4	45/8	2	33/4	8-16d	4-16d				
4x10 (R) U410R 16 4 81/6 2 61/4 14-16d 6-16d 7.54 19.37 6.65 13.75 4x12 (R) U410R 16 4 81/6 2 61/4 14-16d 6-16d 1695 4355 1495 3090 6x6 (R) U66R 16 6 5 2 313/6 8-16d 4-16d 1130 3150 1045 2475 6x8 (R) U66R 16 6 5 2 313/6 8-16d 4-16d 1130 3150 1045 2475 6x8 (R) U66R 16 6 5 2 313/6 8-16d 4-16d 1130 3150 1045 2475 5.03 14.01 4.65 11.01 1130 3150 1045 2475 6x10 (R) U610R 16 81/2 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R													
4x12 (R) U410R 16 4 81/8 2 61/4 14-16d 6-16d 1695 4355 1495 3090 6x6 (R) U66R 16 6 5 2 313/6 8-16d 4-16d 1130 3150 1045 2475 5x8 (R) U66R 16 6 5 2 313/6 8-16d 4-16d 1130 3150 1045 2475 6x8 (R) U66R 16 6 5 2 313/6 8-16d 4-16d 1130 3150 1045 2475 5x03 14.01 4.65 11.01 1130 3150 1045 2475 6x10 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R)	4x10 (R)	U410R	16	4	81/8	2	61/4	14-16d	6-16d				
4x12 (R) U410R 16 4 8% 2 6% 14-16d 6-16d 7.54 19.37 6.65 13.75 6x6 (R) U66R 16 6 5 2 3½6 8-16d 4-16d 1130 3150 1045 2475 5.03 14.01 4.65 11.01 6x8 (R) U66R 16 6 5 2 3½6 8-16d 4-16d 1130 3150 1045 2475 5.03 14.01 4.65 11.01 6x10 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x12 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090													
6x6 (R) U66R	4x12 (R)	U410R	16	4	81/8	2	61/4	14-16d	6-16d		19.37		
6x8 (R) U66R 16 6 5 2 313/6 8-16d 4-16d 1130 3150 1045 2475 5.03 14.01 4.65 11.01 6x10 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 6x12 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090	GyG (D)	Heed	10	c	E	0	013/	0.164	4 104	1130	3150	1045	2475
6x8 (R) U66R	0X0 (H)	UDDK	10	0	Э		3 19/16	0-100	4-160	5.03	14.01	4.65	11.01
6x10 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 6x12 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75	6x8 (B)	LI66B	16	6	5	2	313/16	8-16d	4-16d	1130	3150	1045	2475
6x10 (R) U610R	ολο (11)	00011	10			_	0 710	0 100	1 100				
6x12 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090 7.54 19.37 6.65 13.75 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090	6x10 (R)	U610R	16	6	81/2	2	8	14-16d	6-16d				
6x12 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 7.54 19.37 6.65 13.75 6x14 (R) U610R 16 6 8½ 2 8 14-16d 6-16d 7.54 19.37 6.65 3090	. ,												
6x14 (B) 11610B 16 6 8½ 2 8 14-16d 6-16d 1695 4355 1495 3090	6x12 (R)	U610R	16	6	81/2	2	8	14-16d	6-16d				
1 6×14 (B) 1 1610B 1 16 1 6 1 8½ 1 2 1 8 1 14-16d 1 6-16d													
1 1 1 1 1 1 1 1 1 1	6x14 (R)	U610R	16	6	81/2	2	8	14-16d	6-16d	7.54	19.37	6.65	13.75

- 1. 10d common nails may be used instead of the specified 16d nails at 0.83 of the tabulated value.
- Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading such as in cantilever construction.
- D.Fir-L factored resistances can be used for most LVL. Verify with manufacturer prior to selecting hanger.
- 4. See page 24 for hangers with reduced capacity due to installation with different nails.
- 5. $d_{\mbox{\scriptsize e}}$ is the distance from the bearing seat to the top joist nail.
- 6. HU rough beam sizes are available by special order. Contact Simpson Strong-Tie for more information.
- 7. NAILS: 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

^{*} Hangers do not have an Installed Cost Index.

TOP FLANGE HANGERS JB/LB/BA/B/HHB Joist, Beam and Purlin Hangers WEINEERED

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

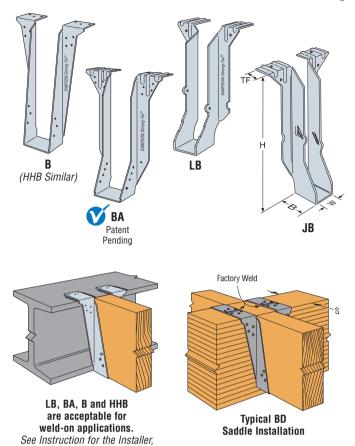
The BA hanger is a cost-effective hanger featuring min/

max joist nailing option. Min Nailing featuring Positive Angle Nailing targets moderate load conditions whereas the Max Nailing generates capacities for higher loads. The unique two level embossment provides added stiffness to the top flange.

The newly improved B hanger offers wide versatility with enhanced load capacities.

See tables on pages 86-89. See Hanger Options on page 213 for hanger modifications, which may result in reduced resistances.

MATERIAL: See tables, pages 86-89.


FINISH: JB, LB, B and BA-Galvanized; HHB-all saddle hangers and all welded sloped and special hangers—Simpson Strong-Tie® gray paint. LB, BA, B and HHB may be ordered hot-dip galvanized; specify HDG.

INSTALLATION: • Use specified fasteners. See General Notes and nailer table.

- LB and B may be used for weld-on applications. The minimum required weld to the top flanges is $\frac{1}{6}$ x 2" ($\frac{1}{6}$ x 1% x 1½" for LB) fillet weld to each side of each top flange tab for 14 and 12 gauge and 3/16" x 2" fillet weld to each side of each top flange tab for 7 and 10 gauge. Distribute the weld equally on both top flanges. Welding cancels the top and face nailing requirements. Consult the code for special considerations when welding galvanized steel. The area should be well-ventilated. Weld-on applications produce the maximum factored down resistance listed. Uplift resistances do not apply to welded applications. (Contact Simpson Strong-Tie for uplift information.)
- Ledgers must be evaluated for each application separately. Check TF dimension, nail length and nail location on ledger.

OPTIONS: • B and HHB

- · Other widths are available; specify W dimension (the minimum W dimension is 1%6" for B and 25%" for HHB).
- Saddle hangers are made to order; add "D" to model (e.g. HHBD412); specify S (for saddle) dimension. They may be used for most conditions except at end wall locations, and are preferred for nailer applications.
- B dimensions may be increased on some models.
- See Hanger Options, page 213.

NAILER TABLE

This table also applies to sloped-seat hangers.

				Resistance 1.00)
Model No.	Nailer	Header Fasteners	D.Fir-L	S-P-F
NU.		rasiciicis	lbs	lbs
			kN	kN
LB/JB	2x	4-10dx11//	1420	855
LD/JD	2.X	4-10ux 172	6.32	3.80
	2x	10-10dx1½	3220	2870
	ZX	10-10ux 1 /2	14.32	12.77
	2-2x	14-10d	3915	3660
BA	Z-ZX	14-10u	17.41	16.28
DA	3x	14-16dx2½	4055	_
	3X	14-10UXZ /2	18.04	_
	4x	14-16d	4055	_
	48	14-10u	18.04	_
	2x	10-10dx1½	2835	2340
	_ ZX	10-10ux 1 /2	12.63	10.42
	2-2x	14-10d	3915	3660
В	Z-ZX	14-100	17.41	16.28
D	3x	14-16dx2½	4055	_
	οx	14-10UXZ/2	18.04	
	4x	14-16d	4055	
		14-100	18.04	

B SERIES WITH VARIOUS HEADER APPLICATIONS

page 22, note m.

		Fastene	rs		Fact	tored Resist	ance	
	6-10d 6-10d 6-10d			Uplift1		Normal (I	$K_D = 1.00$)	
Model Series	Ton	Face	Joist	$(K_D = 1.15)$	D.Fir-L	S-P-F	LVL	PSL
001100	тор	race	Juist	lbs	lbs	lbs	lbs	lbs
				kN	kN	kN	kN	kN
	6-104	10-10d	2-10dx1½	435	4470	3975	4695	5385
ВА	0-100	10-100	Z-10UX 1 72	1.94	19.88	17.68	20.91	23.95
(Min)	6 164	10-16d	2-10dx1½	435	4990	4370	5835	5385
	0-10u	10-160	2-10UX172	1.94	22.23	19.44	25.99	23.95
	6-104	10-10d	8-10dx1½	1960	5265	4035	5825	5945
BA	0-100	10-100	0-10ux172	8.72	23.42	17.95	25.91	26.44
(Max)	6-164	10-16d	8-10dx1½	1960	5940	4370	6490	7075
	0-100	10-100	0-10ux172	8.72	26.42	19.44	28.87	31.47
	6-104	8-10d	6-10dx1½	1650	5265	3590	5825	5230
В	U-10U	0-10u	U-10UX172	7.34	23.42	15.97	25.91	23.26
0	6-164	8-16d	6-16dx2½	1650	5940	3910	6490	5230
	0-100	0-10u	U-10UXZ/2	7.34	26.46	17.39	28.87	23.26

- 1. Factored uplift resistances shown are for D.Fir-L. Multiply tabulated loads x 0.71 for either SPF joist or header. 2. Factored resistances shown are for header connection only. The Designer must ensure the joist is capable of
- generating the factored resistances shown. 3. Applies to LVL headers made primarily from Douglas Fir or Southern Pine. For LVL made primarily from Spruce-Pine-Fir or similar less dense veneers, use the values found in the SPF column.
- 4. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Parallam is registered trademark of iLevel® by Weverhaeuser.

HGLT (fasteners included)

TOP FLANGE HANGERS W/WPU/WNP/WM/WMU/HW/HWU/GLT/HGLT

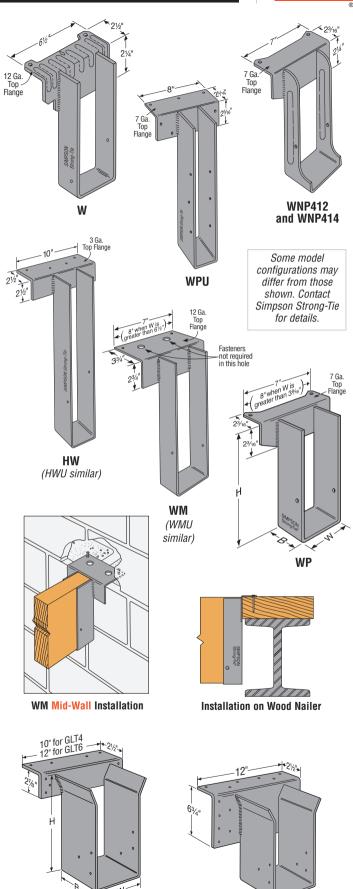
SIMPSON Strong-Tie

The W, WPU, HWU and HW series purlin hangers offer the greatest design flexibility and versatility. WMs are designed for use on standard 8" grouted masonry block wall construction.

MATERIAL: See tables on pages 86-89; W-12 ga. top flange and w—12 ga. top hange and stirrup; WNP, WP, WP, WPU—7 ga. top flange, and stirrup; WNP, WP, WPU—7 ga. top flange, 12 ga. stirrup; HW—3 ga. top flange, 11 ga. stirrup; HWU—3 ga. top flange, 10 ga, stirrup.

FINISH: Simpson Strong-Tie® gray paint; hot-dipped galvanized available: specify HDG, contact Simpson Strong-Tie.

FACTORED RESISTANCES: For hanger heights exceeding the joist height, the factored resistance is 0.50 of the tabulated resistance.


- INSTALLATION: Use all specified fasteners. WM/WMU—two 16d duplex nails must be installed into the top flange and embedded into the grouted wall for mid-wall applications. Verify that the grouted wall can take the required fasteners specified in the table.
 - Hangers may be welded to steel headers with weld size to match material thickness (approximate thickness shown) 1/8" for W, 3/16" for WNP/WPU and 1/4" for HW/HWU, by 11/2" fillet welds located at each end of the top flange. Weld-on applications produce maximum factored resistance listed. Uplift resistances do not apply to this application. (Contact Simpson Strong-Tie for uplift information.)
 - Hangers can support multi-ply carried members; the individual members must be secured together to work as a single unit before installation into the hanger.
 - · H dimensions are sized to account for normal joist shrinkage. W dimensions are for dressed timber widths.
 - Embed WM into block with a minimum of one course above and one course below the top flange with one 15M vertical rebar minimum 24" long in each cell. Minimum grout strength is 15 MPa.
 - See pages 99-100 for GLT and HGLT information.
 - See Hanger Options, page 213 for hanger modifications and associated load reductions.

NAILER TABLE

Solid Sawn Lumber Connectors

The table indicates the maximum factored normal resistances for W. WNP and HW hangers used on wood nailers. Nailers are wood members attached to the top of a steel I-beam, concrete or masonry wall. This table also applies to sloped-seat hangers.

		Top	Fac	tored Resista (K _D = 1.00)	ince
Model	Nailer	Flange	D.Fir-L	S-P-F	LSL
		Nailing	lbs	lbs	lbs
			kN	kN	kN
	2x	2-10dx1½	2470	2470	_
	2X	2-100X172	11.00	11.00	_
	2-2x	2-10d	2730	2730	_
w	2-21	2-10u	12.14	10.61	_
VV	3x	2-16dx21/2	2895	2855	_
	JX.	Z-10UXZ 72	12.88	12.70	_
	4x	2-10d	3025	2855	_
	48	2-10u	13.46	12.70	_
		2-10dx1½	3665	3630	4900
	۷۸	Z-10UX172	16.30	16.15	21.82
	2-2v	2-10d	4475	3760	_
WP/	Z-ZX	2-10u	19.91	16.75	_
WNP	3x	2-16dx2½	4110	3760	_
	OX.	Z-10UXZ 72	18.28	16.75	_
	1.	2-10d	4475	3760	_
	4X	2-10u	19.91	16.75	_
	4x 2-2x	7-10d	4475	3760	_
	Z-ZX	7-10u	19.91	16.75	_
WPU/	3x	7-16dx2½	4110	3760	_
WNPU	ΟX	7-10UXZ /2	18.28	16.75	_
	4x	7-10d	4475	3760	_
	48	7-10u	19.91	16.75	_
	2-2x	4-10d	7600		_
	Z-ZX	4-10u	33.81		_
HW	3x	4-16dx2½	7600		_
IIVV	ΟX	4-10ux272	33.81	_	_
	4x	4-16d	7670	_	_
	47	4-10u	34.16	_	_
	2-2x	8-10d	7880	_	_
	Z-Z X	0-10u	35.05	_	_
HWU	3x	8-16dx21/2	7880	_	_
11000	UA	0-10UAZ 72	35.05	_	<u> </u>
	4x	8-16d	7880	_	_
	47	0-10u	35.05	_	<u> </u>

GLT

(fasteners included)

TOP FLANGE HANGERS W/WPU/WNP/WM/WMU/HW/HWU/GLT/HGLT

W SERIES WITH VARIOUS HEADER APPLICATIONS

	Jo	ist		Fasteners				Fact	ored Resista	ance		
						Uplift ¹			Normal (K _D = 1.00)		
Model No.			_	_		(K _D = 1.15)	D.Fir-L	S-P-F	LVL	PSL	LSL	Masonry
NU.	Width	Depth	Тор	Face	Joist	lbs	lbs	lbs	lbs	lbs	lbs	lbs
						kN	kN	kN	kN	kN	kN	kN
	41/1-4	01/ 1- 00	0.40-1-41/		0.40.1.41/	_	2455	2375	2675	2850	_	_
	1½ to 4	3½ to 30	2-10dx1½	_	2-10dx1½	_	10.92	10.56	11.90	12.68	_	_
14/	11/ to 4	01/ to 00	0.104		0.104v11/	_	2920	2375	3425	3305	_	_
W	1½ to 4	3½ to 30	2-10d	_	2-10dx1½	_	12.99	10.56	15.24	14.70	_	_
	1½ to 4	3½ to 30	2-16d	_	2-10dx1½	_	2955	2375	3820	3190	_	_
	172 10 4	372 10 30	Z-10u		Z-100X172	_	13.15	10.56	16.99	14.19	_	_
	1½ to 7½	3½ to 30	2-16d DPLX	_	2-10dx1½	_		MID-W	ALL INSTAL	I ATION		6060
WM	172 10 172	072 10 00	L TOU DI EX		L TOUXT72	_						26.96
	1½ to 7½	3½ to 30	2-1/4x13/4 Titen	_	2-10dx1½			TOP OF	WALL INSTA	LLATION		5300
						_						23.58
	1½ to 7½	9 to 28	2-16d DPLX	4-1/4x13/4 Titen	6-10dx1½	860		MID-W	ALL INSTAL	LATION		6060
WMU						3.83						26.96
	1½ to 7½	9 to 28	2-1/4x13/4 Titen	4-1/4x13/4 Titen	6-10dx1½	745		TOP OF	WALL INSTA	LLATION		5300
						3.31	4005	00.45	4005	4700		23.58
	1½ to 7½	3½ to 30	3-10dx1½	_	2-10dx1½	_	4095	3345	4695	4720		_
							18.22 4095	14.88 3550	20.89 3665	21.00 4720	5980	_
WP/ WNP	1½ to 7½	3½ to 30	3-10d	_	2-10dx1½	_	18.22	15.79	16.30	21.00	26.60	_
							4430	3855	5950	5430	5980	
	1½ to 7½	3½ to 30	3-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_
						1665	6390	6390	6825	7085	5980	_
WPU/	1¾ to 5½	7¼ to 18	3-16d	4-16d	6-10dx1½	7.41	28.43	28.43	30.36	31.52	26.60	_
WNPU						595	6390	6390	6825	7085	5980	_
	1¾ to 5½	18½ to 28	3-16d	4-16d	6-10dx1½	2.65	28.43	28.43	30.36	31.52	26.60	_
	44/1 74/	047.1.00	4.40.1		0.401.447	_	6900	5285	4695	5810	_	_
LIVAZ	1½ to 7½	3½ to 32	4-10d	_	2-10dx1½	_	30.69	23.51	20.89	25.85	_	_
HW	11/ to 71/	3½ to 32	4 164		2-10dx1½	_	6900	5285	7695	5810	6870	_
	1½ to 7½	3 1/2 10 32	4-16d	_	Z-100X172	_	30.69	23.51	34.23	25.85	30.56	_
	1¾ to 3½	9 to 18	4-16d	4-16d	6-10dx1½	1775	10170	8875	10170	8325	8925	_
	174 10 372	91010	4-100	4-100	0-100X172	7.90	45.24	39.48	45.24	37.03	39.70	_
	1¾ to 3½	18½ to 28	4-16d	4-16d	6-10dx1½	1490	10170	8875	10170	8325	8925	_
	174 10 072	1072 10 20	7 100	7 100	O TOUXT72	6.63	45.24	39.48	45.24	37.03	39.70	_
	1¾ to 3½	28½ to 32	4-16d	4-16d	8-10dx1½	1520	10170	8875	10170	8325	8925	_
HWU						6.76	45.24	39.48	45.24	37.03	39.70	_
-	4½ to 7½	9 to 18	4-16d	4-16d	6-10dx1½	1775	8250	8250	8250	8250	8250	_
						7.90	36.70	36.70	36.70	36.70	36.70	_
	4½ to 7½	18½ to 28	4-16d	4-16d	6-10dx1½	1490	8250	8250	8250	8250	8250	_
						6.63	36.70	36.70	36.70	36.70	36.70	_
	4½ to 7½	28½ to 32	4-16d	4-16d	8-10dx1½	1520	8250	8250	8250	8250	8250	_
						6.76	36.70	36.70	36.70	36.70	36.70	_

^{1.} Factored uplift resistances shown are for D.Fir-L. Multiply tablulated values x 0.71 for either SPF joist or header.

^{2.} Factored resistances shown are for header connection only. The Designer must ensure the joist is capable of generating the factored resistances shown.

^{3.} WMU, WPU and HWU factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase allowed. Reduce by 15% for standard term loading like cantilever construction.

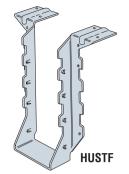
^{4.} Titen $\frac{1}{4}x1\frac{3}{4}$ installed on top of wall after grout has cured.

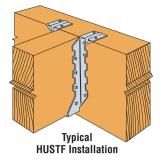
^{5.} **NAILS:** 16d = 0.162" dia. \dot{x} $3\frac{1}{2}$ " long, $10\dot{d} = 0.148$ " dia. \dot{x} 3" long, $10\dot{d}\dot{x}$ 1 $\frac{1}{2}$ = 0.148" dia. \dot{x} 1 $\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

HUSTF Heavy Duty and Double Shear Joist Hangers

SIMPSON
Strong-Tie

See dimensions, material, capacities on table pages. HUSTF has the double shear nailing advantage – distributing the joist load through two points on each nail for greater strength.


FINISH: Galvanized. Some products available with ZMAX® coating. See Corrosion Information, page 18-19.


INSTALLATION:

- Use all specified fasteners. See General Notes.
- Not acceptable for nailer or welded applications; see W and B hangers.
- HUSTF—With 3x carrying members, use 16dx2½" nails into the header and 16d commons into the joist.

OPTIONS:

- See Hanger Options on page 213 for skewed hangers.
- Available with flanges turned in (2-2x and 4x only for HUSCTF).

Nailer application is NOT acceptable. Fasteners cannot be installed

Some model configurations may differ from those shown. Production models have projected seats. Square cut seats may be ordered. Contact Simpson Strong-Tie for details.

TOP FLANGE HANGERS – SOLID SAWN LUMBER

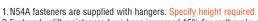
				Dimer			Faste	nore		Factored F			
				(i	n)	1	1 4010		D.F			P-F	Installed
Joist	Model	Ga							Uplift	Normal	Uplift	Normal	Cost
Size	No.		w	н	В	TF	Header	Joist	$(K_D = 1.15)$		$(K_D = 1.15)$	$(K_D = 1.00)$	Index
					-	•••	1100001	00101	lbs	lbs	lbs	lbs	
									kN	kN	kN	kN	
	JB26	18	1%16	5%	11/2	15/16	4-10d	2-PRONG		1595	_	1385	Lowest
	0020	10	1710	078	172	1710	7 100	ZITIONG	_	7.09	_	6.16	LOWOOL
	LB26	14	1%6	5%	1½	1½	4-16d	2-10dx1½	490	2255	455	1405	+79%
2x6	LDZO	17	1710	078	172	172	4 100	Z 100X172	2.18	10.03	2.02	6.26	17070
ZXO	W26	12	1%16	5%	21/2	2½	2-10d	2-10dx1½		2920	_	2375	+710%
	**20	12	1710	078	L /2	L /2	2 100	Z 100X172	_	13.00	_	10.58	171070
	WM26	12	1%16	5%	41/2	33/4	2-16d DPLX	2-10dx1½		5995	_	4600	*
	WWIZO	12	1710	078	7/2	074	Z TOU DI EX	Z 100X172	_	26.67	_	20.46	
	HUS26-2TF	14	31/8	5%	2	13/4	6-16d	4-16d	1745	5130	1240	3645	Lowest
	110020 211	17	078	078		174	0 100	7 100	7.76	22.82	5.51	16.21	LOWOOL
DBL	WNP26-2	12	31/8	5%	2½	23/16	2-10d	2-10d	_	4095	_	3550	+31%
2x6	WINI 20 2	12	070	J / 0	L /2	2/10	2 100	2 100	_	18.24	_	15.81	TO 1 /0
	WM26-2	12	31/8	53%	2½	3/34	2-16d DPLX	2-10d	_	6060	_	5065	*
	VV IVIZO-Z	12	J /8	J /8	2 /2	3/34	2-100 DI LX	Z-10u	_	26.96		22.53	
	JB28	18	1%16	71/4	1½	15/16	4-10d	2 PRONG		1555		1385	Lowest
	3020	10	1716	1 /4	1 / 2	1716	4-100	21110110	_	6.92	_	6.16	LUWGSI
	LB28	14	1%16	71/4	1½	1½	4-16d	2-10dx1½	490	2080	455	1405	+69%
2x8	LDZO	17	1 / 10	1 /4	172	172	4 100	2 10UX172	2.18	9.25	2.02	6.26	+03/0
2.00	W28	12	1%6	71/8	2½	2½	2-10d	2-10dx1½	_	2895	_	2385	+541%
	WZ0	12	1 / 10	1 /0	L /2	L /2	2 100	2 10UX172	_	12.88	_	10.61	T JT 170
	WM28	12	1%6	71/8	41/2	33/4	2-16d DPLX	2-10dx1½	_	5995	_	4600	*
	VVIVIZO	12	1710	1 /0	7/2	074	Z TOU DI LX	2 10UX172	_	26.67	_	20.46	
	HUS28-2TF	14	31/8	71/4	2	11//8	8-16d	6-16d	2540	6825	1805	4480	Lowest
	110020 211	17	078	1 /4		170	0 100	0 100	11.30	26.91	8.03	19.93	LOWOOL
DBL	WNP28-2	12	31/8	71/8	2½	23/16	2-10d	2-10d		4095	_	3550	+30%
2x8	****** 20 2		070	170	-/-	2710	2 100	2 100	_	18.22		15.81	10070
	WM28-2	12	31/8	71/8	2½	33/4	2-16d DPLX	2-10d		6060		5065	*
	***************************************		070	170	-/-	074	E TOU DI EX	2 100	_	26.96		22.53	
	JB210	18	1%16	91/4	2	13/16	4-16d	2 PRONG		1945		1610	Lowest
	05210		1710	074	_	1710	1 100	21110110		8.65	_	7.16	LOWOOL
	LB210	14	1%16	91/4	2	11/2	4-16d	2-10dx1½	490	2540	490	1990	+28%
2x10		ļ.,		<u> </u>				00,,2	2.18	11.3	2.18	8.85	.2070
	W210	12	1%16	91/8	2½	2½	2-10d	2-10dx1½		2920	_	2375	+327%
	.=								_	13.00	_	10.58	
	WM210	12	1%16	91/8	41/2	3¾	2-16d DPLX	2-10dx1½		5995		4600	*
						-/-			_	26.67	_	20.46	

Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading such as in cantilever construction.

^{2.} NAILS: 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

^{*} Hangers do not have an Installed Cost Index.

TOP FLANGE HANGERS – SOLID SAWN LUMBER


				Dimer	sions		Feet			Factored F	Resistance		
					n)		Faste	eners	D.F	ir-L	S-I	P-F	
Joist	Model	Ga							Uplift	Normal	Uplift	Normal	Installed Cost
00.01	No.	-	w	н	В	TF	Header	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	Index
									lbs	lbs	lbs	lbs	
									kN 3795	kN 6755	kN 3450	kN 5435	
	HUS210-2TF	14	31/8	91/4	2	1½	10-16d	8-16d	16.88	30.05	15.35	24.18	Lowest
DBL	WNP210-2	12	01/	01/	01/	03/	0.104	0.404	_	4095	_	3550	. 200/
2x10	WINF 2 10-2	12	31/8	91/8	2½	23/16	2-10d	2-10d	_	18.22	_	15.79	+ 32%
	WM210-2	12	31/8	91/8	2½	3¾	2-16d DPLX	2-10d		6060		5065	*
										26.96 2135		22.53 1610	
	JB212	18	1%16	1111/8	2	13/16	6-16d	2 PRONG	_	9.50	_	7.16	Lowest
	LB212	14	1%6	111//8	2	1½	4-16d	2-10dx1½	490	2590	455	1990	+ 29%
2x12			1710	1170	_	172	1 100	L TOUXT72	2.18	11.52	2.02	8.85	1 20 70
	W212	12	1%16	11	2½	2½	2-10d	2-10dx1½		2920 12.99		2375 10.56	+ 331%
	14/14/04/0	40	40/		417	02/	0.40-1.001.V	0.40.141/	_	5995	_	4600	*
	WM212	12	1%16	11	4½	3¾	2-16d DPLX	2-10dx1½	_	26.67	_	20.46	,
	HUS212-2TF	14	31/8	111//8	2	21/4	10-16d	8-16d	3765	6755	2675	5435	Lowest
DDI									16.75	30.05 4095	11.90	24.18 3550	
DBL 2x12	WNP212-2	12	31/8	11	2½	23/16	2-10d	2-10d		18.22	_	15.79	+ 20%
	WW.010.0	10	01/	11	01/	03/	0 164 DDI V	0.104	_	6060	_	5065	*
	WM212-2	12	31/8	11	2½	3¾	2-16d DPLX	2-10d	_	26.96	_	22.53	
	W36	12	29/16	5%	2	2½	2-10d	2-10dx1½		2920	_	2375	*
3x6										12.99 6060	_	10.56 5065	
	WM36	12	29/16	5%	3	3¾	2-16d DPLX	2-10dx1½		26.96	_	22.53	*
	B38	12	2%16	71/8	2½	2½	14-16d	6-16dx ²¹ / ₂	1650	5940	1170	3910	Lowest
	БОО	12	Z716	1 78	2 72	2 72	14-100	0-10ux-72	7.34	26.42	5.20	17.39	LUWESI
3x8	W38	12	2%16	71/8	2	2½	2-10d	2-10dx1½		2920		2375	+ 38%
										12.99 6060	_	10.56 5065	
	WM38	12	29/16	71/8	3	3¾	2-16d DPLX	2-10dx1½	_	26.96	_	22.53	*
	B310	12	2%16	91/8	21/2	2½	14-16d	6-16dx ²¹ / ₂	1650	5940	1170	3910	Lowest
	D010	12	2/16	378	2/2	2/2	14-100	0-10ux 72	7.34	26.42	5.20	17.39	LUWGSI
3x10	W310	12	2%16	91/8	2	2½	2-10d	2-10dx1½	_	2920 12.99	_	2375 10.56	+ 46%
					_				_	6060	_	5065	
	WM310	12	29/16	91/8	3	3¾	2-16d DPLX	2-10dx1½	_	26.96	_	22.53	*
	B312	12	2%16	11	2½	2½	14-16d	6-16dx ² ½	1650	5940	1170	3910	Lowest
		·-							7.34	26.42 4095	5.20	17.39 3550	
3x12	WNP312	12	29/16	11	21/2	23/16	2-10d	2-10dx1½		18.22	_	15.79	+ 41%
	WW.1010	10	00/	11	2	03/	2-16d DPLX	0.104911/	_	6060	_	5065	*
	WM312	12	2%16	11	3	3¾	2-100 DPLX	2-10dx1½	_	26.96	_	22.53	
	HUS46TF	14	3%16	5%	2	1½	6-16d	4-16d	1745	5130	1240	3645	Lowest
									7.76	22.82 2920	5.52	16.21 2375	
40	W46	12	3%16	5%	2½	2½	2-10d	2-10d	_	12.99	_	10.56	+ 41%
4x6	HW46	11	3%16	5%	2½	2½	4-10d	2-10d	_	7620	_	4695	+ 177%
	110040	- ' '	0716	378	2/2	2/2	7 100	2 100		33.90	_	20.89	T 177 /0
	WM46	12	3%16	5%	21/2	3¾	2-16d DPLX	2-10d		6060 26.96	_	5380 23.93	*
					_				435	4990	310	4370	
	BA48 (min)	14	3%16	71/8	3	2½	16-16d	2-10dx1½	1.94	22.20	1.38	19.44	Lowest
	BA48 (max)	14	3%16	71/8	2½	2½	16-16d	8-10dx1½	1960	5940	1565	4370	+ 4%
	Diviso (man)		07.10	.,,				o rouxing	8.72	26.42	6.96	19.44	,,
	B48	12	3%16	71/8	2½	2½	14-16d	6-16d	1650 7.34	5940 26.42	1170 5.20	3910 17.39	+ 71%
40	LUICACTE	4.4	00/	71/	_	4.11.7	0.40-1	0.40:1	2540	6285	1805	4480	700/
4x8	HUS48TF	14	3%16	71/4	2	111/16	8-16d	6-16d	11.30	27.96	8.03	19.93	+ 76%
	W48	12	3%16	71/8	2½	2½	2-10d	2-10d	_	2920	_	2375	+ 105%
		<u> </u>		_	_	_				12.99 7620	<u> </u>	10.56 4695	
	HW48	11	3%16	71/8	2½	2½	4-10d	2-10d		33.90	_	20.89	+ 300%
	\/\/\/\/\Q	10	29/	71/	21/	3¾	3-164 DDI ∧	2-104	_	6060	_	5830	*
	WM48	12	3%16	71/8	2½	3%4	2-16d DPLX	2-10d	_	26.96	_	25.93	

TOP FLANGE HANGERS – SOLID SAWN LUMBER (DF/SP)

					nsions		Faste	nore			Resistance		
				(iı	n)	1	1 4310	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ir-L	S-I		Installed
Joist	Model	Ga							Uplift	Normal	Uplift	Normal	Installed Cost
	No.		w	н	В	TF	Header	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	Index
							lioudoi	00.01	lbs	lbs	lbs	lbs	
									kN	kN	kN	kN	
	BA410 (min)	14	3%16	91/4	3	2½	16-16d	2-10dx1½	435	4990	310	4370	Lowest
	DA410 (IIIII)	14	3716	974	٥	2 72	10-100	Z-100X172	1.94	22.20	1.38	19.44	LUWESI
	DA 410 (max)	11	20/	01/	2	01/	10 104	0.1045/11/	1960	5940	1565	4370	. 40/
	BA410 (max)	14	3%16	91/4	3	2½	16-16d	8-10dx1½	8.72	26.42	6.96	19.44	+ 4%
l	1110 44075		201	01/		447	40.40.1	0.40.1	3795	6755	3450	5435	500/
	HUS410TF	14	3%16	91/4	2	1½	10-16d	8-16d	16.88	30.05	15.35	24.18	+ 59%
	D 440	40	00/	01/	01/	01/	44.40:1	0.40.1	1650	5940	1170	3910	700/
	B410	12	3%16	91/8	2½	2½	14-16d	6-16d	7.34	26.42	5.20	17.39	+ 72%
									_	2920	_	2375	
4x10	W410	12	3%16	91/8	21/2	2½	2-10d	2-10d	_	12.99	_	10.56	+ 91%
									_	7620	_	4695	
	HW410	11	3%16	91/8	21/2	21/2	4-10d	2-10d	_	33.90	_	20.89	+ 270%
				71/2					2905	9625	2060	5225	
	GLT4 ¹	7	3%16	Min.	5	21/2	10-N54A	6-N54A	12.92	42.82	9.16	23.24	*
									2905	14885	2060	9830	
	HGLT4 ¹	7	3%16	7½ Min.	6	21/2	18-N54A	6-N54A					*
				IVIIII.					12.92	66.21	9.16	43.73	
	WM410	12	3%16	91/8	21/2	3¾	2-16d DPLX	2-10d		6060		5830	*
										26.96	_	25.93	
	BA412 (min)	14	3%16	11	3	21/2	16-16d	2-10dx1½	435	4990	310	4370	Lowest
									1.94	22.20	1.38	19.44	
	BA412 (max)	14	3%16	11	3	2½	16-16d	8-10dx1½	1960	5940	1565	4370	+ 3%
	Bittie (max)		0710			-/-	10 100	0 100X172	8.72	26.42	6.96	19.44	1 0 70
	HUS412TF	14	3%16	111//8	2	2	10-16d	8-16d	3795	6755	2675	5435	+ 28%
	110041211	14	3716	1178			10-100	0-10u	16.88	30.05	11.90	24.18	T 20 /0
	B412	12	3%16	11	2½	2½	14-16d	6-16d	1650	5940	1170	3910	+ 72%
	D412	12	3 716	11	2 72	Z 72	14-10u	0-10u	7.34	26.42	5.20	17.39	+ / 2 70
4,40	WND440	12	20/	44	01/	03/	0.404	0.404	_	4095	_	3550	. 1000/
4x12	WNP412	12	3%16	11	2½	23/16	2-10d	2-10d	_	18.22	_	15.79	+ 100%
	1004440		007		01/	01/	4.40.1	0.40.1	_	7620	_	4695	0.400/
	HW412	11	3%16	11	2½	2½	4-10d	2-10d	_	33.90	_	20.89	+ 248%
	01.74	_	00/	71/2	_	047	40 NE 44	0.115.44	2905	9625	2060	5225	
	GLT4 ¹	7	3%16	Min.	5	2½	10-N54A	6-N54A	12.92	42.82	9.16	23.24	*
				71/2					2905	14885	2060	9830	
	HGLT4 ¹	7	3%16	Min.	6	2½	18-N54A	6-N54A	12.92	66.21	9.16	43.73	*
									_	6060	_	5830	
	WM412	12	3%16	11	21/2	33/4	2-16d DPLX	2-10d	_	26.96	_	25.93	*
									_	4095	_	3550	
	WNP66	12	5½	5%	21/2	25/16	3-10d	2-10d		18.22	_	15.79	Lowest
									_	6900	_	5285	
6x6	HW66	11	5½	5%	21/2	21/2	4-10d	2-10d		30.69		23.51	+ 51%
										6060		6060	
	WM66	12	5½	5%	21/2	3¾	2-16d DPLX	2-10d	_				*
									4050	26.96		26.96	
	B68	12	5½	71/8	21/2	2½	14-16d	6-16d	1650	5940	1170	3910	Lowest
									7.34	26.42	5.20	17.39	
	WNP68	12	5½	71/8	21/2	25/16	3-10d	2-10d		4095		3550	+ 52%
6x8									_	18.22	_	15.79	
	HW68	11	5½	71/8	2½	2½	4-10d	2-10d		6900		5285	+ 134%
									_	30.69	_	23.51	
	WM68	12	5½	71/8	21/2	33/4	2-16d DPLX	2-10d		6060	_	6060	*
		'-	372	, , ,	-/2	374	- IOU DI LA	_ 10u	_	26.96		26.96	

Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading such as in cantilever construction.

Solid Sawn Lumber Connectors

^{3.} NAILS: $16d = 0.162^{\circ}$ dia. x $3\frac{1}{2}^{\circ}$ long, $10d = 0.148^{\circ}$ dia. x 3° long, $10dx1\frac{1}{2} = 0.148^{\circ}$ dia. x $1\frac{1}{2}^{\circ}$ long. See page 24-25 for other nail sizes and information.

^{*} Hangers do not have an Installed Cost Index.

TOP FLANGE HANGERS – SOLID SAWN LUMBER (DF/SP)

				Dimer			Faste	ners			Resistance		
				(i	n)		1 4010			ir-L		P-F	Installed
Joist	Model	Ga							Uplift	Normal	Uplift	Normal	Cost
	No.		W	Н	В	TF	Header	Joist	(K _D = 1.15)	(K _D = 1.00)	,	$(K_D = 1.00)$	Index
									lbs	lbs	lbs	lbs	
									kN	kN	kN	kN	
	B610	12	5½	91/8	2½	2½	14-16d	6-16d	1650	5940	1170	3910	Lowest
									7.34	26.42	5.20	17.39	
	WNP610	12	5½	91/8	2½	25/16	3-10d	2-10d		4095	_	3550	+ 34%
										18.22	_	15.79	
	HW610	11	5½	91/8	21/2	21/2	4-10d	2-10d		6900	_	5285 23.51	+ 125%
6x10				71/					2905	30.69 9625	2060	5225	
	GLT6 ¹	7	5%16	7½ Min.	5	21/2	10-N54A	6-N54A	12.92	42.82	9.16	23.24	*
				7½					2905	14885	2060	9830	
	HGLT6 ¹	7	5%16	Min.	6	21/2	18-N54A	6-N54A	12.92	66.21	9.16	43.73	*
									-	6060		6060	
	WM610	12	5½	91/8	2½	3¾	2-16d DPLX	2-10d	_	26.96	_	26.96	*
	D010	40	F1/		01/	01/	44401	0.401	1650	5940	1170	3910	
	B612	12	5½	11	2½	2½	14-16d	6-16d	7.34	26.42	5.20	17.39	Lowest
	LIMETO	44	E1/	-14	01/	01/	4 104	0.404	_	6900	_	5285	. 1050/
	HW612	11	5½	11	2½	2½	4-10d	2-10d	_	30.69	_	23.51	+ 125%
6x12	HHB612	7	5½	11	3	2½	10-N54A	6-N54A	3340	8570	_	_	*
0.8.12	11110012	'	J72	111	3	2 72	10-N34A	0-NJ4A	14.86	38.12	_	_	
	GLT6 ¹	7	5%16	71/2	5	2½	10-N54A	6-N54A	2905	9625	2060	5225	*
	GLIO	'	J / 16	Min.	J	2 /2	IU-INJ4A	0-11347	12.92	42.82	9.16	23.24	
	HGLT61	7	5%16	7½	6	2½	18-N54A	6-N54A	2905	14885	2060	9830	*
	HGETO	'	0710	Min.	0	L /2	10 110-171	0 110-171	12.92	66.21	9.16	43.73	
	B614	12	5½	13	2½	2½	14-16d	6-16d	1650	5940	1170	3910	Lowest
									7.34	26.42	5.20	17.39	
	HW614	11	5½	13	2½	21/2	4-10d	2-10d		6900	_	5285	+ 98%
									3340	30.69 8570	_	23.51	
6x14	HHB614	7	5½	13	3	21/2	10-N54A	6-N54A	14.86	38.12			+ 192%
				7½					2905	9625	2060	5225	
	GLT6 ¹	7	5%16	Min.	5	2½	10-N54A	6-N54A	12.92	42.82	9.16	23.24	*
				7½					2905	14885	2060	9830	
	HGLT6 ¹	7	5%16	Min.	6	21/2	18-N54A	6-N54A	12.92	66.21	9.16	43.73	*
	5010								1650	5940	1170	3910	
	B616	12	5½	15	2½	2½	14-16d	6-16d	7.34	26.42	5.20	17.39	Lowest
	1114040		F1/	45	01/	01/	4.40.4	0.40-1	_	6900	_	5285	000/
	HW616	11	5½	15	2½	2½	4-10d	2-10d	_	30.69	_	23.51	+ 89%
6,16	UUD616	7	E 1/:	15	3	01/	10 NE 40	C NEAA	3340	8570	_	_	. 17/10/
0110	HHB616	1	5½	15	3	2½	10-N54A	6-N54A	14.86	38.12	_	_	+ 174%
	GLT6 ¹	7	5%16	7½	5	2½	10-N54A	6-N54A	2905	9625	2060	5225	*
	GLIO		0710	Min.		L /2	10 110 471	0 110-171	12.92	42.82	9.16	23.24	
	HGLT61	7	5%16	7½	6	2½	18-N54A	6-N54A	2905	14885	2060	9830	*
				Min.					12.92	66.21	9.16	43.73	
8x6	HW86	7	71/2	5%	2½	2½	4-10d	2-10d	_	6900	_	5285	*
									_	30.69 6900	_	23.51 5285	
8x8	HW88	7	71/2	71/8	2½	2½	4-10d	2-10d		30.69		23.51	*
									_	6900	_	5285	
8x10	HW810	7	71/2	91/8	2½	21/2	4-10d	2-10d		30.69	_	23.51	*
										6900		5285	
0 /-	HW812	7	71/2	11	2½	2½	4-10d	2-10d	_	30.69	_	23.51	Lowest
8x12	IIIIDOAC	_	7. /	4.		0: /	40 N.5.44	0.115.4.4	3340	8570	_	_	0004
	HHB812	7	7½	11	3	2½	10-N54A	6-N54A	14.86	38.12	_	_	+ 92%
	LI/A/O4 4	7	71/	40	01/	01/	1 10-1	0.404	_	6900	_	5285	Lowest
0,44	HW814	7	7½	13	2½	2½	4-10d	2-10d	_	30.69	_	23.51	Lowest
8x14	⊔⊔В01/	7	7½	13	3	2½	10-N54A	6-N54A	3340	8570		_	+ 87%
	HHB814	′	1 72	10	٥	∠72	IU-NU4A	U-IND4A	14.86	38.12	_	_	+ 07 70
	HW816	7	71/2	15	21/2	21/2	4-10d	2-10d	_	6900	_	5285	Lowest
8x16			172		-/2	-/2	1 100	_ 100	_	30.69	_	23.51	LOWOOL
27.10	HHB816	7	71/2	15	3	21/2	10-N54A	6-N54A	3340	8570	_		83%
									14.86	38.12	_		

LSU/LSSU Adjustable Light Slopeable/Skewable U Hangers

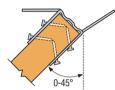
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The LSU and LSSU series of hangers may be sloped and skewed in the field, offering a versatile solution for attaching joists and rafters. These hangers may be sloped up or down and skewed left or right, up to 45°.

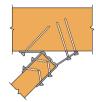
MATERIAL: See table

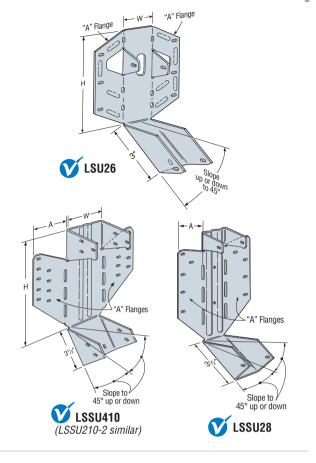
FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.


- Attach the sloped joist at both ends so that the horizontal force developed by the slope is fully supported by the supporting members.
- To see an installation video on this product, visit www.strongtie.com.
- 10dx1½" nails cannot be substituted for the specified face nails when skewed or sloped and skewed combinations.

LSU and LSSU INSTALLATION SEQUENCE


(For Skewed or Sloped/Skewed Applications)


STEP 1 Nail hanger to slope-cut carried member, installing seat nail first. No bevel necessary for skewed installation. Install joist nails at 45° angle.

STEP 2 Skew flange from 0-45°. Bend other flange back along centerline of slots until it meets the header. Bend one time only.

STEP 3
Attach hanger to the carrying member, acute angle side first. Install nails at an angle.

📄 These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

				Dimensions	3	Engl	eners		Factored I	Resistance	
				(in)		rasi	ellers	D.F	ir-L	S-I	P-F
Joist Width	Model	Ga						Uplift	Normal	Uplift	Normal
(in)	No.	ua	w	н	Α	Face	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
(,			VV	п	A	гасе	Juist	lbs	lbs	lbs	lbs
								kN	kN	kN	kN
						Sloped On	ly Hangers				
1½	LSU26	18	19/16	47/8	1½	6-10d	5-10dx1½	830	1255	715	895
1 72	L3020	10	I 716	478	1 72	0-10u	J-100X172	3.69	5.58	3.18	3.98
1½	LSSU28	18	1%6	71/8	1½	10-10d	5-10dx1½	800	3000	565	2130
1 /2	100020	10	1716	1 /8	1 /2	10-100	J-100X172	3.56	13.34	2.51	9.47
1½	LSSU210	18	1%6	8½	15%	10-10d	7-10dx1½	1240	3090	1130	2325
1 /2	L000210	10	1716	0 /2	178	10-100	7-10UX172	5.52	13.75	5.03	10.34
21/2	LSSUH310	16	2%16	8½	31/8	18-16d	12-10dx1½	1625	4205	1155	2985
L /2	200011010	10	2716	0 /2	J/8	10-100	12-10ux172	7.23	18.70	5.14	13.28
3	LSSU210-2	16	31/8	81/2	27/8	18-16d	12-10dx1½	1625	5355	1155	3805
0	2000210 2	10	070	072	2/0	10 100	12 TOUX 172	7.23	23.82	5.14	16.93
3½	LSSU410	16	3%16	8½	25/8	18-16d	12-10dx1½	1625	5355	1155	3805
072	2000410	10	0710	072	270	10 100	12 TOUX 172	7.23	23.82	5.14	16.93
					Skewe	d Hangers or	Sloped and Sk	rewed			
417	1.01100	10	49/	47/	41/	0.404	E 40441/	830	1255	715	895
1½	LSU26	18	1%16	47/8	1½	6-10d	5-10dx1½	3.69	5.58	3.18	3.98
1½	LSSU28	18	1%6	71/8	1½	9-10d	5-10dx1½	735	1360	525	965
I 72	L55U20	10	I 716	1 78	1 72	9-100	5-100X172	3.27	6.05	2.34	4.29
1½	LSSU210	18	1%6	81/2	15%	9-10d	7-10dx1½	1240	2090	910	1485
I 72	L550210	10	I 716	0 72	178	9-100	7-100X172	5.52	9.30	4.05	6.61
21/2	LSSUH310	16	2%16	8½	31/8	14-16d	12-10dx1½	1625	2620	1155	1860
2 72	LOGUITOTO	10	∠716	072	378	14-100	12-10ux 1 72	7.23	11.65	5.14	8.27
3	LSSU210-2	16	31/8	81/2	27/8	14-16d	12-10dx1½	1625	3055	1155	2170
J	L00021032	10	J/8	0 /2	2 /8	14-100	12-10UA172	7.23	13.59	5.14	9.65
3½	LSSU410	16	3%16	8½	25/8	14-16d	12-10dx1½	1625	3055	1155	2170
372	L330410	10	3716	072	Z78	14-100	12-10UX172	7.23	13.59	5.14	9.65

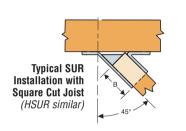
- 1. Factored uplift resistances include a 15% increase for earthquake or wind loading; no further increase is allowed; reduce when other loads govern.
- 2. NAILS: 16d = 0.162" dia. x 3½" long, 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

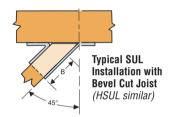
SUR/SUL/HSUR/HSUL Skewed 45° Hangers

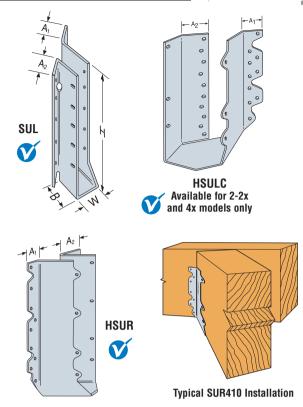
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The SUR/L and HSUR/L series of hangers are skewed 45° left or right. Angled nail slots direct nails for proper installation.

MATERIAL: SUR and SUL—16 gauge; HSUR and HSUL—14 gauge


FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.


INSTALLATION: • Use all specified fasteners. See General Notes.


- These hangers will normally accommodate a 40° to 50° skew.
- Illustration shows left and right skews SUR/L (SUR = skewed right; SUL = skewed left).
- The joist end may be square cut or bevel cut.

OPTIONS: • Available with the A₂ flange (acute side) turned in on the 2-2x and 4x models only (see illustration).

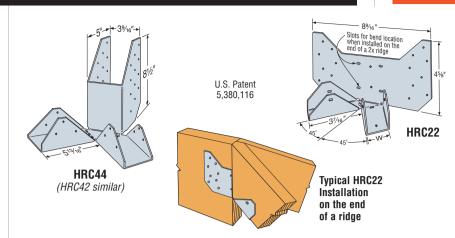
- To order, add "C" (for concealed) to the product name.
- For example, specify HSURC46, HSULC46, SURC46, or SULC46.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

			D	imensior	18		Faste			Factored F	Resistance	
				(in)			гази	silei 2	D.F	ir-L	S-I	P-F
Joist	Model								Uplift	Normal	Uplift	Normal
Size	No.	w	н	В	A ₁	A ₂	Face	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
		VV	"	, B	A	H2	race	30131	lbs.	lbs.	lbs.	lbs.
									kN	kN	kN	kN
2x4	SUR/L24	1%6	31/2	2	11//8	11/4	4-16d	4-10dx1½	850	1210	600	860
2.84	30N/L24	I 716	3 /2		1 /8	1 /4	4-100	4-100X172	3.78	5.38	2.67	3.83
2x6, 8	SUR/L26	1%16	5	2	11/8	15/16	6-16d	6-10dx1½	1255	2130	890	1530
2.00, 0	0011/120	1710	0		170	1710	0 100	0 100X172	5.58	9.47	3.96	6.81
2x10. 12	SUR/L210	1%16	81/8	2	11/8	15/16	10-16d	10-10dx1½	2085	3820	1480	2710
ZX10, 12	0011/2210	1710	070		170	1710	10 100	10 1000/172	9.27	16.99	6.58	12.05
2x12, 14	SUR/L214	1%16	10	2	11/8	15/16	12-16d	12-10dx1½	2690	4585	2175	3255
EXIL, II	0011/2211	1710	10		170	1710	12 100	12 1000/172	11.97	20.40	9.67	14.48
3x10. 12	SUR/L2.56/9	2%16	813/16	33/16	11//8	21/8	14-16d	2-10dx1½	385	3950	275	2805
0X10, 12	0011/22.00/0	2710	0 710	0710	170	270	11 100	2 1000/172	1.71	17.57	1.22	12.48
	SUR/L26-2	31/8	415/16	25/8	1 ½16	2%	8-16d	4-16dx2½	1130	2035	1045	1380
(2) 2x6, 8	0011/2202	070	1 710		1710	270	0 100	1 TOUXE / E	5.03	9.05	4.65	6.14
(=) =:::, :	HSUR/L26-2	31/8	415/16	27/16	11/4	23/16	12-16d	4-16dx2½	1230	2750	1090	1955
		0.1					.=		5.47	12.23	4.85	8.70
	SUR/L210-2	31/8	811/16	25/8	17/16	23/8	14-16d	6-16dx2½	1695	4065	1540	2450
(2) 2x10, 12									7.54	18.08	6.85	10.90
(=/ =, :=	HSUR/L210-2	31/8	811/16	27/16	11/4	23/16	20-16d	6-16dx2½	1840	5270	1540	3745
		0,0	• 7.10	27.0	.,,	27.0	20 .00	0.100%272	8.18	23.44	6.85	16.66
	SUR/L46	3%16	43/4	25/8	1	2%	8-16d	4-16d	1130	2035	1045	1380
4x6, 8	3311,213	07.10	.,,		·		0 .00		5.03	9.05	4.65	6.14
, -	HSUR/L46	3%16	43/4	27/16	1	23/16	12-16d	4-16d	1230	2750	1090	1955
					•		.=		5.47	12.23	4.85	8.70
	SUR/L410	3%16	81/2	27/16	1	23/16	14-16d	6-16d	1695	4065	1540	2450
4x10, 12									7.54	18.08	6.85	10.90
,	HSUR/L410	3%16	81/2	27/16	1	23/16	20-16d	6-16d	1840	5270	1540	3745
		07.10	0,2		·		20 100	0 100	8.18	23.44	6.85	16.66

^{1.} Factored uplift resistances have been increased by 15% for earthquake or wind loading with no further increase allowed; reduce for other load durations as required by code.

^{2.} NAILS: 16d = 0.162" dia. x 3½" long, 16dx2½ = 0.162" dia. x 2½" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.


MATERIAL: HRC22, HRC42—16 gauge; HRC44—14 gauge

FINISH: Galvanized

Solid Sawn Lumber Connectors

INSTALLATION: • Use all specified fasteners. See General Notes.

- On end of ridge—use optional diamond holes on HRC22 and HRC42 to secure the HRC. Bend face flanges on HRC22 back flush with ridge, and complete nailing.
- HRC22 on face of ridge-adjust to correct height and install nails.
- Double bevel-cut hip members to achieve full bearing capacity.

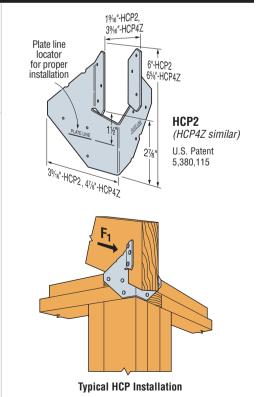
	Mei	mber Size	Faste	noro		Factored F	Resistance	
		(in)	гази	ilei 2	D.F	ir-L	S-I	P-F
Model					Uplift	Down	Uplift	Down
No.	w	Ridge	Carrying	Each	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	VV	niuye	Member	Hip	lbs	lbs	lbs	lbs
					kN	kN	kN	kN
HRC22	1%6	2x or 1¾"	16-10dx1½	2-10dx11//	445	1340	400	950
TINUZZ	1716	2X UI 174	10-10ux 1 72	Z-10ux172	1.98	5.96	1.78	4.23
HRC42	1%6	4x	16-16d	2-10dx1½	445	1515	400	1075
11042	I 716	48	10-100	Z-10UX172	1.98	6.74	1.78	4.78
HRC44	3%16	4x	24-16d	6-16d	790	2625	560	2035
1111044	J 716	7.7	24-10u	0-10u	3.51	11.68	2.49	9.05

- 1. Factored resistances shown are for each hip. Total resistance carried by the connector is double this number. 2. Factored uplift resistances include a 15% increase for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- 3. NAILS: 16d = 0.162" dia. x 3½" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

HCP Hip Corner Plates

The HCP connects a rafter or joist to double top plates at a 45° angle.

MATERIAL: 18 gauge


FINISH: HCP2—galvanized or ZMAX® coating; HCP4Z—ZMAX coating

INSTALLATION: • Use all specified fasteners. See General Notes.

- · Attach HCP to double top plates; birdsmouth not required for table values.
- Install rafter and complete nailing. Rafter may be sloped to 45°.
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

		Faste	noro		Factored F	Resistance	
		гази	:11612	D.F	ir-L	S-I	P-F
Model	Hip			Uplift	F ₁	Uplift	F ₁
No.	Size	To	To	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
		Hip	Plates	lbs	lbs	lbs	lbs
				kN	kN	kN	kN
HCP2	2x	6-10dx1½	6-10dx1½	1020	355	890	325
пога	_ ZX	0-100X172	0-10ux172	4.54	1.58	3.96	1.45
HCP4Z	4x	8-10d	8-10d	1485	435	1300	310
поР4Д	4X	0-100	0-100	6.61	1.94	5.78	1.38

- 1. The HCP can be installed on the inside and the outside of the wall with a flat bottom chord truss and achieve twice the factored resistance.
- 2. Factored uplift resistances include a 15% increase for earthquake or wind loading; no further increase allowed.
- 3. **NAILS:** 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

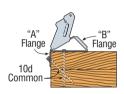
VPA Adjustable Variable Pitch Connectors

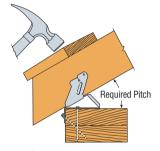
SIMPSON
Strong-Tie

The VPA may be sloped in the field, offering a versatile solution for attaching rafters to the top plate. It will adjust to accommodate slopes between 3:12 and 12:12, making it a complement to the versatile LSSU. This connector eliminates the need for notched rafters, beveled top plates and toe nailing.

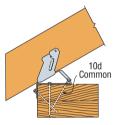
MATERIAL: 18 gauge FINISH: Galvanized

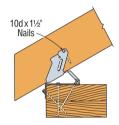
INSTALLATION: • Use all specified fasteners.


See General Notes.


			Engt	eners				Factored F	Resistance)		
	Actual		газі	GIIGI 2		D.I	Fir-L			S-	P-F	
Model	Joist	W			Wind/Ear	thquake ($K_D = 1.15$	Normal	Wind/Ear	thquake ($K_D = 1.15$	Normal
No.	Width	(in)	Carrying	Carried	Uplift	F ₁	F ₂	$(K_D = 1.00)$	Uplift	F ₁	F ₂	$(K_D = 1.00)$
	(in)		Member	Member	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
					kN	kN	kN	kN	kN	kN	kN	kN
VPA2	11/2	1%16	8-10d	2-10dx1½	405	695	405	1695	370	615	370	1555
VFAZ	1 72	I 716	0-10u	Z-100X172	1.80	3.09	1.80	7.54	1.65	2.74	1.65	6.92
VPA3	21/2	29/16	9-10d	2-10dx1½	405	695	405	2050	370	615	370	1855
VEAS	Z72	∠716	9-10u	2-10ux172	1.80	3.09	1.80	9.12	1.65	2.74	1.65	8.25
VPA4	3½	3%16	11-10d	2-10dx11/2	405	695	405	2050	370	615	370	1855
V r'A4	372	J /16	11-100	2-10UX172	1.80	3.09	1.80	9.12	1.65	2.74	1.65	8.25

- 1. Factored uplift and lateral resistances have been increased 15% for earthquake or wind loading; no further increase is allowed.
- 2. Resistances may not be increased for short-term load duration.
- 3. NAILS: 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

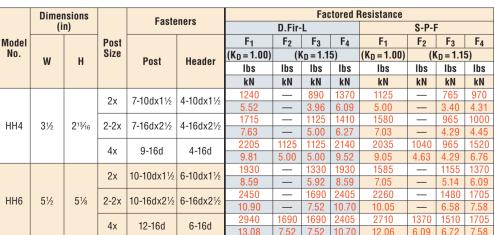

VPA INSTALLATION SEQUENCE

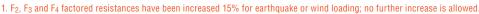

<u>STEP 1</u> Install top nails and face PAN nails in "A" flange to outside wall top plate.

STEP 2
Seat rafter with a hammer, adjusting "B" flange to the required pitch.

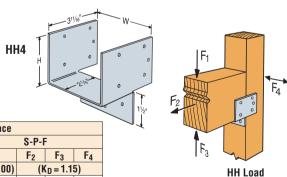
STEP 3
Install "B" flange nails in the obround nail holes, locking the pitch.

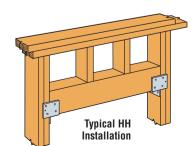
Install 10dx1½" nail into tab nail hole. Hammer nail in at a slight angle to prevent splitting


HH Header Hangers


For fast, accurate installation of door and window headers and other cross members. HH header hangers can speed up the job, strengthen the frame, and eliminate the need for trimmers.

MATERIAL: 16 gauge FINISH: Galvanized


INSTALLATION: • Use all specified fasteners. See General Notes.


 Attachment to 2x studs will result in two round holes not being filled in the studs and reduction in capacity. See table for capacities and nailing requirements.

^{2.} **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Directions

THA/THAC Adjustable Truss Hangers

Min

Model

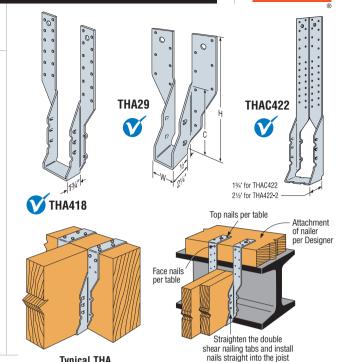
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The THA series' extra long straps allow full nailing and can be field-formed to give top flange hanger convenience.

MATERIAL: See table FINISH: Galvanized

INSTALLATION: • Use all specified fasteners. See General Notes.

Two different installation methods may be used:


- Face Mount—Install all face nails according to the table. Nails used for the ioist attachment must be driven at an angle so that they penetrate through the corner of the joist into the header. With single 2x carrying members, use 10dx11/2" nails into the carrying member, and 10d commons into the carried member, when 10d nails are specified and use 0.77 of the table value. When 16d nails are specified use 10dx11/2" nails into the carrying member and 16d commons into the carried member for 0.64 of the table value.
- Top Flange—For the THA29, the top-flange nailing schedule requires the use of joist double shear nailing as detailed above, and that the strap be fieldformed over the header a minimum of 2½". A minimum of four top and four face nails must be used. For all models except the THA29, the top-flange nailing schedule may be followed where double shear nailing is not possible, provided the strap is field-formed over the top of the header a minimum of . 1½" for the THA213 and THA413, and 2" for all others, and a minimum of four top and two face nails are used. The joist double shear nailing tabs are easily straightened so that the nails can be driven straight into the joist.

OPTIONS: • THA hangers available with the header flanges turned in for 3%' (except THA413) and larger, with no reduction in capacity - order THAC hanger.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Dimensions

(in)

Typical THA Top-Flange Installation

Normal

D.Fir-L

Factored Resistance

Uplift

Normal

Typical THA Top-Flange Nailing Configuration on a 4x Nailer (except THA29)

SIMPSON

Strong-Tie

Double Shear Nailing Top View

Double Shear Nailing Side View Do not bend tab unless otherwise noted

Dome Double Shear Nailing prevents tabs breaking off (available on some models)

U.S. Patent 5,603,580

TOP-FLANGE INSTALLATION	Size	No.	ua	w	н	С	Top	Face	Straight	Slant	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
Top-flange installation	0.20			VV	"	U	TOP	1 406	Straight	Siaiit	lbs	lbs	lbs	lbs
THA29											kN	kN	kN	kN
THA213 18 1% 13% 5½ 4-10d 2-10d 4-10dx1½ — 2225 — 1760 THA213 18 1% 17% 5½ 4-10d 2-10d 4-10dx1½ — 2225 — 1760 THA218 18 1% 17% 5½ 4-10d 2-10d 4-10dx1½ — 2225 — 1760 THA218-2 16 3% 17½ 8 4-16d 2-16d 6-16dx2½ — 2675 — 2405 THA222-2 16 3% 22% 8 4-16d 2-16d 6-16dx2½ — 2675 — 2405 THA413 18 3% 13% 4¼ 4-10d 2-10d 4-10d — 2225 — 1655 THA418 16 3% 17½ 7% 4-16d 2-16d 6-16d — 2257 — 2405 THA422 16 3% 22 7% 4-16d 2-16d 6-16d — 22675 — 2405 THA422 16 3% 22 7% 4-16d 2-16d 6-16d — 11.90 — 10.70 THA422 16 3% 22 7% 4-16d 2-16d 6-16d — 2675 — 2405 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — 2675 — 2405 THA213 18 1% 13% 5½ — 16-10d — 4-10d 1.50 3440 750 2455 THA213 18 1% 17% 5½ — 18-10d — 4-10d 1.20 2785 1290 2210 THA218 18 1% 17% 5½ — 18-10d — 4-10d 1.20 2785 1290 2210 THA218 18 1% 17% 8 — 16-16d — 6-16d — 6-16d — 2785 1290 2210 THA218 18 1% 17% 8 — 16-16d — 6-16d — 6-16d — 6-16d 1.30 21.20 8.03 15.06 THA218 18 3% 13% 4½ — 14-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 3% 13% 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17% 8 — 16-16d — 6-16d — 6-16d 1.30 21.20 8.03 15.06 THA218 18 3% 13% 13% 4½ — 14-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17% 8 — 16-16d — 6-16d — 6-16d 1.30 21.20 8.03 15.06 THA218 18 3% 13% 13% 4½ — 14-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17% 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17% 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17% 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17% 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17% 5½ — 18-10d — 6-16d 11.30 21.20 8.03 15.06 THA222-2 16 3% 22% 8 — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA418 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06							TOP	-FLANGE	INSTALLAT	TION				
THA213 18 1% 13% 5½ 4-10d 2-10d 4-10dx1½ — 9.90 — 7.83 THA218 18 1% 17% 5½ 4-10d 2-10d 4-10dx1½ — 9.90 — 7.83 THA218-2 16 3¼ 17½ 8 4-16d 2-16d 6-16dx2½ — 11.90 — 10.70 THA222-2 16 3½ 22% 8 4-16d 2-16d 6-16dx2½ — 2675 — 2405 THA413 18 3% 13% 4½ 4-10d 2-10d 4-10d — 11.90 — 10.70 4x6 THA413 18 3% 17½ 7% 4-16d 2-16d 6-16d — 2225 — 1655 THA418 16 3% 17½ 7% 4-16d 2-16d 6-16d — 19.90 — 7.36 THA418 16 3% 22 7% 4-16d 2-16d 6-16d — 2675 — 2405 THA422 16 3% 22 7% 4-16d 2-16d 6-16d — 19.90 — 10.70 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — 3590 — 2660 THA213 18 1% 13% 5½ — 14-10d — 4-10d 4.67 15.30 3.34 10.92 2x6 THA213 18 1% 17½ 8 — 16-10d — 4-10d 4.67 15.30 3.34 10.92 THA218 18 1% 17¾ 5½ — 18-10d — 4-10d 4.67 15.30 3.34 10.92 THA218 18 1% 17¾ 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 8 — 16-16d — 6-16d — 6-16d 24.93 5.55 1290 2210 THA218 18 1% 17¾ 8 — 16-16d — 6-16d — 6-16d 2540 5550 1805 450 THA218 18 1% 17¾ 7½ 7% — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 8 — 16-16d — 6-16d — 6-16d 11.30 21.20 8.03 15.06 THA213 18 3% 13¾ 6½ 6 7 — 14-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 16 3¾ 17½ 7½ — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA212 16 3¾ 22¾ 6 8 — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA212 16 3¾ 22¾ 6 — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA418 16 3¾ 17½ 7½ — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA418 16 3¾ 17½ 7½ — 16-16d — 6-16d 11.30 21.20 8.03 15.06	04	TUAGO	40	45/	011/	F1/	4 404	4 404		4 404	1050	3450	750	2720
THA213	2X4	THA29	18	1%	9'1/16	5 1/8	4-100	4-100	_	4-100	4.67	15.35	3.34	12.10
Thache		TU A 212	10	15/	125/	514	1-10d	2-104	1-10dv11/		_	2225	_	1760
THA218 18 1% 17% 5½ 4-10d 2-10d 4-10dx1½ — 9.90 — 7.83 THA218-2 16 3% 171% 8 4-16d 2-16d 6-16dx2½ — 11.90 — 10.70 THA222-2 16 3% 22% 8 4-16d 2-16d 6-16dx2½ — 2675 — 2405 THA413 18 3% 13% 4½ 4-10d 2-10d 4-10d — 2225 — 1655 THA418 16 3% 17½ 7% 4-16d 2-16d 6-16d — 9.90 — 7.36 THA418 16 3% 22 7% 4-16d 2-16d 6-16d — 2675 — 2405 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — 11.90 — 10.70 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — 15.97 — 11.80 THA213 18 1% 13% 5½ — 14-10d — 4-10d 1420 2785 1290 2210 THA218 18 1% 17% 5½ — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 1% 17% 5½ — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 1% 17% 5½ — 18-10d — 4-10d 130 2785 1290 2210 THA218 18 1% 17% 8 — 16-16d — 6-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 3% 13% 4½ — 14-10d — 4-10d 1.30 24.69 8.03 18.46 THA218 18 3% 13% 4½ — 14-10d — 4-10d 1.30 24.69 8.03 15.06 THA218 18 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 16 3% 27% — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 16 3% 27% — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 16 3% 27% — 22-16d — 6-16d 580 5850 1805 4150 THA218 18 16 3% 27% — 22-16d — 6-16d 580 5850 1805 4150 THA218 18 16 3% 27% — 22-16d — 6-16d 580 5850 1805 4150 THA218 18 16 3% 27% — 22-16d — 6-16d 580 5850 1805 4150 THA218 18 16 3% 27% — 22-16d — 6-16d 580 5850 1805 4150 THA218 18 16 3% 27% — 22-16d — 6-16d 580 5850 1805 4150 THA222-2 16 3% 22 7% — 22-16d — 6-16d 580 5850 1805 4150 THA228 14 3% 26 7% — 22-16d — 6-16d 580 5850 1805 4150 THA418 16 3% 27% — 22-16d — 6-16d 580 5850 1805 4150 THA418 16 3% 27% — 22-16d — 6-16d 580 5850 1805 4150 THA428 14 3% 26 7% — 22-16d — 6-16d 580 5850 1805 4150 THA428 14 3% 26 7% — 22-16d — 6-16d 580 5850 1805 4150	2×6	IIIAZIS	10	178	13716	J 72	4-10u	2-10u	4-10ux172		_		_	
2-2x10 THA218-2 16 31/6 1711/16 8 4-16d 2-16d 6-16dx21/2 — 2675 — 2405 THA222-2 16 31/6 221/6 8 4-16d 2-16d 6-16dx21/2 — 11.90 — 10.70 4x6 THA413 18 33/6 131/6 41/2 4-10d 2-10d 4-10d — 2225 — 1655 THA418 16 33/6 171/2 71/6 4-16d 2-16d 6-16d — 11.90 — 10.70 4x10 THA422 16 33/6 22 71/6 4-16d 2-16d 6-16d — 2675 — 2405 THA428 14 33/6 26 71/6 4-16d 4-16d 6-16d — 2675 — 2405 THA428 18 11/6 131/6 51/2 — 14-10d — 4-10d 1050 3440 750 2455 THA213 18 11/6 131/6 51/2 — 14-10d — 4-10d 1420 2785 1290 2210 2x4 THA213 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 2785 1290 2210 THA218 18 11/6 171/6 51/2 — 18-10d — 4-10d 1420 3555 1290 255 THA218 18 11/6 171/6 51/2 — 14-10d — 4-10d 1420 3555 1290 2525 THA218 18 18 18 18 18 18 18 18 18 18 18 18 1	2.00	THA218	18	15/8	173/16	51/2	4-10d	2-10d	4-10dx11/2	_			_	
2-2x10 THA218-2 16 33% 171% 8 4-16d 2-16d 6-16dx2½ — — — — — — — — — — — — — — — — — — —														
THA222-2 16 3% 22% 8 4-16d 2-16d 6-16dx2½ — — — 2675 — 2405 4x6 THA413 18 3% 13% 4½ 4-10d 2-10d 4-10d — — 2225 — 1655 THA418 16 3% 17½ 7% 4-16d 2-16d 6-16d — — 2675 — 2405 THA422 16 3% 22 7% 4-16d 2-16d 6-16d — — 11.90 — 10.70 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — — 2675 — 2405 THA246 14 3% 26 7% 4-16d 4-16d 6-16d — — 11.90 — 10.70 THA429 18 1% 9¹½ 5½ — 16-10d — 4-10d 4.67 15.30 3.34 10.92 THA213 18 1% 13% 5½ — 14-10d — 4-10d 4.67 15.30 3.34 10.92 THA218 18 1% 17% 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17% 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17½ 8 — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA22-2 16 3½ 22% 8 — 22-16d — 6-16d 11.30 24.69 8.03 18.46 THA418 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA418 16 3% 17½ 7% — 16-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 27 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 27 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 27 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 27 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 27 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 28 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 28 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 28 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 28 7% — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3% 28 7% — 22-16d — 6-16d 2540 4765 800 803 15.06		THA218-2	16	31/8	1711/16	8	4-16d	2-16d	6-16dx2½	_				
HA222-2 16 3% 22% 8 4-16d 2-16d 6-16dx2½	2-2x10													
4x6 THA413 18 3% 13%6 4½ 4-10d 2-10d 4-10d — 9.90 — 7.36 THA418 16 3% 17½ 7% 4-16d 2-16d 6-16d — 2675 — 2405 THA422 16 3% 22 7% 4-16d 2-16d 6-16d — 2675 — 2405 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — 3590 — 2660 THA218 18 1% 9½6 5% — 16-10d — 4-10d 4.67 15.30 3.34 10.92 2x6 THA213 18 1% 13%6 5½ — 14-10d — 4-10d 4.67 15.30 3.34 10.92 2x6 THA218 18 1% 17½6 5½ — 14-10d — 4-10d 4.67 15.30 3.34 10.9		THA222-2	16	31/8	223/16	8	4-16d	2-16d	6-16dx2½	—				
THA418 16 3% 13% 4 4/2 4-10d 2-10d 4-10d — 9.90 — 7.36 THA418 16 3% 17½ 7% 4-16d 2-16d 6-16d — 11.90 — 10.70 THA422 16 3% 22 7% 4-16d 2-16d 6-16d — 2675 — 2405 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — 11.90 — 10.70 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — 3590 — 2660 THA218 18 1% 13% 5½ — 16-10d — 4-10d 4.67 15.30 3.34 10.92 THA213 18 1% 13% 5½ — 14-10d — 4-10d 4.67 15.30 3.34 10.92 THA218 18 1% 17½ 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17½ 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218-2 16 3½ 17½ 8 — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA22-2 16 3½ 22½ 8 — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA418 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA418 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA418 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA428 14 3% 26 7% — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA428 14 3% 26 7% — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA428 14 3% 26 7% — 22-16d — 6-16d 11.30 26.02 8.03 15.06 THA428 14 3% 26 7% — 22-16d — 6-16d 11.30 26.02 8.03 18.46														
THA418 16 3% 17½ 7% 4-16d 2-16d 6-16d — — 2675 — 2405 THA422 16 3% 22 7% 4-16d 2-16d 6-16d — — 2675 — 2405 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — — 11.90 — 10.70 THA426 14 3% 26 7% 4-16d 4-16d 6-16d — — 3590 — 2660 THA29 18 1% 9¹¼ 5¼ — 16-10d — 4-10d 1050 3440 750 2455 THA213 18 1½ 13¾ 5½ — 14-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1½ 17¾ 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1½ 17¼ 8 — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA218 18 3½ 13¾ 6 4½ — 14-10d — 4-10d 6.32 12.39 5.50 1805 4150 THA218 18 1½ 17¼ 6 5½ — 18-10d — 6-16d 11.30 21.20 8.03 18.46 THA413 18 3½ 13¾ 6 4½ — 14-10d — 4-10d 6.32 12.39 5.74 9.83 THA418 16 3½ 17¼ 6 8 — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA413 18 3½ 13¾ 6 4½ — 14-10d — 4-10d 6.32 15.81 5.74 11.23 THA418 16 3½ 17½ 7½ — 16-16d — 6-16d 11.30 21.20 8.03 18.46 THA418 16 3½ 17½ 7½ — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA422 16 3½ 22 7½ — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA428 14 3½ 26 7½ — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA428 14 3½ 26 7½ — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA428 14 3½ 26 7½ — 22-16d — 6-16d 11.30 21.20 8.03 18.46 THA429 16 3½ 22 7½ — 22-16d — 6-16d 11.30 21.20 8.03 18.46 THA420 14 3½ 26 7½ — 22-16d — 6-16d 11.30 21.20 8.03 18.46	4x6	THA413	18	3%	135/16	$4\frac{1}{2}$	4-10d	2-10d	4-10d	_	_		_	
Ax10		T110 440	40	05/	471/	77/	4.40.1	0.40.1	0.40.1		_		_	
That		1HA418	16	3%	1/1/2	1 1/8	4-160	2-160	6-160	_	_	11.90	_	10.70
THA426 14 3% 26 7% 4-16d 4-16d 6-16d — — 3590 — 2660 — 15.97 — 11.83 FACE-MOUNT INSTALLATION 2x4 THA29 18 1% 9¹¼6 5½ — 16-10d — 4-10d 4.67 15.30 3.34 10.92 THA213 18 1⅓ 13¾6 5½ — 14-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1⅓ 17¾6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1⅓ 17¾6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218-2 16 3⅓ 17¹¼6 8 — 16-16d — 6-16d 11.30 21.20 8.03 15.06 4x6 THA413 18 3¾ 13¾6 4½ — 14-10d — 4-10d 6.32 12.39 5.74 THA418 16 3¾ 13¾6 4½ — 14-10d — 6-16d 11.30 24.69 8.03 18.46 4x6 THA413 18 3¾ 13¾6 4½ — 14-10d — 4-10d 1420 3555 1290 2525 THA418 16 3¾ 17¼7 7¾ — 16-16d — 6-16d 11.30 24.69 8.03 15.06 4x10 THA422 16 3¾ 27 7¼ — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA428 14 3¾6 26 7¼6 — 22-16d — 6-16d 11.30 21.20 8.03 15.06	4v10	TU / 100	16	25/	22	77/-	1-16d	2-164	6-164		_		_	
THA426	47.10	1114422	10	378	22	1 78	4-10u	2-10u	0-10u		_		_	
Thach Thac		THA426	14	35/8	26	77/8	4-16d	4-16d	6-16d	_			_	
2x4 THA29 18 1% 9½6 5½ — 16-10d — 4-10d 1050 3440 750 2455 2x6 THA213 18 1½ 13½6 5½ — 14-10d — 4-10d 1420 2785 1290 2210 3x8 17¾6 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 1420 2785 1290 2210 6.32 12.39 5.74 9.83 2-2x10 THA218-2 16 3½ 17½6 8 — 16-16d — 6-16d 11.30 21.20 8.03 15.06 2-2x10 THA218-2 16 3½ 17½6 8 — 16-16d — 6-16d 11.30 21.20 8.03 15.06 4x6 THA413 18 3½ 13½6 4½ — 14-10d — 4-10d 450 15.81 5.74 11.23<											_	15.97	_	11.83
2x4							FACI	E-MOUN	INSTALLA	IIUN	1050	0.440	750	0.455
THA213 18 1% 13% 5½ — 14-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1% 17¾ 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218 18 1½ 17¾ 8 — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA222-2 16 3½ 22¾ 8 — 22-16d — 6-16d 11.30 24.69 8.03 18.46 4x6 THA413 18 3¾ 13¾ 4½ — 14-10d — 4-10d 4-10d 2540 3555 1290 2525 THA418 16 3¾ 17½ 7¾ — 16-16d — 6-16d 11.30 21.20 8.03 15.06 THA422 16 3¾ 22 7¾ — 22-16d — 6-16d 2540 4765 1805 3385 THA418 16 3¾ 17½ 7¾ — 16-16d — 6-16d 2540 4765 1805 3385 THA428 14 3¾ 26 7¾ — 22-16d — 6-16d 2540 5850 1805 4150 THA426 14 3¾ 26 7¾ — 22-16d — 6-16d 2540 5850 1805 4150 THA426 14 3¾ 26 7¾ — 22-16d — 6-16d 2540 5850 1805 4150 THA426 14 3¾ 26 7¾ — 22-16d — 6-16d 2540 6295 1805 4545	2x4	THA29	18	1%	911/16	51/8	_	16-10d	_	4-10d				
2x6														
THA218 18 1% 17¾6 5½ — 18-10d — 4-10d 1420 2785 1290 2210 THA218-2 16 3½ 17¾6 8 — 16-16d — 6-16d 2540 4765 1805 3385 THA218-2 16 3½ 22¾6 8 — 22-16d — 6-16d 11.30 21.20 8.03 15.06 THA222-2 16 3½ 22¾6 8 — 22-16d — 6-16d 11.30 24.69 8.03 18.46 4x6 THA413 18 3½ 13¾6 4½ — 14-10d — 4-10d 1420 3555 1290 2525 THA418 16 3¾ 17½ 7¾ — 16-16d — 6-16d 2540 4765 1805 3385 THA418 16 3¾ 17½ 7¾ — 16-16d — 6-16d 2540 4765 1805 3385 THA422 16 3¾ 22 7¾ — 22-16d — 6-16d 2540 5850 1805 4150 THA426 14 3¾ 26 7¼ — 30-16d — 6-16d 2540 5850 1805 4150 THA426 14 3¾ 26 7¼ — 30-16d — 6-16d 2540 6295 1805 4545		THA213	18	1%	135/16	$5\frac{1}{2}$	_	14-10d	_	4-10d				
THA218 18 1% 17% 5½ — 18-10d — 4-10d 6.32 12.39 5.74 9.83 THA218-2 16 3½ 17½ 8 — 16-16d — 6-16d 2540 4765 1805 3385 THA222-2 16 3½ 22½ 8 — 22-16d — 6-16d 11.30 24.69 8.03 15.06 4x6 THA413 18 3½ 13½ 4½ — 14-10d — 4-10d 420 3555 1290 2525 THA418 16 3½ 17½ 7½ — 16-16d — 6-16d 11.30 21.20 8.03 15.06 4x10 THA422 16 3½ 22 7½ — 22-16d — 6-16d 2540 5850 1805 4150 THA426 14 3½ 26 7½ — 30-16d — 6-16d 2540 5850 1805 4150 THA426 14 3½ 26 7½ — 30-16d — 6-16d 2540 6295 1805 4545	2x6												-	
2-2x10 THA218-2 16 3% 17½ 8 — 16-160 — 6-160 11.30 21.20 8.03 15.06 4x6 THA413 18 3% 13½ 4½ — 14-10d — 4-10d 1420 3555 1290 2525 THA418 16 3% 17½ 7% — 16-16d — 6-16d 2540 4765 1805 3385 4x10 THA422 16 3% 22 7% — 22-16d — 6-16d 2540 5850 1805 4150 THA426 14 3% 26 7% — 30-16d — 6-16d 2540 6295 1805 4545		THA218	18	1%	173/16	$5\frac{1}{2}$	_	18-10d	_	4-10d				
2-2x10 THA222-2 16 31/6 223/6 8 — 22-16d — 6-16d 2540 5550 1805 4150 4x6 THA413 18 31/6 41/2 — 14-10d — 4-10d 3555 1290 2525 THA418 16 31/8 171/2 71/8 — 16-16d — 6-16d 2540 4765 1805 3385 THA422 16 31/8 22 71/8 — 22-16d — 6-16d 2540 5850 1805 4150 THA426 14 31/8 26 71/8 — 30-16d — 6-16d 2540 6295 1805 4545		TIIA 010 0	10	01/	1711/	0		10 104		6 164	2540	4765	1805	3385
THA222-2 16 31/8 223/6 8 — 22-16d — 6-16d 2540 5550 1805 4150 11.30 24.69 8.03 18.46 4x6 THA413 18 31/8 135/6 41/2 — 14-10d — 4-10d 420 3555 1290 2525 6.32 15.81 5.74 11.23 THA418 16 31/8 171/2 71/8 — 16-16d — 6-16d 2540 4765 1805 3385 11.30 21.20 8.03 15.06 4x10 THA422 16 31/8 22 71/8 — 22-16d — 6-16d 2540 5850 1805 4150 11.30 26.02 8.03 18.46 THA426 14 31/8 26 71/8 — 30-16d — 6-16d 2540 6295 1805 4545	2-2×10	1HAZ18-2	10	3 1/8	I / ' 1/16	ð		16-160		6-160				
4x6 THA413 18 3% 13%6 4½ — 14-10d — 4-10d 1420 3555 1290 2525 THA418 16 3% 17½ 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 4x10 THA422 16 3% 22 7% — 22-16d — 6-16d 2540 5850 1805 4150 THA426 14 3% 26 7% — 30-16d — 6-16d 2540 6295 1805 4545	Z-ZX10	THA222-2	16	31%	223/46	8	_	22-16d	_	6-16d				
THA418 16 35% 17½ 7% — 16-16d — 6-16d 2540 4765 1805 3385 11.30 21.20 8.03 15.06 THA422 16 35% 22 7% — 22-16d — 6-16d 2540 5850 1805 4150 11.30 26.02 8.03 18.46 THA426 14 356 26 7% — 30-16d — 6-16d 2540 6295 1805 4545		IIIALLL L	10	070	22/10			22 TOU		0 100				
THA418 16 3% 17½ 7% — 16-16d — 6-16d 2540 4765 1805 3385 11.30 21.20 8.03 15.06 11.30 21.20 8.03 15.06 11.30 26.02 8.03 18.46 11.30 26.02 8.03 18.46 11.30 26.02 8.03 18.46	4x6	THA413	18	35%	135/16	41/2	_	14-10d	_	4-10d				
4x10 THA422 16 3% 22 7% — 16-16d — 6-16d 11.30 21.20 8.03 15.06 15 15 16 3% 22 7% — 22-16d — 6-16d 2540 5850 1805 4150 11 10														
4x10 THA422 16 35% 22 77% — 22-16d — 6-16d 2540 5850 1805 4150 11.30 26.02 8.03 18.46 THA426 14 356 26 776 — 30-16d — 6-16d 2540 6295 1805 4545		THA418	16	35/8	171/2	77/8	_	16-16d	_	6-16d				
4XIU 1HA422 10 3% 22 7% — 22-100 — 6-100 11.30 26.02 8.03 18.46 THA426 14 3% 26 7% — 30-16d — 6-16d 2540 6295 1805 4545														
THA426 14 356 26 776 — 30-16d — 6-16d 2540 6295 1805 4545	4x10	THA422	16	35/8	22	71/8	_	22-16d	_	6-16d				
HΔ42b 14 3% 2b 7% — 3H-1bθ — b-1bθ		TUA 400	4.4	05/	0.0	77/		00.404		0.404				
11.00 20.00 0.00 20.22		THA426	14	3%	26	11/8	_	30-16d	_	6-16d	11.30	28.00	8.03	20.22

Fasteners

Joist

Header

- 1. Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed; reduce where other loads govern.
- 2. **NAILS:** 16d = 0.162" dia. x 3½" long, 16dx2½ = 0.162" dia. x 2½" long, 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 11/2" long. See page 24-25 for other nail sizes and information.

FACE MOUNT HANGERS HU/HUCQ/HGUS Glulam Beam & Double Shear Joist Hangers

See Hanger Options on pages 212 for hanger modifications, which may result in reduced loads.

HU-Most models have triangle and round holes. To achieve maximum factored resistances, fill both round and triangle holes with common nails.

HGUS—The highest factored resistances available for nailed face mount hangers.

All hangers in this series have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation, and the use of common nails for all connections. (Do not bend or remove tabs)

MATERIAL: See tables

FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

- HU—can be installed filling round holes only, or filling round and triangle holes for maximum values.
- HGUS-Nails must be driven at an angle through the joist into the header to achieve the table values.
- · Not designed for nailer applications.
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated resistance.
- With 3x carrying members, use 16dx2½" (0.162" dia. x 2½" long) nails into the header and 16d commons into the joist with no reduction in resistances. With 2x carrying members, use 10dx1½" (0.148" dia. x 1½" long) nails into the header and 10d commons into the joist, and reduce the factored resistances to 0.64 of the table value.

OPTIONS: • HU hangers available with the header flanges turned in for 25/16" and larger widths, with no reduction in resistances—order HUC hanger.

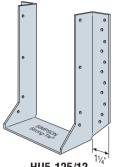
- See Hanger Options on pages 212, for sloped and/or skewed HU models, and HUC (concealed flange) models.
- · Concealed flanges are not available for HGUS.

Double

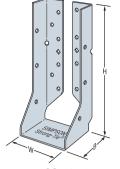
Shear

Nailing

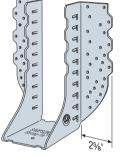
Other sizes available; contact Simpson Strong-Tie.

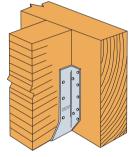


Double Shear Nailing Side View Do not bend tab back



Dome Double Shear Nailing prevents tabs breaking off (available on some models)


U.S. Patent 5,603,580



HUC05.25/9

HGUS3.25/12

Typical HU Installation

Model configurations may differ from those shown. Some HU models do not have triangle holes. Contact Simpson Strong-Tie for details.

Projection seat on most models for maximum bearing and section economy.

			D	imens	ions (i	n)	Faste	eners		Factored F	Resistance	
									D.Fir-L	Glulam	Spruce-Pi	ne Glulam
Joist	Model								Uplift	Normal	Uplift	Normal
Size	No.	Ga	W	Н	В	de4	Face	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
									lbs	lbs	lbs	lbs
									kN	kN	kN	kN
	HU3.25/10.5	4.4	01/	101/	01/	07/	00.404	10 104	2635	5780	2450	4690
	HUC3.25/10.5	14	31/4	101/4	2½	9%	22-16d	10-10d	11.72	25.75	10.90	20.86
	HU3.25/12	14	31/4	113/4	2½	11%	24-16d	12-10d	3160	5780	2695	5780
	HUC3.25/12	17	074	1174	2.72	1170	24 100	12 100	14.06	25.75	11.99	25.75
31/8	HU3.25/16	14	31/4	13%	2½	13½	26-16d	12-10d	3160	5780	2695	5780
GLULAM	HUC3.25/16	1-7	074	1078	L /2	1072	20 100	12 100	14.06	25.75	11.99	25.75
	HGUS3.25/10	12	31/4	85/6	4	81/4	46-16d	16-16d	6840	14645	4855	10400
	110000.20/10		074	070	'	0,4	10 100	10 100	30.47	65.23	21.60	46.26
	HGUS3.25/12	12	31/4	10%	4	101/4	56-16d	20-16d	7640	14995	5425	10645
									33.98	66.79	24.13	47.35
	HUCQ5.25/9-SDS	14	51/4	9	3	8	12-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	7270	2900	7645
									14.28	32.34	12.90	34.01
	HUCQ5.25/11-SDS	14	51/4	11	3	8	14-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	9090	2900	7645
	11115 405 440						/4 XZ /2	/4 XZ/2	14.28 2455	40.44 5780	12.90 2280	34.01 5780
	HU5.125/12 HUC5.12/12	14	51/4	101/4	2½	9%	22-16d	8-16d	10.92	25.75	10.14	25.75
51/8	HU5.125/13.5								3685	5780	2615	5780
GLULAM	HUC5.125/13.5	14	51/4	131/4	2½	12%	26-16d	12-16d	16.39	25.75	11.63	25.75
	HU5.125/16								3685	5780	2615	5780
	HUC5.125/16	14	51/4	13%	2½	13½	26-16d	12-16d	16.39	25.75	11.63	25.75
	1101105 05/40	40	F1/	01/		01/	40.40.	10.10.	6840	14645	4855	10400
	HGUS5.25/10	12	51/4	91/16	4	81/4	46-16d	16-16d	30.47	65.23	21.60	46.26
	LICUICE OF (10	12	E1/	109/	4	103/	EC 104	20.164	7640	14995	5425	10645
	HGUS5.25/12	12	51/4	10%16	4	103/16	56-16d	20-16d	33.98	66.79	24.13	47.35

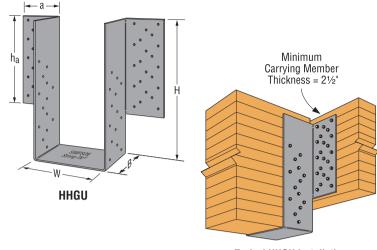
- 1. 10d common nails may be used instead of the specified 16d nails at 0.83 of the tabulated resistance value.
- 2. Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading.
- 3. MIN nailing quantity and load values- fill all round holes: MAX nailing quantity and load valuesfill all round and triangle holes.
- 4. de is the distance from the bearing seat to the top joist nail.
- 5. For proprietary non-standard glulam sizes, see pages 110-112 for structural composite lumber
- 6. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information

Glulam Beam Connectors

LGU/MGU/HGU/HHGU High Capacity Girder Hangers

The GU hangers are high-capacity girder hangers designed for situations where the header and joist are flush at the top. These products can be used for retrofit on the framing members after they are temporarily placed in position. Simpson Strong-Tie® Strong-Drive® screws make installation fast and easy, with no pre-drilling required.

MATERIAL: See table


FINISH: LGU/MGU—Galvanized, HGU/HHGU—Simpson Strong-Tie® gray paint

INSTALLATION:

- Use all specified fasteners. See General Notes.
- Install with Simpson Strong-Tie SDS ¼"x2½" screws, which are provided with the hangers. (Note: lag screws will not achieve the same loads.)
- All multiple members must be fastened together to act as a single unit.
- Multiple member headers may require additional fasteners at the hanger locations. The quantity and location of the additional fasteners must be determined by the Designer.

OPTIONS: • LGU, MGU and HGU hangers may be skewed up to 45°.

- One flange can be concealed for some sizes.
- For proprietary non-standard glulam sizes, see page 113 for structural composite lumber.
- See Hanger Options page 212.

Typical HHGU Installa	atior	Install	Typical HHGU
-----------------------	-------	---------	--------------

			D	imensio	ns		East	eners		Factored F	Resistance	
				(in)			rasit	511613	D.F	ir-L	S-I	P-F
Model	Ga								Uplift	Normal	Uplift	Normal
No.	ua	w	В	Min.	h		Header	laiat	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
		VV	D	Height (H)	ha	a	пеацег	Joist	lbs	lbs	lbs	lbs
				(,					kN	kN	kN	kN
LGU3.25-SDS2.5	10	31/4	41/2	8	7½	31/4	16-SDS ¼"x2½"	12-SDS ¼"x2½"	7730	10170	5565	7320
LGU3.23-3D32.3	10	374	472	0	1 72	374	10-3D3 74 XZ72	12-3D3 74 XZ72	34.39	45.24	24.76	32.56
LGU5.25-SDS2.5	10	51/4	41/2	8	71/2	31/4	16-SDS 1/4"x21/2"	12-SDS ¼"x2½"	7730	10170	5565	7320
LGU3.23-3D32.3	10	374	4 72	0	1 72	374	10-3D3 74 XZ72	12-3D3 74 XZ72	34.39	45.24	24.76	32.56
MGU5.25-SDS2.5	10	51/4	41/2	91/4	83/4	4	24-SDS 1/4"x21/2"	16-SDS ¼"x2½"	10100	13140	7270	9460
MG03.23-3D32.3	10	J 74	4 72	374	074	4	24-3D3 74 X272	10-3D3 74 XZ72	44.93	58.45	32.34	42.08
HGU5.25-SDS2.5	7	51/4	51/4	11	10%	43/4	36-SDS 1/4"x21/2"	24_CDC 1/"v21/"	14300	20320	10295	14630
11003.23-3032.3	<i>'</i>	J 74	J 74	11	1078	474	30-3D3 74 XZ72	24-3D3 74 X272	63.61	90.39	45.80	65.08
MGU7.00-SDS2.5	10	7	41/2	91/4	83/4	4	24-SDS 1/4"x21/2"	16-SDS ¼"x2½"	10100	13140	7270	9460
WG07.00-3D32.3	10	1	4 /2	3 /4	074	4	24-3D3 /4 XZ/2	10-3D3 /4 XZ/2	44.93	58.45	32.34	42.08
HGU7.00-SDS2.5	7	7	51/4	11	10%	13/.	36-SDS 1/4"x21/2"	24_CDC 1/."v21/."	14300	20320	10295	14630
11007.00-3032.3	<i>'</i>	_ ′	J /4	11	1078	4 74	30-3D3 /4 XZ/2	24-3D3 /4 X2/2	63.61	90.39	45.80	65.08
HHGU7.00-SDS2.5	3	7	51/4	13	12%	43/4	44-SDS 1/4"x21/2"	28-SDS 1/4"x21/2"	21740	26665	15655	19195
1111007.00-3032.3	٥	_ '	J /4	10	12.78	774	44-0D0 /4 XZ/2	20-3D3 /4 X2/2	96.71	118.62	69.64	85.39
HGU9.00-SDS2.5	7	9	51/4	11	10%	43/4	36-SDS 1/4"x21/2"	24-SDS 1//"v21//"	14300	20320	10295	14630
11003.00-0002.3	,	3	J /4	- 11	1078	774	4 30-5D5 1/4 XZ1/2	24 0D0 /4 AZ72	63.61	90.39	45.80	65.08
HHGU9.00-SDS2.5	3	9	51/4	13	12%	13/	4 44-SDS ½"x2½"	28-SDS 1/4"v21/4"	21740	26665	15655	19195
1111003.00-3032.3	٥	9	J /4	13	12/8	774	44-0D0 /4 XZ/2	20-0D0 /4 X2/2	96.71	118.62	69.64	85.39

- Factored uplift resistances have been increased for earthquake and wind loading, with no further increase allowed.
- Specify H dimension. The Designer should check the shear capacity of the carried member to make sure it matches the hanger's capacity. Maximum H = 30".
- Header depth must exceed the h_a dimension shown and is based on the size necessary to fit screw pattern. Use the next size up that meets the minimum depth requirement.

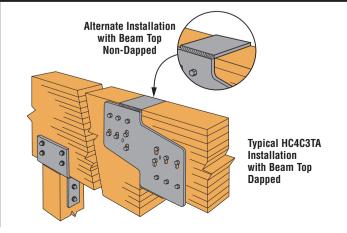
HCA Hinge Connectors

HCAs offer single-piece side plates, for fewer welds and higher horizontal resistances.

MATERIAL: Side plates-7 gauge;

Top and bottom plates-varies.

FINISH: Simpson Strong-Tie gray paint


INSTALLATION: • Use all specified fasteners. See General Notes.

- All bolts specified are 3/4" MBs. Bolt holes shall be a minimum of 1/62" and a maximum of 1/62" larger than the bolt diameter. (per 10.4.1.2 CSA 086-09)
- Position bolts in slots away from bearing seat to allow for wood shrinkage.

OPTIONS:

 To order, add the width and bearing plate size designation after the model mension by the PT dimension for each dap.

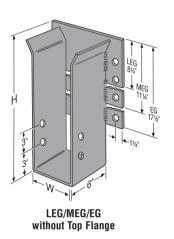
Contact Simpson Strong-Tie for available sizes and factored resistances.

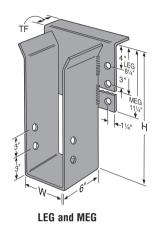
TOP FLANGE HANGERS LEG/MEG/EG Beam & Glulam Hangers

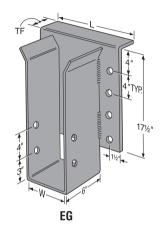
See Hanger Options on page 213 for hanger modifications, which may result in reduced capacities.

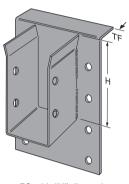
This whole series has precision fabrication which offers dimensional accuracy, and the funnel flanges which aid installation.

MATERIAL: See table


FINISH: Simpson Strong-Tie® gray paint. Hot-dip galvanized available; specify HDG.


INSTALLATION: • Use all specified fasteners. See General Notes.


OPTIONS: • See Hanger Options, page 213.


• Special models are available without top flanges; see table values.

Model	Top Flange Ga	Top Flange Length (L)
LEG/MEG	7	12
EG5		11¾
EG7	3	13½
EG9		15½

EG with "H" dimension less than the face plate height. The EG's back plate is always 17½", regardless of the stirrup height.

				D	imension	ıs		Во	Its		Fac	tored Normal Re	sistance (K _D = 1.	00)
Joist or			Min.		(in)		Hea	ider	Jo	ist	D.Fir-L	Glulam	Spruce-Pi	ne Glulam
Purlin	Model No.	Stirrup Ga	Header Depth								No Top Flange	Top Flange	No Top Flange	Top Flange
Size (in)			(in)	W	Min H	TF	Qty.	Dia.	Qty.	Dia.	lbs	lbs	lbs	lbs
											kN	kN	kN	kN
31/8	LEG3	7	101/2	31/4	9	2½	4	3/4	2	3/4	5950	17510	5950	14490
378	LLGS	'	1072	374	9	272	4	74		74	26.47	77.89	26.47	64.46
	LEG5	7	10½	51/4	9	2½	4	3/4	2	3/4	5950	19960	5950	17545
	LLGS	'	1072	374	9	272	4	74		74	26.47	88.79	26.47	78.05
51/8	MEG5	7	13	51/4	9	2½	6	3/4	2	3/4	7780	21785	7780	19370
3 78	IVIEGO	'	13	374	9	Z 72	0	74		74	34.61	96.91	34.61	86.17
	EG5	7	21	51/4	11	2½	8	1	2	-1	13590	27305	13590	23765
	EGS	1	21	374	11	Z 72	0	l			60.45	121.46	60.45	105.72
	LEG7	7	101/2	67/8	9	2½	4	3/4	2	3/4	5950	19960	5950	17545
	LEGI	'	1072	078	9	Z 72	4	74		94	26.47	88.79	26.47	78.05
63/44	MEG7	7	13	67/8	9	2½	6	3/4	2	3/4	7780	21785	7780	19370
074	IVILGI	'	13	078	9	272	0	74		74	34.61	96.91	34.61	86.17
	EG7	7	21	67/8	11	2½	8	1	2	1	13590	29350	13590	26635
	Eu/		۷۱	U'/8	11	∠ 72	0	<u> </u>			60.45	130.56	60.45	118.48
81/24	EG9	7	21	87/8	11	2½	8	4	2	1	13590	31685	13590	28565
0 1/2	E09	1	۷۱	0'/8	11	∠ 1/2	0	l	2	1	60.45	140.95	60.45	127.07

- 1. Factored resistances assume a minimum carrying member thickness of 51/8".
- 2. Specify hanger height "H". "Min H" is the minimum height that may be ordered.
- 3. Minimum header depth below the lowest bolt hole is 3" for the LEG, MEG, and 4" for the EG.
- 4. For 6\%" and 8\%" beam widths add "X" to the end of the model number and specify the width required.

TOP FLANGE HANGERS WPU/WNP/HW/HWU

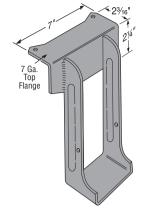
The WPU. HWU and HW series purlin hangers offer the greatest design flexibility and versatility.

MATERIAL: WNP/WPU-7 ga. top flange, 12 ga. stirrup; HW-3 ga. top flange, 11 ga. stirrup; HWU-3 ga. top flange, 10 ga, stirrup.

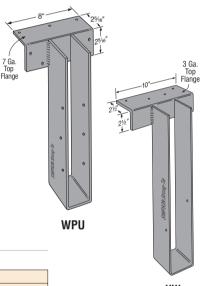
FINISH: Simpson Strong-Tie® gray paint; hot-dipped galvanized available: specify HDG.

FACTORED RESISTANCES: For hanger heights exceeding the joist height, the factored resistance is 0.50 of the tabulated resistance.

INSTALLATION:


- · Hangers may be welded to steel headers with 3/16" for WPU/WNP/ WP. and 1/4" for HW/HWU. by 11/2" fillet welds located at each end of the top flange. Weld-on applications produce maximum factored resistance listed. Uplift resistances do not apply to this application.
- · Hangers can support multi-ply carried members; the individual members must be secured together to work as a single unit before installation into the hanger.
- . H dimensions are sized to account for normal joist shrinkage. W dimensions are for dressed timber widths.

OPTIONS: • See Hanger Options. page 213, for hanger modifications and associated load reductions.


NAILER TABLE

The table indicates the maximum factored normal resistances for WP/WNP hanger used on wood nailers. Nailers are wood members attached to the top of a steel I-beam, concrete or masonry wall. This table also applies to sloped-seat hangers.

		Тор		red Resis K _D = 1.00	
Model	Nailer	Flange	D.Fir-L	S-P-F	LSL
		Nailing	lbs	lbs	lbs
			kN	kN	kN
	2x	2-10dx11/2	3665	3630	4900
	_	Z-10UX 1 72	16.30	16.15	21.82
	2-2x	2-10d	4475	3760	_
WP/	Z-ZX	2-10u	19.91	16.75	
WNP	3x	2-16dx21/2	4110	3760	
	JX	Z-10UXZ72	18.28	16.75	
	4x 2-2x	2-10d	4475	3760	_
	44	2-10u	19.91	16.75	_
	2-2v	7-10d	4475	3760	_
	2-2x 3x	<i>1</i> -10u	19.91	16.75	
WPU		7-16dx2½	4110	3760	_
VVIO		1 10UX272	18.28	16.75	
	3x 4x	7-10d	4475	3760	
	77	7 10u	19.91	16.75	_
	2-2x	4-10d	7600		_
	2 2 1	7 10u	33.81		_
HW	3x	4-16dx2½	7600		_
''''	- OX	4 10UX272	33.81		_
	4x	4-16d	7670	_	
	77	4 10u	34.16		
	2-2x	8-10d	7880		
		0 100	35.05	_	_
HWII	3x	8-16dx2½	7880		
11000	UA	O TOUAL /2	35.05	_	
	4x	8-16d	7880		
	7/	0 100	35.05	_	_

WNP412 and WNP414

HW (HWU similar)

Some model configurations may differ from those shown. Contact Simpson Strong-Tie for details.

Factored Resistance Joist Fasteners Uplift1 Normal $(K_D = 1.00)$ Model $K_D = 1.15$ D.Fir-L S-P-F PSL LSL LVL No. Width Depth Top Face Joist lbs lbs lbs lbs lbs lbs kN kΝ kΝ kΝ kΝ kΝ 4095 3345 4695 4720 1½ to 7½ 3½ to 30 3-10dx11/2 2-10dx11/2 18.22 14.88 20.89 21.00 4095 3550 3665 4720 5980 WP/ 31/2 to 30 3-10d 11/2 to 71/2 2-10dx11/2 WNP 18.22 15.79 16.30 21.00 26.60 4430 3855 5950 5430 5980 1½ to 7½ 3½ to 30 3-16d 2-10dx11/2 19.71 17.15 26.47 24.15 26.60 1665 6390 6390 6825 7085 5980 1¾ to 5½ 71/4 to 18 3-16d 4-16d 6-10dx11/2 7.41 28.43 30.36 31.52 28.43 26.60 WPU 595 6390 6390 6825 7085 5980 4-16d 18½ to 28 3-16d 6-10dx11/2 1¾ to 5½ 28.43 28.43 30.36 31.52 26.60 4695 5810 6900 5285 1½ to 7½ 3½ to 32 4-10d 2-10dx11/2 20.89 25.85 23.51 HW 5810 6900 7695 6870 1½ to 7½ 3½ to 32 4-16d 2-10dx11/2 34.23 25.85 30.56 8875 8325 8925 10170 1¾ to 3½ 9 to 18 4-16d 4-16d 6-10dx1½ 790 45.24 45.24 37.03 39.70 1490 10170 8875 10170 8325 8925 1¾ to 3½ 18½ to 28 4-16d 4-16d 6-10dx11/2 6.63 45.24 39.48 45.24 37.03 39.70 8875 8325 8925 10170 1¾ to 3½ 281/2 to 32 4-16d 4-16d 8-10dx11/2 6.76 45.24 37.03 39.70 HWU 8250 8250 4½ to 71/8 9 to 18 4-16d 4-16d 6-10dx1½ 36.70 36.70 36.70 36.70 1490 8250 8250 8250 8250 8250 4½ to 71/8 18½ to 28 4-16d 4-16d 6-10dx1½ 6.63 36.70 36.70 36.70 36.70 36.70 1520 8250 8250 8250 8250 8250 28½ to 32 4-16d 4½ to 71/8 4-16d 8-10dx11/2 36.70 36.70

6.76

36.70

36.70

- 1. Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase allowed. Reduce by 15% for standard term loading $(K_D = 1.00)$ like cantilever construction.
- 2. Factored uplift resistances shown are for D.Fir-L. Multiply tablulated loads x 0.71 for either S-P-F joist or header.
- 3. Factored resistances shown are for header connection only. The Designer must ensure the joist is capable of generating the factored resistances shown.
- 4. Applies to LVL headers made primarily from Douglas Fir or Southern Pine. For LVL made primarily from Spruce Pine Fir or similar less dense veneers, use the values found in the S-P-F column.
- 5. **NAILS:** 16d = 0.162" dia x $3\frac{1}{2}$ " long, 10d = 0.148" dia.x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

TOP FLANGE HANGERS GLS/HGLS/GLT/HGLT Beam & Glulam Saddle Hangers

GLT and HGLT accommodate typical structural requirements for timber and glulam beams. Top flange depth allows installation on minimum 4x ledger (3½" net). Funnel flanges allow easy installation of beams. GLS and HGLS are heavy glulam saddle hangers.

MATERIAL: See table on page 100.

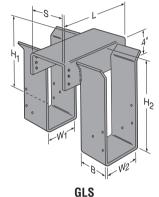
FINISH: Simpson Strong-Tie® gray paint. Hot-dip galvanized available; specify HDG.

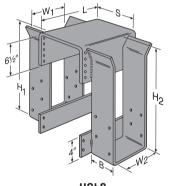
INSTALLATION: • Use all specified fasteners. See General Notes. **GLT/HGLT**

- All GLTs used with sawn timbers have a 12" L dimension.
- Fasteners are included.
- \bullet GLT may be attached to steel headers by $3\!\!/16^{\!\shortparallel}$ x $21\!\!/\!2^{\!\shortparallel}$ fillet welds at each end of the header angle to obtain the tabulated loads. HGLT may be attached to steel headers by 1/4" x 21/2" fillet welds at each end of the header angle to obtain the tabulated factored resistances. Factored uplift resistances do not apply to this weld-on application.

GLS/HGLS

- N54A nails are included with the hangers.
- Minimum header width for saddle hangers is 51/4".
- · Factored resistances listed are per stirrup.


TO ORDER: GLS/HGLS—Specify H₁, H₂ and S dimensions (see illustrations). **OPTIONS:** See Hanger Options page 213.


Model	Top Flange Ga	Stirrup Width (W)	Top Flange Length (L)
CLT	3	2% - 5½	10
GLT	3	5% - 6%	12
LICIT	0	25/8 - 81/4	12
HGLT	3	81/8	14
		31/4	6
GLS	3	51/4	9
		67/8	12
HGLS	3	51/4 - 87/8	12

(fasteners included)

Glulam Beam Connectors

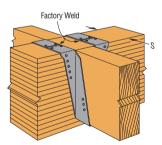
(fasteners included)

HGLS (fasteners included)

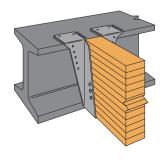
TOP FLANGE HANGERS HHB/GB/HGB Beam & Purlin Hangers

Precision forming with manufacturing quality control provides dimensional accuracy and helps ensure proper bearing area and connection.

MATERIAL: See table on page 100.


FINISH: HHB, GB, HGB, all saddle hangers and all welded sloped and special hangers-Simpson Strong-Tie gray paint. HHB may be ordered hot-dip galvanized; specify HDG.

INSTALLATION:


- Use specified fasteners. See General Notes and nailer table.
- HHB, GB and HGB may be used for weld-on applications. The minimum required weld to the top flanges is 1/8" x 2" fillet weld to each side of each top flange tab for 14 and 12 gauge and 3/16" x 2" fillet weld to each side of each top flange tab for 7 gauge. Distribute the weld equally on both top flanges. Welding cancels the top and face nailing requirements. Consult the code for special considerations when welding galvanized steel. The area should be well-ventilated. Weld on applications produce the maximum factored resistance listed. Uplift resistances do not apply to welded applications.
- Ledgers must be evaluated for each application separately. Check TF dimension. nail length and nail location on ledger.

OPTIONS:

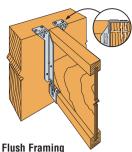
- HHB-other widths are available; specify W dimension (the minimum W dimension is $2^{1/2}$ ").
- Saddle hangers are made to order; add "D" to model (e.g. HHBD3); specify S (for saddle) dimension. They may be used for most conditions except at end wall locations, and are preferred for nailer applications.
- The coating on special B hangers will depend on the manufacturing process used. Check with your Simpson Strong-Tie representative for details. Hot-dip galvanized available: specify HDG.
- · B dimensions may be increased on some models.
- See Hanger Options, page 213.

Typical HHB, GB and HGB Saddle Installation

HHB. GB and HGB are acceptable for weld-on applications. See Instructions to the Installer, page 22, note m.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

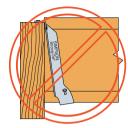
TOP FLANGE HANGERS – GLULAM BEAM


				D'	•					Engtored [Pagiatanaa	
				Dimens (in)			Faste	eners	n Eir-I	Glulam	Resistance Spruce-Pi	no Clulam
Joist or				(111)					Uplift	Normal	Uplift	Normal
Purlin Size	Model No.	Ga							(Kn = 1.15)		•	
(in)	No.		W	Н	В	TF ⁹	Header	Joist	(KD = 1.15)	(KD = 1.00)	(KD = 1.15)	(ND = 1.00)
									kN	kN	kN	kN
									2905	9625	2060	5225
	GLT3	7	31/4	7½ Min.	5	21/2	10-N54A	6-N54A	12.92	42.82	9.16	23.24
									2905	14885	2060	9830
	HGLT3	7	31/4	7½ Min.	6	21/2	18-N54A	6-N54A	12.92	66.21	9.16	43.73
			2		_				2905	16740	2060	13195
	GLS3-5	7	31/4	8½ Min.	5	51/4	6-N54A	6-N54A	12.92	74.47	9.16	58.70
	CI CO 7	7	01/	O1/ Min	5	67/8	C NE 4A	C NE 4A	2905	16740	2060	13195
3⅓ LAM	GLS3-7	1	31/4	8½ Min.	Э	078	6-N54A	6-N54A	12.92	74.47	9.16	58.70
J/8 LAIVI	GLS3-9	7	31/4	8½ Min.	5	87/8	6-N54A	6-N54A	2905	16740	2060	13195
	UL00 0	'	074	072 WIIII.	3	078	O NOTA	O NOTA	12.92	74.47	9.16	58.70
	HW3.25	11	31/4	5 Min.	4	2½	4-10d	2-10d		6900	_	5285
										30.69	_	23.51
	HHB3	7	31/4	7½ Min.	3	21/2	10-N54A	6-N54A	3340	8575	2370	6085
									14.86	38.15	10.54	27.07
	GB3	7	31/4	7½ Min.	3½	21/2	14-N54A	6-N54A	3340	12935	2370	9710
									14.86 2905	57.54 9625	10.54 2060	43.19 5225
	GLT5	7	51/4	7½ Min.	5	21/2	10-N54A	6-N54A	12.92	42.82	9.16	23.24
									2905	14885	2060	9830
	HGLT5	7	51/4	7½ Min.	6	21/2	18-N54A	6-N54A	12.92	66.21	9.16	43.73
									2905	20190	2060	14365
	GLS5-5	7	51/4	8½ Min.	5	51/4	6-N54A	6-N54A	12.92	89.81	9.16	63.90
	01.05.7	_	F4./	04 (8.8)	_	07/	0.01544	0.815.44	2905	20190	2060	14365
	GLS5-7	7	51/4	8½ Min.	5	6%	6-N54A	6-N54A	12.92	89.81	9.16	63.90
E1/ AM	UCI CE	7	E1/.	101/ Min	6	SPEC	14 NE4A	O NEAA	4095	27570	2905	19575
5½ LAM	HGLS5	1	51/4	10½ Min.	0	SPEC	14-N54A	8-N54A	18.22	122.64	12.92	87.08
	HW5.25	11	51/4	5 Min.	2½	2½	4-10d	2-10d	_	6900	_	5285
	11000.20	'''	074	O IVIIII.	2/2	2/2	7 100	2 10u	_	30.69	_	23.51
	HHB5	7	51/4	7½ Min.	3	2½	10-N54A	6-N54A	3340	8575	2370	6085
		-							14.86	38.15	10.54	27.07
	GB5	7	51/4	7½ Min.	3½	21/2	14-N54A	6-N54A	3340	13675	2370	9710
									14.86 3340	60.83 16050	10.54 2370	43.19 11395
	HGB5	7	51/4	7½ Min.	4	21/2	14-N54A	6-N54A	14.86	71.40	10.54	50.69
									3340	8575	2370	6085
	HHB7	7	67/8	7½ Min.	3	21/2	10-N54A	6-N54A	14.86	38.15	10.54	27.07
	05-					-			3340	13675	2370	9710
	GB7	7	61/8	7½ Min.	3½	2½	14-N54A	6-N54A	14.86	60.83	10.54	43.19
	LICE7	7	67/	71/ 84:		01/	14 NE 44	C NE 4A	3340	16050	2370	11395
	HGB7	7	6%	7½ Min.	4	2½	14-N54A	6-N54A	14.86	71.40	10.54	50.69
	GLT7	7	67/8	7½ Min.	5	2½	10-N54A	6-N54A	2905	9625	2060	5225
6¾ LAM	ULI1	′	U/8	1 /2 IVIIII.	J	£/2	10 NUTA	O NOTA	12.92	42.82	9.16	23.24
2,7 E/ (IV)	HGLT7	7	67/8	7½ Min.	6	2½	18-N54A	6-N54A	2905	14885	2060	9830
			2.0						12.92	66.21	9.16	43.73
	GLS7-7	7	67/8	8½ Min.	5	6%	6-N54A	6-N54A	2905	20190	2060	14365
									12.92	89.81	9.16	63.90
	GLS7-9	7	67/8	8½ Min.	5	81/8	6-N54A	6-N54A	2905 12.92	20190 89.81	2060 9.16	14365 63.90
									4095	27570	2905	19575
	HGLS7	7	67/8	10½Min.	6	SPEC	14-N54A	8-N54A	18.22	122.64	12.92	87.08
						6.			2905	14885	2060	9830
02/155	HGLT9	7	81//8	7½ Min.	6	2½	18-N54A	6-N54A	12.92	66.21	9.16	43.73
8¾ LAM	1101.00	7	07/	101/ 14:-	_	CDEC	14 NE 44	0 115 4 4	4095	27570	2905	19575
	HGLS9	7	8%	10½ Min.	6	SPEC	14-N54A	8-N54A	18.22	122.64	12.92	87.08

- 1. N54A fasteners are supplied with hangers.
- 2. Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading (Kp = 1.00) such as in cantilever construction.
- 3. GLT, HGLT, GLS, HGLS uplift resistances only apply when "H" is 28" or less.
- 4. Factored resistances for glulam sizes are based on 812 psi (5.6 MPa) D.Fir-L and 672 psi (4.64 MPa) Spruce-Pine wood bearing (φFcp).
- GLS and HGLS loads must be distributed evenly on each side of the header, as they are saddle-style hangers.
- 6. GLS and HGLS fasteners listed are for one side only. Fasteners supplied are for both sides of the saddle.
- 7. For attachment to SCL, see GLTV/HGLTV on page 119.
- 8. Resistances shown are for each side of the hanger for GLS and HGLS.
- 9. For saddle hangers dimension shown is "S". Minimum "S" is 51/4".
- 10. NAILS: 10d = 0.148" dia. x 3" long, N54A = 0.250" dia. x 2½" long annular ring. See page 24-25 for other nail sizes and information.

GENERAL CONNECTOR INSTALLATION

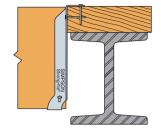
TOP FLANGE HANGERS



Top flange configuration and thickness of top flange need to be considered for flush frame

conditions.

Hanger Over-Spread


If the hanger is over-spread, it can raise the I-ioist above the header and may cause uneven surfaces and squeaky floors.

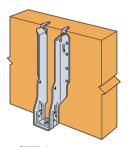
Hanger Not Plumb

A hanger "kicked-out" from the header can cause uneven surfaces and squeaky floors.

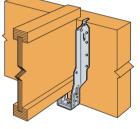
WOOD NAILERS



Correct Attachment


Nailer Too Wide

The loading may cause cross-grain bending. As a general rule, the maximum allowable overhang is 1/4", depending on nailer thickness.



Firmly push or snap I-joist fully into the seat

IUS INSTALLATION SEQUENCE

STEP 1 Attach the IUS to the header

Slide the I-joist downward into the IUS until it rests above the large teardrop.

of the IUS.

WOOD I-JOISTS

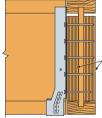
SLOPED JOISTS

For sloped joists up to 1/4:12 there is no reduction in capacity. For slopes greater than 1/4:12 see individual product pages.

MULTIPLE JOISTS

Multiple joists should be adequately connected together to act as one unit.

Use the correct nails. Wood may split if the nails are too large. Hanger nails into flanges should not exceed 10d common (0.148 dia.), no longer than 1½". Nails into web stiffeners should not exceed 16d commons (0.162 dia.).

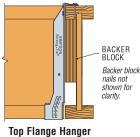

ECCENTRICALLY-LOADED I-JOISTS

Supporting a top flange hanger may require bottom flange restraining straps, blocking or directly-applied ceiling systems to prevent rotation at the hanger location.

SKEWED JOISTS

Joists may be skewed up to 21/2 degrees in a non-skewed hanger without any reduction in capacity. Refer to individual hanger descriptions for information allowing any further skew applications.

I-JOIST AS A HEADER INSTALLATIONS


BLOCK Backer block nails not shown for clarity.

BACKER

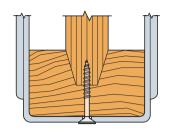
Face Mount Hanger

When face mount hangers are attached to I-joist headers, backer blocks must be installed to provide a nailing surface for the hanger nails. The backer blocks should be installed on both sides of the web and attached together with a minimum of 10-10d nails. The hanger nails should extend through the web. Contact the I-Joist manufacturer for additional design considerations.


I-JOIST HEADERS

When top flange hangers are attached to I-joist headers, a backer block must be installed to prevent the top flange from rotating under load. The backer blocks should be installed with a minimum of 10-10d nails clinched. Check with the joist manufacture for additional design considerations.

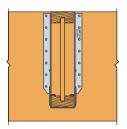
Nailer Too Narrow Nailer should be full width.



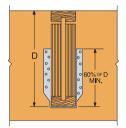
Nailer Too Thin or the wrong hanger for the application.

GENERAL CONNECTOR INSTALLATION

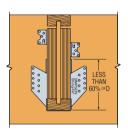
LF & LT INSTALLATION


Use 8 gauge (0.164" diameter) x $1\frac{1}{4}$ wood screw (#8x $1\frac{1}{4}$ ") to secure joist to hanger. (Two screws required for widths > $2\frac{1}{2}$ ".)

To avoid stripping of the bottom chord screw hole, DO NOT over tighten screw.


Use specified screw to seat joist into hanger (required only for LF and LT hangers).

PREVENT ROTATION


Hangers provide some joist rotation resistance; however, additional lateral restraint may be required for deep joists.

No Web Stiffener Installed Hanger side flange supports joist top flange.

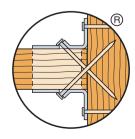
Web Stiffener Required Hanger side flange should be at least 60% of joist depth or potential joist rotation must be addressed.

Rotation Resistance If non-skewed hanger side flange is less than 60% of joist depth, attach staggered A34 framing anchors above the hanger.

No Rotation Resistance Lack of web stiffeners and short hanger does not laterally support the top flange.

POSITIVE ANGLE NAILING

Correct Nailing Approx. 45° angle



Nail at wrong angle

Nail too long

DOUBLE SHEAR NAILING

The nail is installed into joist and header, distributing load through two points on each nail for greater strength. Do not use hangers with double shear nailing with I-joists.

TOE-NAILING

Toe nailing causes squeaks and improper hanger installations. Do not toe nail I-joists before installing top flange or face mount hangers.

IUS/LF/MIU 1-Joist Hangers

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The improved IUS is now fully compatible with shallow flange I-joists! I-joists with flange thicknesses between 1½" and 1½" achieve the full tabulated factored resistances including uplift values and joist nails are not required! The IUS is a hybrid hanger that incorporates the advantages of the face mount and top mount hanger. Installation is fast with the Strong-Grip™ seat, easy-to-reach face nails and self-jigging locator tabs.

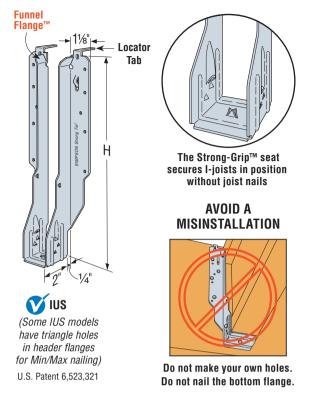
The MIU series hangers are designed for commercial and high load I-joist applications without requiring web stiffeners. The MIU features Positive Angle Nailing (PAN), which minimizes splitting of the flanges while permitting time-saving nailing from a better angle.

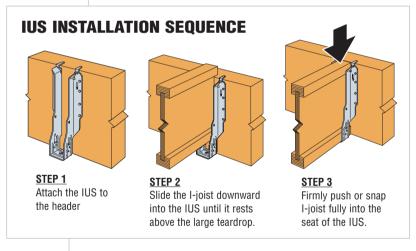
The LF series is ideal for applications not requiring web stiffeners. The economical LF series comes with a height designed to support the top flange of the I-joist. This feature reduces installation time as well as material costs.

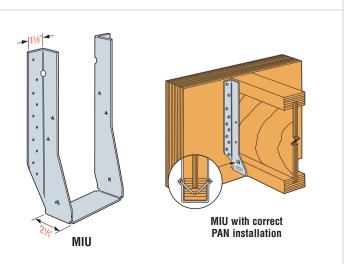
MATERIAL: See table pages 105-109.

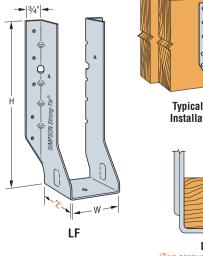
FINISH: Galvanized

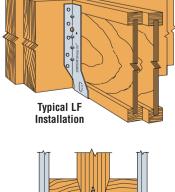
UPLIFT RESISTANCES: • Models have optional triangle joist nail holes for additional uplift. Properly attached web stiffeners are required.

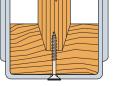

- LF/IUS—add two additional 10dx1½" joist nails for a total factored uplift resistance of 415 lbs D.Fir-L and 375 lbs S-P-F (K_D = 1.15).
- MIU—add four additional 10dx1½" joist nails for a total factored uplift resistance of 1345 lbs D.Fir-L and 1175 lbs S-P-F ($K_D = 1.15$).


INSTALLATION: • Use all specified fasteners. Verify that the header can take the required fasteners specified in the table. See pages 101-102 for more installation information.


- IUS—fasten hanger to header. Position I-joist into hanger and snap into place. No joist nailing required. Some IUS models have triangle and round header nail holes. To achieve Max. download, fill both round and triangle holes.
- IUS—Locator tabs are not structural. They may be bent back to adjust for hanger placement.
- IUS— I-joists with web stiffeners or rectangular sections can be used with the installation of 2-10dx1½" nails into the optional triangle joist nails.
- Web stiffeners are not required with I-joists when the joist top flange is laterally supported by the sides of the hanger. I-joist manufacturers may require web stiffeners.


OPTIONS:


These hangers cannot be modified. However, these models will normally accommodate a skew of up to 5°. For a sloping joist to $\frac{1}{2}$:12, tests show a 10% reduction in ultimate hanger strength. Local crushing of the bottom flange or excessive deflection may be limiting; check with joist manufacturer for specific limitations on bearing of this type.



LF Installation (Two screws required for widths > 2½".)

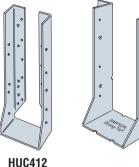
FACE MOUNT HANGERS U/HU 1-Joist & Structural Composite Lumber Hangers

SIMPSON
Strong-Tie

U—The standard U hanger provides flexibility of joist to header installation. Versatile fastener selection with tested factored resistances

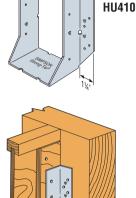
HU—Most models have triangle and round holes. To achieve maximum factored resistances, fill both round and triangle holes with common nails. These heavy-duty connectors are designed for schools and other structures requiring additional strength, longevity and safety factors.

MATERIAL: See tables on pages 106-112.

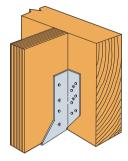

FINISH: Galvanized

INSTALLATION: • Use all specified fasteners. See General Notes.

- HU—can be installed filling round holes only, or filling round and triangle holes for maximum values.
- Web Stiffeners are required for all I-joists used with these hangers.


OPTIONS: • HU hangers available with the header flanges turned in for 25/16" and larger widths, with no reduction in resistances—order HUC hanger.

 See Hanger Options on pages 212 for sloped and/or skewed U/HU models, and HUC (concealed flance) models.



Typical HU Installation

Model configurations may differ from those shown. Some HU models do not have triangle holes. Contact Simpson Strong-Tie for details.

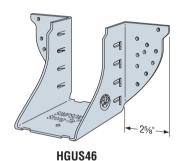
Typical HU Installation

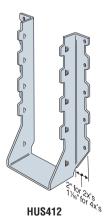
FACE MOUNT HANGERS HUS/HHUS/HGUS Double Shear SCL Hangers

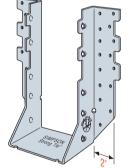
These hangers are designed for applications where higher factored resistances are needed.

All hangers in this series have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation, and the use of common nails for all connections. (Do not bend or remove tabs)

MATERIAL: See tables, pages 110-112.


FINISH: Galvanized. Some products available in stainless steel or ZMAX®; see Corrosion Information, page 18-19.


INSTALLATION: • Use all specified fasteners. See General Notes.


- · Do not use double shear hangers with I-joists.
- Nails must be driven at an angle through the joist into the header to achieve the tabulated values.
- Not designed for welded or nailer applications.
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- With 3x carrying members, use 16dx2½" nails into the header and 16d commons into the joist with no reduction in resistances. With 2x carrying members, use 10dx1½" nails into the header and 10d commons into the joist, and reduce the tabulated factored resistance to 0.64 of the table value.

OPTIONS: • HUS hangers available with the header flanges turned in for 4x (3½") only, with no reduction in resistances. See HUSC Concealed Flange illustration.

- Concealed flanges are not available for HGUS, HHUS and HUS1.81/10.
- Other sizes available; consult your Simpson Strong-Tie representative.
- See hanger options on page 212.

HHUS410

HUSC Concealed Flanges (not available for HHUS, HGUS and HUS1.81/10)

Dome Double Shear Nailing prevents tabs breaking off (available on some models) U.S. Patent 5.603,580

104

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

FACE MOUNT HANGERS – I-JOISTS

				D	imensio	ns		Faster	ners			Resistance	
		Web			(in)		ļ	1 03161	1613		ir-L		P-F
Joist	Model No.	Stiff	Ga							Uplift	Normal	Uplift	Normal
Size	NU.	Reqd		W	Н	В	Min/ Max	Header	Joist	(K _D = 1.15)	(K _D = 1.00)	(K _D = 1.15)	(K _D = 1.00)
							IVIAX			lbs kN	lbs kN	lbs kN	lbs kN
										105	2435	105	1845
1½ x	LF159	_	18	1 %16	91/4	2	-	10-10d	1-#8x11/4 WS	0.47	10.83	0.47	8.21
91/4 - 91/2										450	3045	410	2305
	MIU1.56/9	-	16	1 %16	815/16	2½	-	16-16d	2-10dx1½	2.00	13.56	1.82	10.27
	. =					_				105	2435	105	1845
1½ x	LF1511	_	18	1%16	1111/4	2	-	12-10d	1-#8x11/4 WS	0.47	10.83	0.47	8.21
111/4 - 117/8	MILIA EC/44		16	10/	441/	2½		00.164	2-10dx1½	450	3045	410	2305
	MIU1.56/11	_	10	1%16	111/16	2 1/2		20-16d	Z-100X172	2.00	13.56	1.82	10.27
1½ x 14	LF1514	_	18	1%6	13½	2	_	14-10d	1-#8x1½ WS	105	2435	105	1845
172 X 14	LI 1314		10	1716	1072			14-10u	1-#0X174 WO	0.47	10.83	0.47	8.21
1¾ x 9½	IUS1.81/9.5	_	18	17/8	9½	2	_	8-10d	_	145	2385	105	1690
1717672	10011017010			.,,	0,2	_		0 .00		0.64	10.61	0.47	7.52
	LF179	_	18	1 13/16	91/4	2	_	10-10d	1-#8x11/4 WS	105	2525	105	2155
1¾ x 9¼ - 9½										0.47	11.23	0.47	9.60
3/4 - 3/2	MIU1.81/9	—	16	1 13/16	813/16	2½		16-16d	2-10dx1½	450	3555	410	2690
										2.00 145	15.84 2565	1.82	11.98 1820
	IUS1.81/11.88	—	18	1%	111//8	2	-	10-10d	_	0.64	11.41	0.47	8.10
										105	2845	105	2155
1¾ x 11%	LF1711	_	18	1 13/16	111/4	2	-	12-10d	1-#8x11/4 WS	0.47	12.66	0.47	9.60
										450	3555	410	2690
	MIU1.81/11	_	16	1 13/16	111/16	2½	-	20-16d	2-10dx1½	2.00	15.84	1.82	11.98
								10.10.1		145	2565	105	1820
	11104 04/44		10	47/	14	_	Min	12-10d	_	0.64	11.41	0.47	8.10
	IUS1.81/14	_	18	1%	14	2	May	14 104		145	2725	105	1935
1¾ x 14							Max	14-10d	_	0.64	12.12	0.47	8.61
174 X 14	LF1714	_	18	1 13/16	13½	2		14-10d	1-#8x1½ WS	105	2845	105	2155
	LI 17 14		10	1 /16	1072			14-10u	1-#0X174 WO	0.47	12.66	0.47	9.59
	MIU1.81/14	l _	16	1 13/16	135/16	2½	_	22-16d	2-10dx1½	450	3555	410	2690
				1 710	.07.10	-/-			2 100/11/2	2.00	15.84	1.82	11.98
	IUS1.81/16	_	18	1%	16	2	_	14-10d	_	145	2725	105	1935
1¾ x 16										0.64	12.12	0.47	8.61
	MIU1.81/16	_	16	1 13/16	155/16	21/2	-	24-16d	2-10dx1½	450 2.00	3555 15.84	410 1.82	2690 11.98
										145	2385	105	1690
	IUS2.06/9.5	-	18	21/8	9½	2	-	8-10d	_	0.64	10.61	0.47	7.52
2 x 9½										105	2525	105	2155
	LF209	_	18	21/16	91/4	2	-	10-10d	1-#8x11/4 WS	0.47	11.23	0.47	9.60
	11100 00 44 00		40	01/	447/	_		40.40.1		145	2565	105	1820
2 x 11%	IUS2.06/11.88	_	18	21/8	11%	2	-	10-10d	_	0.64	11.41	0.47	8.10
2 X 1178	LF2011	_	18	21/16	1111/4	2	_	12-10d	1-#8x1½ WS	105	2880	105	2270
	LIZUII		10	∠ /16	11/4			12-10u	1-#0X1/4 WO	0.47	12.81	0.47	10.11
							Min	12-10d	_	145	2565	105	1820
	IUS2.06/14	_	18	21/8	14	2				0.64	11.41	0.47	8.10
2 x 14							Max	14-10d	_	145	2725	105	1935
										0.64	12.12	0.47	8.61
	LF2014	_	18	21/16	13½	2	_	14-10d	1-#8x11/4 WS	105	3235	105	2385
										0.47 145	14.39 2725	0.47 105	10.61 1935
2 x 16	IUS2.06/16	_	18	21/8	16	2	-	14-10d	_	0.64	12.12	0.47	8.61
										145	2385	105	1690
	IUS2.06/9.5	_	18	21/8	9½	2	-	8-10d	_	0.64	10.61	0.47	7.52
21/16 x 91/2	11104/6	,		017	_	017		44.40.1	0.40.1.41/	1470	5465	1360	4225
	HU2.1/9	✓	14	21/8	9	2½	-	14-16d	6-10dx1½	6.54	24.31	6.05	18.79

^{1. 10}d common nails may be used instead of the specified 16d nails at 0.83 of the tabulated value.

^{2.} Uplift loads have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading ($K_D = 1.00$) such as in cantilever construction.

MIN nailing quantity and load values—fill all round holes;
 MAX nailing quantity and load values—fill all round and triangle holes.

^{4.} D-Fir.L factored resistances can be used for most LVL. Verify with manufacturer prior to selecting hanger.

^{5.} Web stiffeners are required when top flange isn't supported laterally by the hanger.

^{6.} Web stiffeners are required when supporting double I-joists with flanges less than 15/16" thick. 8. NAILS: 16d = 0.162" dia. x 3½" long, 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

FACE MOUNT HANGERS – I-JOISTS

				D	imensio	ns		Enetor	1010		Factored	Resistance	
		Woh			(in)			Fastei	iers		ir-L		P-F
Joist	Model	Web Stiff	Ga							Uplift	Normal	Uplift	Normal
Size	No.	Regd		W	Н	В	Min/	Header	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
							Max	110000	00.01	lbs	lbs	lbs	lbs
										kN	kN	kN	kN
	IUS2.06/11.88	l _	18	21/8	111//8	2	_	10-10d		145	2565	105	1820
21/16 x 111//8	1002.00/11.00		10	270	1170			10 100		0.64	11.41	0.47	8.10
2/16 X 11/8	HU2.1/11	1	14	21/8	11	2½	_	16-16d	6-10dx1½	1470	5465	1360	4225
	1102.1/11	V	14	∠ /8	11	Z /2	-	10-10u	0-100X172	6.54	24.31	6.05	18.79
							Min	12-10d		145	2565	105	1820
21/16 x 14	IUS2.06/14		18	21/8	14	2	IVIIII	12-10u		0.64	11.41	0.47	8.10
2716 X 14	1032.00/14	-	10	∠78	14		Max	14-10d		145	2725	105	1935
							Max	14-10u	_	0.64	12.12	0.47	8.61
21/16 x 16	IUS2.06/16		18	21/8	16	2	_	14-10d		145	2725	105	1935
2716 X 10	1032.00/10	_	10	∠ 78	10		_	14-10u	_	0.64	12.12	0.47	8.61
	IIICO 27/0 F		18	07/	01/	0		0.104		145	2385	105	1690
	IUS2.37/9.5	_	10	27/16	9½	2	-	8-10d	_	0.64	10.61	0.47	7.52
	LF239		10	03/	01/	2		10 104	1 #0v11/ MC	105	2525	105	2155
	LF239	_	18	2%	91/4		-	10-10d	1-#8x11/4 WS	0.47	11.23	0.47	9.60
	MUUO 07/0		10	03/	0	01/		10 101	0.40441/	450	4550	410	3230
05/01/	MIU2.37/9	-	16	2%	9	2½	_	16-16d	2-10dx1½	2.00	20.24	1.82	14.37
25/16 x 91/2	110540/44		10	05/	0	_		11101	0.40441/	1345	4355	1235	3090
	U3510/14	✓	16	25/16	9	2	_	14-16d	6-10dx1½	5.98	19.37	5.49	13.75
							N.A	4440.1	0.40.1.41/	1470	5780	1360	4225
	HU359/			02/	015/	01/	Min	14-16d	6-10dx1½	6.54	25.71	6.05	18.79
	HUC359	✓	14	2%	815/16	2½		40.40.1	40.401.447	2450	5780	2265	4690
							Max	18-16d	10-10dx1½	10.90	25.71	10.08	20.86
	U100 07/14 00		40	07/	447/			10.10.1		145	2565	105	1820
	IUS2.37/11.88	-	18	21/16	11%	2	—	10-10d	_	0.64	11.41	0.47	8.10
										105	2880	105	2270
	LF2311	-	18	2%	111/4	2	-	12-10d	1-#8x1¼ WS	0.47	12.81	0.47	10.11
										450	4550	410	3230
	MIU2.37/11	-	16	2%	111/16	2½	-	20-16d	2-10dx1½	2.00	20.24	1.82	14.37
25/16 x 117/8										1345	4355	1235	3095
	U3516/20	✓	16	25/16	10%16	2	—	16-16d	6-10dx1½	5.98	19.37	5.49	13.77
										1470	5780	1360	4225
	HU3511/		١				Min	16-16d	6-10dx1½	6.54	25.71	6.05	18.79
	HUC3511	✓	14	2%	111/16	2½		00.40.1	40.401.447	2450	5780	2265	4690
							Max	22-16d	10-10dx1½	10.90	25.71	10.08	20.86
										145	2565	105	1820
				0-1			Min	12-10d	_	0.64	11.41	0.47	8.10
	IUS2.37/14	-	18	27/16	14	2				145	2725	105	1935
							Max	14-10d	_	0.64	12.12	0.47	8.61
	1 50044		40	02/	401/			44404	4 //0 41/ 14/0	105	3235	105	2385
05/14	LF2314	-	18	2%	13½	2	_	14-10d	1-#8x11/4 WS	0.47	14.39	0.47	10.61
25/16 x 14	MUU 07/44		40	02/	401/	01/		00.40.1	0.40.1.41/	450	4695	410	3485
	MIU2.37/14	_	16	2%	13½	2½	-	22-16d	2-10dx1½	2.00	20.91	1.82	15.52
							N./I:	10 10 1	0.40441/	1960	5780	1810	4690
	HU3514/		4.4	02/	101/	01/	Min	18-16d	8-10dx1½	8.72	25.71	8.05	20.86
	HUC3514	✓	14	2%	13½	2½		04.40.1	40.40.1.41/	2940	5780	2695	5780
							Max	24-16d	12-10dx1½	13.08	25.71	11.99	25.71
	11100 07/40		40	07/	40			44401		145	2725	105	1935
	IUS2.37/16	_	18	21/16	16	2	-	14-10d	_	0.64	12.12	0.47	8.61
05/10	MUUO 07/40		10	03/	451/	01/		04.404	0.40441/	450	4695	410	3485
25/16 x 16	MIU2.37/16	_	16	2%	15½	2½	_	24-16d	2-10dx1½	2.00	20.91	1.82	15.52
	HU3516/22	✓	14	93/	1/11/	2½	_	20-164	8-10dx1½	1960	5780	1810	4690
	1103310/22		14	2%	141/4	∠ 1/2		20-16d	0-1UUX 1 7/2	8.72	25.71	8.05	20.86
	MILIO 27/10		10	03/	171/	01/		06 164	0.104511/	450	4695	410	3485
	MIU2.37/18	_	16	2%	17½	2½	-	26-16d	2-10dx1½	2.00	20.91	1.82	15.52
25/ ₂ v 10							Min	10.164	9_10dv11/	1960	5780	1810	4690
25/16 x 18	HU3524/30/	1	1.1	25/	10	01/	Min	18-16d	8-10dx1½	8.72	25.71	8.05	20.86
	HUC3524/30	V	14	25/16	18	2½	Max	2/ 164	1/L10dv41/	3430	5780	2695	5780
							Max	24-16d	14-10dx1½	15.26	25.71	11.99	25.71
95/v.90	MILIO 27/00		10	03/	101/	01/		00 464	2_10dv11/	450	4695	410	3485
25/16 x 20	MIU2.37/20	-	16	2%	19½	21/2	-	28-16d	2-10dx1½	2.00	20.91	1.82	15.52

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

FACE MOUNT HANGERS – I-JOISTS

				D	imensio	ns		Faste	ners			Resistance	n r
Joist	Model	Web			(in)					D.F Uplift	ir-L Normal	Uplift	P-F Normal
Size	No.	Stiff	Ga				Min/			(K _D = 1.15)	$(K_D = 1.00)$	(K _D = 1.15)	$(K_D = 1.00)$
		Reqd		W	Н	В	Max	Header	Joist	lbs	lbs	lbs	lbs
										kN	kN	kN	kN
	MILIO 07/00	√	10	02/	101/	01/		00.404	0.40441/	450	4695	410	3485
	MIU2.37/20	V	16	2%	19½	2½	_	28-16d	2-10dx1½	2.00	20.91	1.82	15.52
25/16 x 22-30							Min	18-16d	8-10dx1½	1960	5780	1810	4690
2710 X 22 00	HU3524/30/	1	14	25/16	18	2½	ļ		0.100/172	8.72	25.71	8.05	20.86
	HUC3524/30						Max	24-16d	14-10dx1½	3430 15.26	5780 25.71	2695 11.99	5780 25.71
										145	23.71	105	1690
2½ x 9½	IUS2.56/9.5	-	18	2%	9½	2	-	8-10d	_	0.64	10.61	0.47	7.52
	LF259		18	2%16	91/4	2	_	10-10d	1-#8x1¼ WS	105	2525	105	2155
	LI 209		10	∠ /16	374			10-100	1-#OX1/4 VV3	0.47	11.23	0.47	9.60
2½ x	MIU2.56/9	_	16	2%16	815/16	2½	_	16-16d	2-10dx1½	450	4550	410	3230
91/4 - 91/2	11110407									2.00 1470	20.24 5780	1.82 1360	14.37 4225
	HU310/ HUC310	✓	14	2%16	81/8	2½	—	14-16d	6-10dx1½	6.54	25.71	6.05	18.79
01/ 117/			40	05/	447/	_		10.10.1		145	2565	105	1820
2½ x 11%	IUS2.56/11.88	-	18	25/8	11%	2	_	10-10d	_	0.64	11.41	0.47	8.10
	LF2511	_	18	2%16	111/4	2	_	12-10d	1-#8x11/4 WS	105	2880	105	2270
	2,2011		10	2710	1174	_		12 100	1 # 0/(1)4 110	0.47	12.81	0.47	10.11
2½ x 11¼ - 11%	MIU2.56/11	—	16	2%16	111/16	21/2	—	20-16d	2-10dx1½	2.00	4550 20.24	410 1.82	3230 14.37
1174 - 1178	HU312/									1470	5780	1360	4225
	HUC312	✓	14	2%16	10%	21/2	-	16-16d	6-10dx1½	6.54	25.71	6.05	18.79
							Min	12-10d		145	2565	105	1820
	IUS2.56/14	l _	18	25/8	14	2	IVIIII	12-100	_	0.64	11.41	0.47	8.10
	1002.00/11		10	270		_	Max	14-10d	_	145	2725	105	1935
										0.64 105	12.12 3235	0.47 105	8.61 2385
2½ x 14	LF2514	-	18	2%16	131/2	2	-	14-10d	1-#8x11/4 WS	0.47	14.39	0.47	10.61
	MILLO FOULA		10	00/	407/	01/		00.40.4	0.40-1-41/	450	4930	410	3485
	MIU2.56/14	_	16	2%16	137/16	2½	_	22-16d	2-10dx1½	2.00	21.96	1.82	15.52
	HU314/	1	14	2%16	12%	2½		18-16d	8-10dx1½	1960	5780	1810	4690
	HUC314	ľ		2710	1270	-/-		10 100	0 100X172	8.72	25.71	8.05	20.86
	IUS2.56/16	—	18	25/8	16	2	—	14-10d	_	145 0.64	2725 12.12	105 0.47	1935 8.61
										450	4930	410	3485
2½ x 16	MIU2.56/16	-	16	2%16	157/16	2½	-	24-16d	2-10dx1½	2.00	21.96	1.82	15.52
	HU316/	1	14	2%16	141/8	2½	_	20-16d	8-10dx1½	1960	5780	1810	4690
	HUC316	<u> </u>	17	2/10	1770	L /2		20 100	0 100X172	8.72	25.71	8.05	20.86
2½ x 18	MIU2.56/18		16	2%16	171/16	2½	_	26-16d	2-10dx1½	450 2.00	4930 21.96	410 1.82	3485 15.52
										450	4930	410	3485
2½ x 20	MIU2.56/20	-	16	2%16	197/16	2½	-	28-16d	2-10dx1½	2.00	21.96	1.82	15.52
2½ x 22 - 26	MIU2.56/20	1	16	2%16	197/16	2½	_	28-16d	2-10dx1½	450	4930	410	3485
2/2 X 22 - 20	W1102.30/20	•	10	2716	13/16	2/2		20-10u	Z-100X172	2.00	21.96	1.82	15.52
	LF2-159	_	18	31/8	91/4	2	_	10-10d	2-#8x11/4 WS	105	2525	105	2150
										0.47 450	11.23 4550	0.47 410	9.60 3230
0 01/ 01/	MIU3.12/9	-	16	31/8	91/16	21/2	-	16-16d	2-10dx1½	2.00	20.24	1.82	14.37
3 x 9¼ - 9½							Min	14-16d	6-10d	1580	5780	1470	4225
	HU210-2 /	1	14	31/8	813/16	2½	IVIIII	14-100	0-100	7.03	25.71	6.54	18.79
	HUC210-2			0,0	0 7.0		Max	18-16d	10-10d	2635	5780	2450	4690
										11.72 105	25.71 2880	10.90 105	20.86 2270
	LF2-1511	-	18	31/8	111/4	2	—	12-10d	2-#8x11/4 WS	0.47	12.81	0.47	10.11
	MILIO 10/11		16	21/	111/	21/		20.164	2-10dv11/	450	4550	410	3230
3 x	MIU3.12/11		16	31/8	111//8	2½	_	20-16d	2-10dx1½	2.00	20.24	1.82	14.37
11¼ - 11%	1111040 57						Min	16-16d	6-10d	1580	5780	1470	4225
	HU212-2/ HUC212-2	✓	14	31/8	10%6	2½				7.03 2635	25.71 5780	6.54 2450	18.79 4690
	1100212-2						Max	22-16d	10-10d	11.72	25.71	10.90	20.86
	1.50.4544		10	017	401/	_		44.40-1	0 //041/ 14/0	105	3235	105	2385
	LF2-1514		18	31/8	13½	2	_	14-10d	2-#8x1¼ WS	0.47	14.39	0.47	10.61
3 x 14 - 20							Min	18-16d	8-10d	2105	5780	1960	4690
3 7 1 7 20	HU214-2/ HUC214-2	✓	14	31/8	12 ¹³ / ₁₆	2½		10 100	0.100	9.36	25.71	8.72	20.86
			1		1	I	Max	24-16d	12-10d	3160	5780	2695	5780

See footnotes on page 105.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

FACE MOUNT HANGERS – I-JOISTS

											Eastored I	Resistance	
				ע	imensio (in)	IIS		Faster	ners	D.F	ir-L		P-F
Joist	Model	Web			(,					Uplift	Normal	Uplift	Normal
Size	No.	Stiff	Ga			_	Min/			$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
		Reqd		W	Н	В	Max	Header	Joist	lbs	lbs	lbs	lbs
										kN	kN	kN	kN
01/ 01/	11100 50/0 5	/7	40	05/	047	_		10.10.1		145	2370	105	1685
3½ x 9½	IUS3.56/9.5	✓ 7	18	3%	9½	2	-	10-10d	_	0.64	10.54	0.47	7.50
	. ====	/7			241				0 "0 11/11/0	105	2525	105	2155
3½ x	LF359	✓ 7	18	3%16	91/4	2	_	10-10d	2-#8x11/4 WS	0.47	11.23	0.47	9.60
91/4 - 91/2		/7			240.4					450	4550	410	3230
	MIU3.56/9	✓ 7	16	3%16	813/16	2½	-	16-16d	2-10dx1½	2.00	20.24	1.82	14.37
01/ 117/	11100 50/14 00	/7	40	05/	447/	_		10.10.1		145	2370	105	1685
3½ x 11%	IUS3.56/11.88	✓7	18	3%	11%	2	_	12-10d	_	0.64	10.54	0.47	7.50
	1.50544	17	40	00/	441/	0		40.40.1	0. //041/ 14/0	105	2880	105	2270
3½ x	LF3511	✓7	18	3%16	111/4	2	_	12-10d	2-#8x11/4 WS	0.47	12.81	0.47	10.11
111/4 - 117/8	14110 50/44	/7	40	007	4417	01/		00.40.1	0.401.41/	450	4550	410	3230
	MIU3.56/11	✓7	16	3%16	1111//8	2½	-	20-16d	2-10dx1½	2.00	20.24	1.82	14.37
	11100 5044	/7	40	05/	4.4	_		10.10.1		145	2370	105	1685
	IUS3.56/14	✓7	18	3%	14	2	_	12-10d	_	0.64	10.54	0.47	7.50
04/ 44	150544	/7	40	00/	101/			44.40.1	0 "0 44/14/0	105	3235	105	2385
3½ x 14	LF3514	✓7	18	3%16	13½	2	_	14-10d	2-#8x11/4 WS	0.47	14.39	0.47	10.61
	141110 50/14	/7	10	00/	105/	047		00.40.1	0.401.447	450	4930	410	3485
	MIU3.56/14	✓7	16	3%16	135/16	2½	_	22-16d	2-10dx1½	2.00	21.96	1.82	15.52
		/7		251		_				145	2370	105	1685
	IUS3.56/16	✓ 7	18	3⅓	16	2	-	14-10d	_	0.64	10.54	0.47	7.50
3½ x 16		/7			.==:					450	4930	410	3485
	MIU3.56/16	✓7	16	3%16	155/16	2½	_	24-16d	2-10dx1½	2.00	21.96	1.82	15.52
04/ 40	14110 50/40	/7	40	00/	475/	047		00.40.1	0.401.447	450	4930	410	3485
3½ x 18	MIU3.56/18	✓7	16	3%16	175/16	2½	_	26-16d	2-10dx1½	2.00	21.96	1.82	15.52
04/ 00	141110 50/00	/7	40	00/	105/	047		00.40.1	0.401.447	450	4930	410	3485
3½ x 20	MIU3.56/20	✓ 7	16	3%16	195/16	2½	-	28-16d	2-10dx1½	2.00	21.96	1.82	15.52
04/ 00 00	141110 50/00		40	00/	105/	047		00.40.1	0.401.447	450	4930	410	3485
3½ x 22-30	MIU3.56/20	✓	16	3%16	195/16	2½	_	28-16d	2-10dx1½	2.00	21.96	1.82	15.52
									2.12.1	1580	5780	1470	4225
	HU4.12/9/		١		251		Min	14-16d	6-10d	7.03	25.71	6.54	18.79
4 x 9½	HUC4.12/9	✓	14	41//8	85%	2½		10.10.1	10.10.1	2635	5780	2450	4690
							Max	18-16d	10-10d	11.72	25.71	10.90	20.86
								10.10.1	0.40.1	1580	5780	1470	4225
	HU4.12/11/		١				Min	16-16d	6-10d	7.03	25.71	6.54	18.79
4 x 11%-14	HUC4.12/11	✓	14	41/8	105/16	2½				2635	5780	2450	4690
							Max	22-16d	10-10d	11.72	25.71	10.90	20.86
				40.4	_	247				450	4550	410	3230
	MIU4.28/9	-	16	4%2	9	21/2	-	16-16d	2-10dx1½	2.00	20.24	1.82	14.37
41/8 x 91/2	HU4.28/9			40.6		247			0.40.1	2105	5780	1960	4690
	HUC4.28/9	✓	14	4%2	9	2½	_	18-16d	8-10d	9.36	25.71	8.72	20.86
	BAULA 00/44		40	407	4447	047		00.40.1	0.401.447	450	4550	410	3230
447 4477	MIU4.28/11	-	16	4%2	1111/8	2½	_	20-16d	2-10dx1½	2.00	20.24	1.82	14.37
41/8 x 111//8	HU4.28/11/		4.4	407	44	01/		00.40.1	0.40.1	2455	5780	2280	4690
	HUC4.28/11	✓	14	49/32	11	2½	_	22-16d	8-10d	10.92	25.71	10.14	20.86
417 44			4.0	407	4017	01/		00.40.1	0.401.41/	450	4930	410	3485
4½ x 14	MIU4.28/14	-	16	4%2	13½	2½	_	22-16d	2-10dx1½	2.00	21.96	1.82	15.52
41/ 40	BAULA 00/40		40	407	4517	01/		04.40.1	0.401.417	450	4930	410	3485
4½ x 16	MIU4.28/16	-	16	4%2	15½	2½	_	24-16d	2-10dx1½	2.00	21.96	1.82	15.52
	BAUL 4 75 /0		40	407	047	047		10.10.1	0.401.447	450	4550	410	3230
	MIU4.75/9	_	16	43/4	91/16	2½	_	16-16d	2-10dx1½	2.00	20.24	1.82	14.37
45% x	110540.0	1	10	407	027	_		14.40	0.40.1	1440	4355	1340	3090
91/4 - 91/2	U3510-2	✓	16	43/4	8¾	2	_	14-16d	6-10d	6.41	19.37	5.96	13.75
	HU4.75/9/	,		40.1	_	011		40.40.	0.40.	2105	5780	1960	4690
	HUC4.75/9	✓	14	43/4	9	2½	_	18-16d	8-10d	9.36	25.71	8.72	20.86
	NAULA 35 // :			40.	4447	611		00.40.	0.401.111	450	4550	410	3230
	MIU4.75/11	-	16	43/4	111/16	2½	_	20-16d	2-10dx1½	2.00	20.24	1.82	14.37
45% x	110540.0		10	407	4417	_		10 10 1	0.40.4	1440	4355	1340	3095
1111/4 - 1117/8	U3512-2	✓	16	43/4	111/4	2	_	16-16d	6-10d	6.41	19.37	5.96	13.77
	HU4.75/11/	/	4.4	407	44	01/		00.40-1	0.40-1	2455	5780	2280	4690
İ.	HUC4.75/11	✓	14	43/4	11	21/2	—	22-16d	8-10d	10.92	25.71	10.14	20.86

FACE MOUNT HANGERS – I-JOISTS

Joist Size								Faster	ore		Factored I		
		Web			(in)			1 43161	1013		ir-L		P-F
	Model No.	Stiff Reqd	Ga	W	н	В	Min/ Max	Header	Joist	Uplift (K _D = 1.15) lbs	Normal (K _D = 1.00) lbs	Uplift (K _D = 1.15) lbs	Normal (K _D = 1.00) lbs
										kN	kN	kN	kN
	MIU4.75/14		16	43/4	13½	2½		22-16d	2-10dx1½	450	4930	410	3485
4% x14	WIIU4.73/14		10	494	1372	2 72		22-10u	Z-100X172	2.00	21.96	1.82	15.52
	HU3514-2/	✓	14	43/4	131/4	2½	_	18-16d	8-10d	2105	5780	1960	4690
	HUC3514-2	•		774	1074	2/2		10 100	0 100	9.36	25.71	8.72	20.86
	MIU4.75/16	_	16	43/4	15½	2½	_	24-16d	2-10dx1½	450	4930	410	3485
										2.00	21.96	1.82	15.52
45% x 16							Min	20-16d	8-10d	2105	5780	1960	4690
	HU3516-2/ HUC3516-2	✓	14	43/4	151/4	2½				9.36	25.71	8.72	20.86
	11003310-2						Max	26-16d	12-10d	3160 14.06	5780 25.71	2695 11.99	5780 25.71
										450	4930	410	3485
4% x 18	MIU4.75/18	-	16	43/4	17½	21/2	_	26-16d	2-10dx1½	2.00	21.96	1.82	15.52
										450	4930	410	3485
	MIU4.75/20	-	16	43/4	19½	2½	_	28-16d	2-10dx1½	2.00	21.96	1.82	15.52
										2105	5780	1960	4690
4% x 20	HU3520-2/						Min	20-16d	8-10d	9.36	25.71	8.72	20.86
	HUC3520-2	✓	14	43/4	191/4	2½		00.40-1	40.40.1	3160	5780	2695	5780
							Max	26-16d	12-10d	14.06	25.71	11.99	25.71
	MIU4.75/20	✓	16	43/4	19½	2½		28-16d	2-10dx1½	450	4930	410	3485
	101104.75/20	•	10	494	1972	2 72		20-10u	Z-100X172	2.00	21.96	1.82	15.52
4% x 22-30							Min	20-16d	8-10d	2105	5780	1960	4690
	HU3520-2/	✓	14	43/4	191/4	2½	IVIIII	20 100	0 100	9.36	25.71	8.72	20.86
	HUC3520-2			.,,			Max	26-16d	12-10d	3160	5780	2695	5780
										14.06	25.71	11.99	25.71
	MIU5.12/9	_	16	51/8	813/16	2½	_	16-16d	2-10dx1½	450	4550	410	3230
5 x 91/4 - 91/2	1111040 07									2.00 1580	20.24 5780	1.82 1470	14.37 4225
	HU310-2/ HUC310-2	✓	14	51/8	87/8	2½	_	14-16d	6-10d	7.03	25.71	6.54	18.79
				=				00.101		450	4550	410	3230
5 x	MIU5.12/11	-	16	51/8	111//8	2½	_	20-16d	2-10dx1½	2.00	20.24	1.82	14.37
441/ 447/	HU312-2/	/	14	51/8	10%	2½		16-16d	6-10d	1580	5780	1470	4225
	HUC312-2	•	14	J 78	1078	2 72		10-100	0-100	7.03	25.71	6.54	18.79
5 x 14	MIU5.12/14	_	16	51/8	135/16	2½	_	22-16d	2-10dx1½	450	4930	410	3485
0 / 1 .				• • • • • • • • • • • • • • • • • • • •	10710	-/-			2 100/172	2.00	21.96	1.82	15.52
5 x 16	MIU5.12/16	_	16	51/8	155/16	2½	_	24-16d	2-10dx1½	450	4930	410	3485
										2.00	21.96 4930	1.82	15.52
5 x 18	MIU5.12/18	_	16	51//8	175/16	2½	_	26-16d	2-10dx1½	450 2.00	21.96	410 1.82	3485 15.52
										450	4930	410	3485
5 x 20	MIU5.12/20	-	16	51/8	195/16	21/2	_	28-16d	2-10dx1½	2.00	21.96	1.82	15.52
				=	10-1			00.101		450	4930	410	3485
5 x 22 - 30	MIU5.12/20	✓	16	51/8	195/16	2½	_	28-16d	2-10dx1½	2.00	21.96	1.82	15.52
							Min	1/1164	6 164	1840	5780	1710	4225
7 x 9½ - 9½	HU410-2/	/	14	71/8	91/8	2½	Min	14-16d	6-16d	8.18	25.71	7.61	18.79
1 X 3 /4 - 3 /2	HUC410-2	•	14	1 /8	378	2 /2	Max	18-16d	8-16d	2455	5780	2280	4690
							IVIUA	10 100	0 100	10.92	25.71	10.14	20.86
							Min	16-16d	6-16d	1840	5780	1710	4225
	HU412-2/ HUC412-2	✓	14	71/8	1111/8	2½				8.18	25.71	7.61	18.79
1174 - 1178	1100412-2						Max	22-16d	8-16d	2455	5780 25.71	2280	4690
										10.92 2455	25.71 5780	10.14 2280	20.86 4690
	HU414-2/						Min	20-16d	8-16d	10.92	25.71	10.14	20.86
	HUC414-2	✓	14	71//8	13%	2½				3685	7025	3420	5780
							Max	26-16d	12-16d	16.39	31.25	15.21	25.71

See footnotes on page 105.

Engineered Wood & Structural Composite Lumber Connectors

FACE MOUNT HANGERS – STRUCTURAL COMPOSITE LUMBER

			n	imensio	ne					Factored	Resistance	
			"	(in)	113		Faster	iers	D.F	ir-L		P-F
Joist	Model								Uplift	Normal	Uplift	Normal
Size	No.	Ga			_	Min/			$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
			W	Н	В	Max	Header	Joist	lbs	lbs	lbs	lbs
									kN	kN	kN	kN
									980	2785	905	1975
						Min	12-16d	4-10dx1½	4.36	12.39	4.03	8.79
1¾ x 5½	HU1.81/5	14	1 13/16	5%	2½				1470	3715	1360	2635
						Max	16-16d	6-10dx1½	6.54	16.53	6.05	11.72
									980	3775	905	2670
						Min	12-16d	4-10dx1½	4.36	16.82	4.03	11.89
1¾ x 7¼	HU7	14	1 13/16	611/16	21/2				1960	5445	1810	4040
						Max	16-16d	8-10dx1½	8.72	24.25	8.06	18.00
									4505	6405	4010	5200
	HUS1.81/10	16	1 13/16	9	3	_	30-16d	10-16d	20.05	28.48	17.84	23.13
									1470	4830	1360	3875
1¾ x 9½						Min	18-16d	6-10dx1½	6.54	21.48	6.05	17.24
	HU9	14	1 13/16	95/16	21/2				2450	5685	2265	4660
						Max	24-16d	10-10dx1½	10.90	25.29	10.08	20.73
									4505	6405	4010	5200
	HUS1.81/10	16	1 13/16	9	3	_	30-16d	10-16d	20.05	28.48	17.84	23.13
43/									1470	4830	1360	3875
1¾ x 11¼ - 11%						Min	22-16d	6-10dx1½	6.54	21.48	6.05	17.24
1174 1170	HU11	14	1 13/16	111/16	21/2				2450	5685	2265	4660
						Max	30-16d	10-10dx1½	10.90	25.29	10.08	20.73
									4505	6405	4010	5200
	HUS1.81/10	16	1 13/16	9	3	_	30-16d	10-16d	20.05	28.48	17.84	23.13
									1960	5255	1810	4265
1¾ x 14						Min	28-16d	8-10dx1½	8.72	23.38	8.05	18.97
	HU14	14	1 13/16	1311/16	21/2				3430	5780	2695	5450
						Max	36-16d	14-10dx1½	15.26	25.71	11.99	24.24
									1055	4270	980	3135
	1111407					Min	10-16d	4-10d	4.69	18.99	4.36	13.95
	HU48/ HUC48	14	3%16	613/16	21/2				1580	5780	1470	4225
3½ x 7¼	110010					Max	14-16d	6-10d	7.03	25.71	6.54	18.79
									6070	12980	4310	9215
	HGUS48	12	3%	71/16	4	_	36-16d	12-16d	27.00	57.74	19.17	40.99
									1440	4355	1340	3090
	U410	16	3%16	8%	2	_	14-16d	6-10d	6.41	19.37	5.96	13.75
									3795	5690	3450	4570
	HUS410	14	3%16	815/16	2	_	8-16d	8-16d	16.88	25.31	15.35	20.33
									1580	5780	1470	4225
3½ x	HU410/					Min	14-16d	6-10d	7.03	25.71	6.54	18.79
9½ x 9¼ - 9½	HUC410/	14	3%16	85/8	21/2				2635	5780	2450	4690
074 072	1100110					Max	18-16d	10-10d	11.72	25.71	10.90	20.86
									4745	9855	4310	7000
	HHUS410	14	35/8	9	3	_	30-16d	10-16d	21.11	43.84	19.17	31.14
									6840	14645	4855	10400
	HGUS410	12	35/8	91/16	4	_	46-16d	16-16d	30.43	65.14	21.60	46.26
									1440	4355	1340	3090
	U410	16	3%16	8%	2	_	14-16d	6-10d	6.41	19.37	5.96	13.75
									4745	7015	3650	4980
	HUS412	14	3%16	10½	2	_	10-16d	10-16d	21.11	31.20	16.24	22.15
									1580	5780	1470	4225
3½ x	UI14107					Min	16-16d	6-10d	7.03	25.71	6.54	18.79
372 X 111/4 - 117/8	HU412/ HUC412	14	3%16	101/16	21/2				2635	5780	2450	4690
1174 1176						Max	22-16d	10-10d	11.72	25.71	10.90	20.86
									6840	14645	4855	10400
	HGUS410	12	35/8	91/16	4	_	46-16d	16-16d	30.43	65.14	21.60	46.26
									7640	14995	5425	10645
	HGUS412	12	35/8	101/16	4	_	56-16d	20-16d	33.98	66.70	24.13	47.35
									55.50	00.70	24.10	47.00

See footnotes on page 112.

FACE MOUNT HANGERS – STRUCTURAL COMPOSITE LUMBER

Joist Size			Dimensions			Fasteners			Factored Resistance				
			(in)			rasiciicis			D.Fir-L S-P-F				
	Model No.	Ga							Uplift	Normal	Uplift	Normal	
	NU.		W	Н	В	Min/ Max	Header	Joist	(K _D = 1.15)	(K _D = 1.00)	(K _D = 1.15)	(K _D = 1.00)	
						Wax			kN	kN	kN	kN	
									1440	4355	1340	3095	
	U414	16	3%16	10	2	_	16-16d	6-10d	6.41	19.37	5.96	13.77	
									2105	5780	1960	4690	
	HU416/					Min	20-16d	8-10d	9.36	25.71	8.72	20.86	
3½ x 14	HUC416	14	3%16	13%	2½				3160	5780	2695	5780	
						Max	26-16d	12-10d	14.06	25.71	11.99	25.71	
									10130	16400	7195	11645	
	HGUS414	12	35/8	127/16	4	_	66-16d	22-16d	45.06	72.95	32.00	51.80	
01/ v 16	LICUC 414	10	25/	107/	4		66.164	00.164	10130	16400	7195	11645	
3½ x 16	HGUS414	12	35%	127/16	4	_	66-16d	22-16d	45.06	72.95	32.00	51.80	
3½ x 18	HGUS414	12	35/8	127/16	4	_	66-16d	22-16d	10130	16400	7195	11645	
372 X 10	паизин	12	378	12716	4		00-10u	22-10u	45.06	72.95	32.00	51.80	
51/4 x 71/4	HGUS5.50/8	12	5½	73/16	4	_	36-16d	12-16d	6070	12980	4310	9215	
074 X 174	110000.00/0	12	072	1 716	7		00 100	12-10U	27.04	57.82	19.17	40.99	
			5½	7%	2½	Min	14-16d	6-16d	1840	5780	1710	4225	
	HU610/	14							8.18	25.71	7.61	18.79	
	HUC610					Max	18-16d	8-16d	2455	5780	2280	4690	
51/4 x 91/4 - 91/2									10.92	25.71	10.14	20.86	
	HHUS5.50/10	14	5½	9	3	_	30-16d	10-16d	4745	10545	4310	7485	
									21.11	46.91	19.17 4855	33.29 10400	
	HGUS5.50/10	12	5½	815/16	4	_	46-16d	16-16d	6840 30.47	14645 65.23	21.60	46.26	
5¼ x 11¼ - 11%	HU612/ HUC612	14	5½	9%	2½				1840	5780	1710	40.20	
						Min	16-16d	6-16d	8.18	25.71	7.61	18.79	
							22-16d	8-16d	2455	5780	2280	4690	
						Max			10.92	25.71	10.14	20.86	
									7640	14995	5425	10645	
	HGUS5.50/12	12	5½	10½	4	_	56-16d	20-16d	34.03	66.79	24.13	47.35	
	HUU614		5½ 5½	11% 12½	2½				2455	5780	2280	4690	
		14				Min	18-16d	8-16d	10.92	25.71	10.14	20.86	
5¼ x 14						Mari	04.404	10.164	3685	7025	3420	5780	
						Max	24-16d	12-16d	16.39	31.25	15.21	25.71	
		12					66-16d	22-16d	10130	16400	7195	11645	
		12					00-100	22-10u	45.12	73.05	32.00	51.80	
	HU616/ HUC616	14	5½	1211/16	2½	Min	20-16d	8-16d	2455	5780	2280	4690	
						IVIIII	20 100	0 100	10.92	25.71	10.14	20.86	
5¼ x 16						Max	26-16d	12-16d	3685	7025	3420	5780	
J/4 X 10									16.39	31.25	15.21	25.71	
	HGUS5.50/14	12	5½	12½	4	_	66-16d	22-16d	10130	16400	7195	11645	
									45.12	73.05 5780	32.00 2280	51.80 4690	
51/4x 18	HU616/ HUC616	14	5½	1211/16		Min	20-16d	8-16d	2455 10.92	25.71	10.14	20.86	
									3685	7025	3420	5780	
						Max	26-16d	12-16d	16.39	31.25	15.21	25.71	
									10130	16400	7195	11645	
	HGUS5.50/14	12	5½	12½	4	_	66-16d	22-16d	45.12	73.05	32.00	51.80	
							00.101		6070	12980	4310	9215	
7 x 71/4	HGUS7.25/8	12	71/4	77/32	4	_	36-16d	12-16d	27.04	57.82	19.17	41.00	
7 x 9¼ - 9½	HU410-2/ HUC410-2	14	71/8	91/8	2½	0.41	44.40.1	0.40-1	1840	5780	1710	4225	
						Min	14-16d	6-16d	8.18	25.71	7.61	18.79	
						Max	10 164	0 164	2455	5780	2280	4690	
						Max	18-16d	8-16d	10.92	25.71	10.14	20.86	
	HHUS7.25/10	14	71/4	9	35/16	_	30-16d	10-16d	4745	10770	4310	7650	
	1111001.20/10	14	1 74	ש	0/10		00 10u	10 100	21.11	47.91	19.17	34.03	
	HGUS7.25/10	12	71/4	85/8	4	_	46-16d	16-16d	6840	15760	4855	11190	
	110037.23/10	14	1/4	J /6	7		40-10U	10-100	30.47	70.20	21.60	49.78	
	HU412-2/ HUC412-2	14	71//8	111//8	2½	Min	16-16d	6-16d	1840	5780	1710	4225	
7									8.18	25.71	7.61	18.79	
7 x 11¼ - 11%						Max	22-16d	8-16d	2455 10.92	5780 25.71	2280 10.14	4690 20.86	
11/4*11/8									7640	16110	5425	11435	
	HGUS7.25/12	12	71/4	10%	4	_	56-16d	20-16d	34.03	71.76	24.13	50.87	
									34.03	11.70	24.10	30.07	

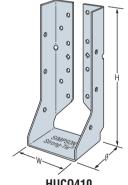
FACE MOUNT HANGERS – STRUCTURAL COMPOSITE LUMBER

Joist Size	Model No.	Ga	Dimensions (in)			Fasteners			Factored Resistance			
									D.Fir-L		S-P-F	
									Uplift	Normal	Uplift	Normal
			W	Н	В	Min/ Max	Header	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
									lbs	lbs	lbs	lbs
									kN	kN	kN	kN
		14	71/8	13%	2½	Min	20-16d	8-16d	2455	5780	2280	4690
	HU414-2/ HUC414-2								10.92	25.71	10.14	20.86
7 x 14						Max	26-16d	12-16d	3685	7025	3420	5780
									16.39	31.25	15.21	25.71
	HGUS7.25/14	12	71/4	12%	4	_	66-16d	22-16d	10130	18200	7195	12920
	110007.23/14	12							45.06	81.07	32.00	57.47
	HU414-2/ HUC414-2	14	71/8	131/8	2½	Min Max	20-16d	8-16d	2455	5780	2280	4690
									10.92	25.71	10.14	20.86
7 x 16							26-16d	12-16d	3685	7025	3420	5780
7 × 10									16.39	31.25	15.21	25.71
	HGUS7.25/14	12	71/4	127/16	4	_	66-16d	22-16d	10130	18200	7195	12920
									45.06	81.07	32.00	57.47
	HU414-2/ HUC414-2	14	71/8	13%	2½	Min	20-16d	8-16d	2455	5780	2280	4690
7 x 18									10.92	25.71	10.14	20.86
						Max	26-16d	12-16d	3685	7025	3420	5780
									16.39	31.25	15.21	25.71
	HGUS7.25/14	12	71/4	121/16	4		66-16d	22-16d	10130	18200	7195	12920
									45.06	81.07	32.00	57.47

- 1. 10d common nails may be used instead of the specified 16d nails at 0.83 of the tabulated value.
- 2. Uplift loads have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading ($K_D = 1.00$) such as in cantilever construction.
- 3. MIN nailing quantity and load values—fill all round holes; MAX nailing quantity and load values—fill all round and triangle holes.
- 4. Structural composite lumber is LVL, LSL and Parallam® PSL.
- 5. D-Fir.L factored resistances can be used for most LVL. Verify with manufacturer prior to selecting hanger.
- 6. **NAILS:** 16d = 0.162" dia. x 3½" long, 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

Parallam is registered trademark of iLevel® by Weyerhaeuser.

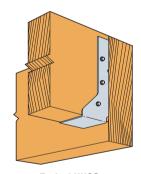
HUCQ Heavy-Duty Joist Hangers


The HUCQ series are heavy-duty joist hangers that incorporate Simpson Strong-Tie® SDS wood screws. Designed and tested for installation at the end of a beam or on a post, they provide a strong connection with fewer fasteners than nailed hangers.

MATERIAL: 14 gauge FINISH: Galvanized

INSTALLATION: • Use all specified fasteners. See General Notes.

- · SDS screws supplied.
- · For use on solid sawn or engineered wood and structural composite lumber products.


OPTIONS: HUCQ cannot be modified.

Typical HUCQ Installation on a Post

Typical HUCQ Installation on a Beam

	D	imension	ıs	East	eners	Factored Resistance				
	(in)			Гази	elle12	D.F	ir-L	S-P-F		
Model			В			Uplift	Normal	Uplift	Normal	
No.	W	Н		Face	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	
					20121	lbs	lbs	lbs	lbs	
						kN	kN	kN	kN	
HUCQ1.81/9-SDS1.75	1 13/16	9	3	8-SDS 1/4"x13/4"	4-SDS 1/4"x13/4"	1565	4350	1450	3300	
110001.01/8-3031.73	I '716				4-303 74 8174	6.96	19.35	6.45	14.68	
HUCQ1.81/11-SDS1.75	113/16	11	3	10-SDS 1/4"x13/4"	4-SDS 1/4"x13/4"	1565	5440	1450	3560	
1100@1.01/11-0001.70	1 716				4 0D0 74 X174	6.96	24.20	6.45	15.84	
HUCQ410-SDS2.5	3%16	9	3	12-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	7270	2900	6825	
11000410-3032.3	3716				0 0D0 /4 XZ/2	14.28	32.34	12.90	30.36	
HUCQ412-SDS2.5	3%16	11	3	14-SDS ½"x2½"	6-SDS 1/4"x21/2"	3210	9090	2900	7645	
11000412-0002.0	3 716				0-0D0 74 XZ72	14.28	40.43	12.90	34.01	
HUCQ610-SDS2.5	51/2	9	3	12-SDS ¼"x2½"	6-SDS 1/4"x21/2"	3210	7270	2900	6825	
11000010-0002.0	J /2				U-UUU /4 XZ/2	14.28	32.34	12.90	30.36	
HUCQ612-SDS2.5	51/2	11	3	14-SDS 1/4"x21/2"	6-SDS 1/4"x21/2"	3210	9090	2900	7645	
11000012-0002.0	J /2	11	3		0-0D0 /4 XZ/2	14.28	40.43	12.90	34.01	

^{1.} Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce by 15% for standard term loading such as cantilever construction.

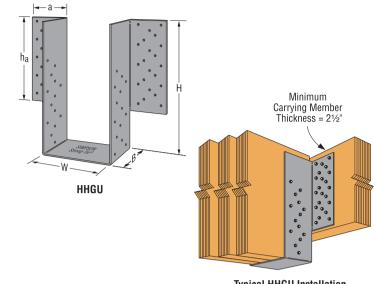
^{2.} When using structural composite lumber columns, screws must be applied to the wide face of the column.

LGU/MGU/HGU/HHGU High-Capacity Girder Hangers

The GU hangers are a high-capacity girder hangers designed for situations where the header and joist are flush at top. This part can be used for retrofit on the framing members after they are temporarily placed in position. It uses Simpson Strong-Tie® Strong-Drive® screws (SDS) to make installation fast and easy, with no pre-drilling required.

MATERIAL: See table

FINISH: LGU, MGU—Galvanized;


HGU, HHGU—Simpson Strong-Tie® gray paint

INSTALLATION: • Use all specified fasteners. See General Notes.

- Install with Simpson Strong-Tie SDS 1/4"x21/2" screws. which are provided with the hangers. (Note: lag screws will not achieve the same loads.)
- All multiple members must be fastened together to act as a single unit.
- Multiple member headers may require additional fasteners at the hanger locations. The quantity and location of the additional fasteners must be determined by the Designer.

OPTIONS: • Hot-dip galvanized available. Order as "X" version, specify HDG.

- Other seat widths available. Order as "X" version, specify width.
- See Hanger Options, pages 212, for one flange concealed option (all models except MGU3.63).
- LGU, MGU and HGU hangers may be skewed up to 45°.

Typical HHGU Installation

			D	imensior	18		Foot	eners	Factored Resistance					
				(in)			гази	anera	D.F	ir-L	S-I	P-F		
Model	Ga								Uplift	Normal	Uplift	Normal		
No.	ua	w	В	Min.	h		Header	loiet	(K _D = 1.15)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$		
		VV	D	Height (H)	ha	a	пеацег	Joist	lbs	lbs	lbs	lbs		
									kN	kN	kN	kN		
LGU3.63-SDS2.5	10	35/8	4½	8	7½	31/4	16-SDS ¼"x2½"	12-SDS ½"x2½"	7730	10170	5565	7320		
LGU3.03-3D32.3	10	378	472	0	1 72	374	10-3D3 74 XZ72	12-303 74 X272	34.38	45.24	24.75	32.56		
MGU3.63-SDS2.5	10	35/8	4½	91/4	83/4	4	24-SDS ¼"x2½"	16-SDS ¼"x2½"	10100	13140	7270	9460		
WIGU3.03-3D32.3	10	378	472	374	074	4	24-3D3 74 X272	10-303 74 X272	44.93	58.45	32.34	42.08		
MGU5.50-SDS2.5	10	51/2	4½	91/4	83/4	4	24-SDS 1/4"x21/2"	16-SDS ¼"x2½"	10100	13140	7270	9460		
WIGU3.30-3D32.3	10	J /2	4/2	374	074	4	24-3D3 /4 X2/2	10-3D3 /4 X2/2	44.93	58.45	32.34	42.08		
HGU5.50-SDS2.5	7	5½	51/4	11	10%	43/4	36-SDS 1/4"x21/2"	24-SDS 1/4"x21/2"	14300	20320	10295	14630		
11003.30-3032.3	′	J /2	J /4	- ' '	1078	474	30-3D3 /4 X2/2	24-3D3 /4 X2/2	63.61	90.39	45.79	65.08		
HHGU5.50-SDS2.5	3	51/2	51/4	13	12%	43/4	44-SDS ½"x2½"	28-SDS ¼"x2½"	21740	26665	15655	19195		
111003.30-3032.3	3	J /2	J /4	10	1278	474	44-3D3 /4 XZ/2	20-3D3 /4 X2/2	96.70	118.61	69.64	85.38		
HGU7.25-SDS2.5	7	71/4	51/4	11	10%	43/4	36-SDS 1/4"x21/2"	24-SDS ½"x2½"	14300	20320	10295	14630		
11007.23*3032.3		1 74	J 74	11	1078	→ 74	30-3D3 74 XZ72	24-000 74 XZ72	63.61	90.39	45.79	65.08		
HHGU7.25-SDS2.5	3	71/4	51/4	13	12%	43/4	44-SDS 1/4"x21/2"	28-SDS ¼"x2½"	21740	26665	15655	19195		
1111007.23-3032.3	٥	1 74	374	13	1478	→ 74	44-000 74 XZ72	20-0D0 74 X272	96.70	118.61	69.64	85.38		

- 1. Factored uplift resistances have been increased for earthquake and wind loading, with no further increase allowed.
- 2. Specify H dimension. The Designer should check the shear capacity of the carried member to make sure it matches the hanger's capacity. Maximum H = 30".
- 3. Header depth must exceed the ha dimension shown and is based on the size necessary to fit screw pattern. Use the next size up that meets the minimum depth requirement.

on a 3x Nailer mounted

on a Steel Beam

TOP FLANGE HANGERS ITS/LT/MIT/HIT Engineered Wood Products Hangers

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

A dedicated range of Top Flange I-joist hangers meeting the unique needs of I-joists while offering superior performance and ease of installation.

The innovative ITS sets a new standard for engineered wood top flange hangers. The ITS installs faster and uses fewer nails than any other EWP top flange hanger. The Strong-Grip™ seat and Funnel Flange™ features allow standard joist installation without requiring joist nails resulting in the lowest installed cost. The Strong-Grip seat firmly secures I-joists with flange thicknesses from 11/8" to 11/2".

The LT series of top flange hangers is designed for use with wood 1-joists. Installation is fast and easy. The hanger's top flange simplifies placement and the side flanges laterally support the I-joist top flange eliminating the need for web stiffeners. Securing the carried I- joist is simple with only one or two screws required into the bottom flange through the seat of the hanger.

MIT/HIT - Patented Positive Angle Nailing (PAN)

PAN is specifically designed for I-joists when used with the MIT or HIT. With PAN, the nail hole material is not removed, but is formed to channel and confine the path of the nail at approximately 45°. PAN minimizes splitting of the flanges while permitting time-saving nailing from a better angle. See Top Flange tables on pages 122-132.

Refer to Joist Manufacturer's literature or appropriate Simpson Strong-Tie Connector Selection Guide for actual joist sizes.

MATERIAL: ITS, LT-18 gauge; MIT, HIT-16 gauge

FINISH: Galvanized INSTALLATION:

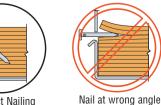
• Use all specified fasteners. Verify that the header can take the required fasteners specified in the table.

- See product specific installation drawings pages 114-115.
- ITS—no joist nailing required for standard I-joist installation without web stiffeners. When supporting I-joists with web stiffeners or rectangular SCL member 2-10dx1½" must be installed into optional triangle joist nail holes for standard installation values.
- ITS—optional triangle nail holes may be used for additional capacity. See load tables.
- MIT and LT—optional triangle nail holes may be used for increased uplift capacity. See Optional Nailing For Increased Uplift table.
- · HIT—closed PAN nail holes may be used for increased uplift capacity. See Optional Nailing For Increased Uplift table.
- For sloped joists up to 1/4:12 there is no reduction, between 1/4:12 and up to ½:12, tests show a 10% reduction in ultimate hanger strength. Local crushing of the bottom flange or excessive deflection may be limiting; check with joist manufacturer for specific limitations on bearing of this type.

FACTORED RESISTANCES:

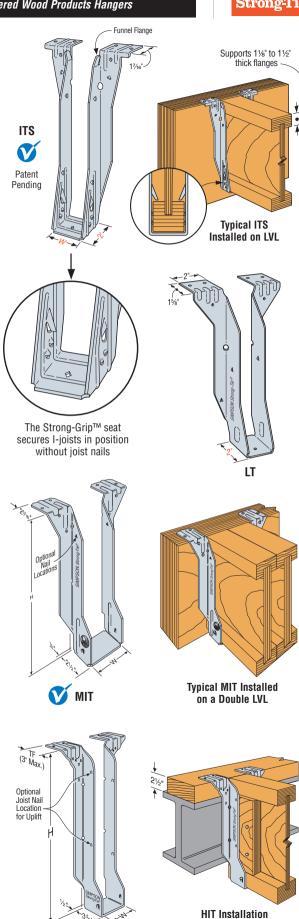
• The ITS, LT, MIT and HIT hangers have locations for optional nails if additional uplift is needed. Optional uplift nailing requires the addition of properly-secured web stiffeners. See the load tables for minimum required fasteners and uplift capacities.

OPTIONS:


· Because these hangers are fully die-formed, they cannot be modified. However these models will normally accommodate a skew of up to 5°.

Do not bend tab back

POSITIVE ANGLE NAILING



Approx. 45° angle

Nail too long

TOP FLANGE HANGERS ITS/LT/MIT/HIT Engineered Wood Products Hangers

IT SERIES WITH VARIOUS HEADER APPLICATIONS

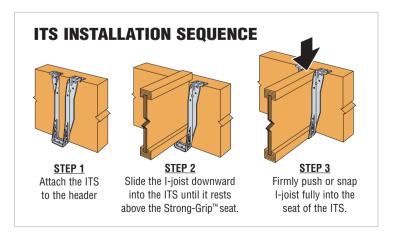
		Fastener	S	Factored Resistance								
				Uplift		No	rmal (I	(_D = 1.	00)			
Model	Тор	Face	Joist	$(K_D = 1.15)$	D.Fir-L	S-P-F	LVL ⁴	PSL	LSL	I-Joist ⁵		
	тор	race	30131	lbs	lbs	lbs	lbs	lbs	lbs	lbs		
				kN	kN	kN	kN	kN	kN	kN		
	1-10dv11/	2-10dx1½		175	2115	1670	2050	1830	2385	1375		
ITO O	4-10ux172	Z-10UX172		0.78	9.41	7.43	9.12	8.14	10.61	6.12		
ITS Series (Standard	4-10d	2-10d		175	2235	1690	2280	2005	2615	_		
Installation)	4-10u	Z-10u	_	0.78	9.94	7.52	10.14	8.92	11.63	_		
otananon,	4-16d	2-16d		175	2375	1795	2610	2550	2795	_		
	4-10u	2-10u		0.78	10.56	7.98	11.61	11.34	12.43	_		
.=0.0	4-10d	4-10d	4-10dx1½	830	2870	1805	2545	2345	2770	_		
ITS Series ⁸ (Optional	4-10u	4-10u	4-10ux172	3.69	12.77	8.03	11.32	10.43	12.32	_		
Installation)	4-16d	4-16d	4-10dx1½	830	2870	1805	2610	2550	2795	_		
Installation)	4-10u	4-10u	4-10ux172	3.69	12.77	8.03	11.61	11.34	12.43	_		
	4.10dv11/	0 10dv11/	1-#8x1½ WS	105	1910	1480	2175	1980	2215	1695		
	4-10ux 1 72	Z-10UX 1 72	1-#0X174 WV3	0.47	8.50	6.58	9.68	8.81	9.85	7.54		
LT Series	4-10d	2-10d	1-#8x1¼ WS	105	2625	1725	2560	2480	2620	_		
LI SEITES	4-10u	Z-10u	1-#0X174 WV3	0.47	11.68	7.67	11.39	11.03	11.65	_		
	4-16d	2-16d	1-#8x11/4 WS	105	2760	1850	2560	2480	2620	_		
	4-10u	2-10u	1-#OX174 WO	0.47	12.28	8.23	11.39	11.03	11.65	_		
	4.10dv11/	4-10dx1½	2-10dx1½	450	3145	1825	3330	2455	2630	1900		
	4-10ux 1 72	4-10ux 1 /2	Z-10UX 1 72	2.00	13.99	8.12	14.81	10.92	11.70	8.45		
MIT Series	4-10d	4-10d	2-10dx1½	450	3295	2420	3550	3025	2630	_		
WITT SELLES	4-10u	4-10u	Z-10UX 1 72	2.00	14.66	10.77	15.79	13.46	11.70	_		
	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025	3465	_		
	4-100	4-10u	Z-10UX172	2.00	15.52	10.77	15.79	13.46	15.41	_		
HIT Series	1-16d	6-16d	2-10dx1½	450	4570	2705	3725	3220	3775	_		
TITT SELLES	4-16d	0-10u	Z-10UX172	2.00	20.33	12.03	16.57	14.32	16.79	_		

- 1. When I-joist is used as header, all nails must be 10dx11/2.
- 2. Resistances may not be increased for short-term loading.
- Uplift resistances are based on D.Fir-L, and have been increased 15% for wind or earthquake loading with no further increase allowed. Divide by 1.15 for normal loading criteria like cantilever construction. For S-P-F use 0.71 x resistance.
- Applies to LVL headers made primarily from Douglas Fir or Southern Pine. For LVL made primarily from Spruce Pine Fir or similar less dense veneers, use the values found in the S-P-F column.
 For flanges less than 1½" thick multiply table values by a factor of 0.85.
- 6. Minimum solid header thickness to achieve LT table loads is 13/4"
- Structural composite lumber is LVL, LSL and Parallam® PSL.
- 8. ITS optional installation requires web stiffeners installed per I-joist manufacturers recommendations.
- For 16 and 18 gauge, 31/2" wide I-joist hangers, web stiffeners are required when the factored reaction is greater than 2330 lbs. (10.36 kN).

Parallam is registered trademark of iLevel® by Weyerhaeuser.

NAILS: 16d = 0.162" dia. x 3½" long, 16dx2½ = 0.162" dia. x 2½" long, 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

OPTIONAL NAILING FOR INCREASED UPLIFT


		Fasteners			ed Uplift
					$(K_D = 1.15)$
Model	Top	Face	Joist	D.Fir-L	S-P-F
	100	1 400	00.01	lbs	lbs
				kN	kN
	4-10dx1½	4-10dx1½	2-10dx1½	430	395
	4-10ux172	4-10UX172	Z-100X172	1.91	1.76
LT	4-10d	4-10d	2-10dx1½	430	395
Series	4-10u	4-10u	Z-100X172	1.91	1.76
	4-16d	4-16d	2-10dx11/2	430	395
	4-10u	4-10u	Z-100X172	1.91	1.76
	4-10dx1½	4-10dx1½	4-10dx1½	895	705
	4-10ux 1 72	4-10UX172	4-10ux 1 72	3.98	3.14
MIT	4-10d	4-10d	4-10dx1½	895	705
Series	4-100	4-100	4-100X172	3.98	3.14
	4 104	4.104	4.404541/	895	705
	4-16d	4-16d	4-10dx1½	3.98	3.14
	4-16d	6-16d	4-10dx1½	895	705
HIT Series	4-100	0-100	4-10UX172	3.98	3.14
	4 16d	6 164	6 10dv11/	1345	1175
	4-16d	6-16d	6-10dx1½	5.98	5.23

NAILER TABLE

This table indicates the maximum factored normal resistances for ITS/LT/MIT/HIT hangers used on wood nailers. The header nail type must be substituted for those listed in other tables.

				tored Nor ance (K _D	
Model	Nailer	Header Nailing	D.Fir-L	S-P-F	LSL
		Naming	lbs	lbs	lbs
			kN	kN	kN
	0.4	6-10dx1½	1855	1855	_
ITS Series (Standard	2x	6-100X1 1/2	8.25	8.25	_
Installation)	2-2x	6-10d	1855	1855	_
,	Z-ZX	0-10u	8.25	8.25	_
	2-2x	0.104	2560	2240	_
ITS Series	Z-ZX	8-10d	11.39	9.96	_
(Optional Installation)	4x	8-16d	2770	_	_
	4X	0-100	12.32	_	_
	2x	6-10dx1½	1770	1620	1995
	ZX	0-100X172	7.87	7.21	8.87
LT Series	2-2x	6-10d	2310	1995	_
LI SEIIES	Z-ZX	0-10u	10.28	8.87	_
	4x	6-16d	2665	_	_
	47	0-10u	11.85	_	_
	2x	6-10dx1½	2140	2055	2630
	2.X	0-10ux172	9.52	9.14	_
	2-2x	8-10d	2365	2055	_
MIT Series	Z-ZX	0-10u	10.52	9.14	
IVIII SEITES	3x	8-16dx21/2	2720	2430	_
	JA	0-10UXZ /2	12.10	10.81	_
	4x	8-16d	3090		_
	7^	U-10u	13.75	_	_
	2-2x	10-10d	3815	_	_
	Z-ZX	10-100	16.97	_	_
HIT Series	3x	10-16dx2½	4645	_	_
TITT SELIES	JX.	10-10ux272	20.66	_	_
	4x	10-16d	4670	_	_
	47	10-100	20.77	_	_

- 1. Maximum factored uplift resistance ($K_D=1.15$) for nailer applications is the lesser of the value shown in "Various Header Applications" table or 385 lbs. (1.71kN).
- 2. For 16 and 18 gauge, 3½" wide I-joist hangers, web stiffeners are required when the factored reaction is greater than 2330 lbs. (10.36 kN).

- 1. Factored resistances have been increased 15% for wind or earthquake loading with no further increase allowed. Reduce according to the code for normal loading criteria such as in cantilever construction.
- 2. Web stiffeners are required on I-joist for additional nailing.

Pattern (ANP)

W/WP/WPU/WM/WMU/HW/HWU I-Joist & Structural Composite Lumber Hangers

SIMPSON Strong-Tie

The W, WP, WPU, HWU and HW series purlin hangers offer the greatest design flexibility and versatility. WMs are designed for use on standard 8" grouted masonry block wall construction.

MATERIAL: See tables on pages 122-136; W, WI—12 ga. top flange and stirrup; WM, WMI, WMU—12 ga. top flange and stirrup; WPU, WP—7 ga. top flange, 12 ga. stirrup; HW, HWI-3 ga. top flange, 11 ga. stirrup;

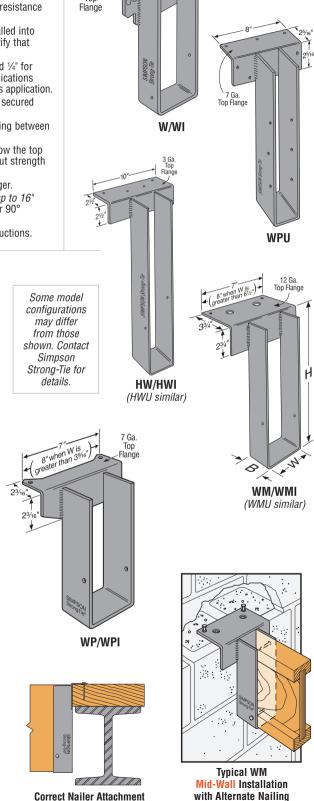
HWU-3 ga. top flange, 10 ga, stirrup.

FINISH: Simpson Strong-Tie® gray paint; hot-dipped galvanized available: specify HDG.

FACTORED RESISTANCES: For hanger heights exceeding the joist height, the factored resistance is 0.50 of the tabulated resistance.

INSTALLATION: • Use all specified fasteners. WM—two 16d duplex nails must be installed into the top flange and embedded into the grouted wall for mid-wall applications. Verify that the header can take the required fasteners specified in the table.

- Hangers may be welded to steel headers with 1/8" for W. WI. 3/16" for WP. WPI, and 1/4" for HW, HWI, by 1½" fillet welds located at each end of the top flange. Weld-on applications produce maximum factored resistance listed. Uplift resistances do not apply to this application.
- Hangers can support multi-ply carried members; the individual members must be secured together to work as a single unit before installation into the hanger.
- Hangers can support joists sloped up to 1/4:12 using table values. For joists sloping between 1/4:12 - 3/8:12 use 85% of table value.
- Embed WM into block with a minimum of one course above and one course below the top flange with one 15M vertical rebar minimum 24" long in each cell. Minimum grout strength is 15 MPa.
- · Web stiffeners are required for standard joist nailing configuration with this hanger.


OPTIONS: • Specify alternate nailing pattern when web stiffeners are not being used (up to 16" in depth). Add X ANP after model number for nailing into the flange, available for 90° applications only. Uplift resistances do not apply to this application.

See Hanger Options, page 213 for hanger modifications and associated load reductions.

NAILER TABLE

The table indicates the maximum factored normal resistances for W, WP and HW hangers used on wood nailers. Nailers are wood members attached to the top of a steel I-beam, concrete or masonry wall. This table also applies to sloped-seat hangers.

		Top	Fa	ctored Resista (K _D = 1.00)	nce
Model	Nailer	Flange	D.Fir-L	S-P-F	LSL
		Nailing	lbs	lbs	lbs
			kN	kN	kN
	2x	0.40441/	2470	2470	_
	2X	2-10dx1½	11.00	11.00	_
	0.0	0.404	2730	2730	_
W/WI	2-2x	2-10d	12.14	10.61	_
VV/ VV I	0	0.40-101/	2895	2855	_
	3x	2-16dx2½	12.88	12.70	_
	4	0.404	3025	2855	_
	4x	2-10d	13.46	12.70	_
	0	0.40441/	3665	3630	4900
	2x	2-10dx1½	16.30	16.15	21.82
	0.0	0.40.1	4475	3760	_
MDAMBI	2-2x	2-10d	19.91	16.75	_
WP/WPI	0	0.40401/	4110	3760	_
	3x	2-16dx2½	18.28	16.75	_
	4	2-10d	4475	3760	_
	4x	2-100	19.91	16.75	_
	0.0	7 104	4475	3760	_
	2-2x	7-10d	19.91	16.75	_
WPU/	3x	7-16dx2½	4110	3760	_
WNPU	3X	7-160XZ1/2	18.28	16.75	_
	4x	7-10d	4475	3760	_
	4X	7-10a	19.91	16.75	_
	2-2x	4-10d	7600	_	_
	Z-ZX	4-100	33.81	_	_
HW/	3x	4-16dx2½	7600	_	_
HWI	OX.	4-10ux272	33.81	_	_
	4x	4-16d	7670	_	_
	4X	4-10u	34.16	_	_
	2-2x	8-10d	7880	_	_
	Z-ZX	0-100	35.05	_	_
HWU	3x	0.16dv01/	7880	_	_
ПИИ	J 3X	8-16dx2½	35.05	_	_
	4	8-16d	7880	_	_
	4x	0-10U	35.05	_	_

12 Ga.

Top

W/WP/WPU/WM/WMU/HW/HWU I-Joist & Structural Composite Lumber Hangers

W SERIES WITH VARIOUS HEADER APPLICATIONS

	J	oist		Fasteners				Facto	red Resist	ance				
						Uplift ¹			Normal (I	K _D = 1.00)				
Model	Width	Depth	_	_		$(K_D = 1.15)$	D.Fir-L	S-P-F	LVL	PSL	LSL	Masonry		
	(in)	(in)	Тор	Face	Joist	lbs	lbs	lbs	lbs	lbs	lbs	lbs		
						kN	kN	kN	kN	kN	kN	kN		
						_	2455	2375	2675	2850	_	_		
	1½ to 4	3½ to 30	2-10dx1½	_	2-10dx1½	_	10.92	10.56	11.90	12.68	_	_		
14//4/1	41/ += 4	01/ += 00	0.404		0.40441/	_	2920	2375	3425	3305		_		
W/WI	1½ to 4	3½ to 30	2-10d	_	2-10dx1½	_	12.99	10.56	15.24	14.70	_	_		
	1½ to 4	3½ to 30	2-16d		2-10dx1½	_	2955	2375	3820	3190	_	_		
	172 10 4	372 10 30	2-10u	_	Z-10UX 1 72	_	13.15	10.56	16.99	14.19	_	_		
	1½ to 7½	3½ to 30	2-16d DPLX		2-10dx1½	_		MID-W/	LL INSTAL	LATION		6060		
WM/	1 72 10 1 72	372 10 30	2-100 DFLX		Z-100X172	_		IVIID-VVF	ILL INSTAL	LATION		26.96		
WMI	1½ to 7½	3½ to 30	2-1/4x13/4 Titen	_	2-10dx1½			TOP OF W	IALL INSTA	ΔΙΙΔΤΙΩΝ		5300		
	172 10 172	072 10 00	Z 74X174 III.011		2 10ux172	_		101 01 1	ALL INOTA	LEATION		23.58		
	1½ to 7½	9 to 28	2-16d DPLX	4-1/4x13/4 Titen	6-10dx1½	860			6060					
WMU	172 10 172	3 10 20	2 TOU DI LX	7 747 74 111011	0 100X172	3.83	MID-WALL INSTALLATION							
	1½ to 7½	9 to 28	2-¼x1¾ Titen	4-1/4x13/4 Titen	6-10dx1½	745		TOP OF W	ALL INSTA	ALL ATION		5300		
	172 10 172	0 10 20	2 747/174 111011	1 747(174 1110))	0 1000/172	3.31						23.58		
	1½ to 7½	3½ to 30	3-10dx1½	_	2-10dx1½	_	4095	3345	4695	4720	_	_		
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	072 10 00			2 100/1/2	_	18.22	14.88	20.89	21.00	_	_		
WP/	1½ to 7½	3½ to 30	3-10d	_	2-10dx1½	_	4095	3550	3665	4720	5980	_		
WPI						_	18.22	15.79	16.30	21.00	26.60	_		
	1½ to 7½	3½ to 30	3-16d	_	2-10dx1½	_	4430	3855	5950	5430	5980	_		
						_	19.71	17.15	26.47	24.15	26.60	_		
	1¾ to 5½	7¼ to 18	3-16d	4-16d	6-10dx1½	1665	6390	6390	6825	7085	5980	_		
WPU						7.41	28.43	28.43	30.36	31.52	26.60	_		
	1¾ to 5½	18½ to 28	3-16d	4-16d	6-10dx1½	595	6390	6390	6825	7085	5980	_		
						2.65	28.43	28.43	30.36	31.52	26.60	_		
	1½ to 7½	3½ to 32	4-10d	_	2-10dx1½	_	6900 30.69	5285 23.51	4695 20.89	5810 25.85	_	_		
HW/ HWI							6900	5285	7695	5810	6870	_		
	1½ to 7½	3½ to 32	4-16d	_	2-10dx1½		30.69	23.51	34.23	25.85	30.56			
						1775	10170	8875	10170	8325	8925			
	1¾ to 3½	9 to 18	4-16d	4-16d	6-10dx1½	7.90	45.24	39.48	45.24	37.03	39.70	_		
						1490	10170	8875	10170	8325	8925	_		
	1¾ to 3½	18½ to 28	4-16d	4-16d	6-10dx1½	6.63	45.24	39.48	45.24	37.03	39.70	_		
								1520	10170	8875	10170	8325	8925	_
	1¾ to 3½	28½ to 32	4-16d	4-16d	8-10dx1½	6.76	45.24	39.48	45.24	37.03	39.70	_		
HWU						1775	8250	8250	8250	8250	8250	_		
	4½ to 7½	9 to 18	4-16d	4-16d	6-10dx1½	7.90	36.70	36.70	36.70	36.70	36.70			
						1490	8250	8250	8250	8250	8250	_		
	4½ to 7½	18½ to 28	4-16d	4-16d	6-10dx1½	6.63	36.70	36.70	36.70	36.70	36.70	_		
						1520	8250	8250	8250	8250	8250	_		
	4½ to 7½	28½ to 32	4-16d	4-16d	8-10dx1½	6.76	36.70	36.70	36.70	36.70	36.70			

^{1.} Factored uplift resistances shown are for D.Fir-L. Multiply tablulated resistances x 0.71 for either SPF joist or header.

Parallam is registered trademark of iLevel® by Weyerhaeuser.

Factored resistances shown are for header connection only. The Designer must ensure the joist is capable of generating the factored resistances shown.

^{3.} Structural composite lumber is LVL, LSL and Parallam® PSL.

^{4.} WP/WPI quantity of nail holes in top flange varies.

Applies to LVL headers made primarily from Douglas Fir or Southern Pine.
 For LVL made primarily from Spruce Pine Fir or similar less dense veneers, use the values found in the S-P-F column.

^{6.} Titen 1/4 x 13/4 installed on top of wall after grout has cured.

^{7.} **NAILS:** 16d and 16d DPLX = 0.162" dia. x 31/2" long, 10d = 0.148" dia. x 3" long, 10dx11/2 = 0.148" dia. x 11/2" long. See page 24-25 for other nail sizes and information.

BA/LBV/B/HB I-Joist & Structural Composite Lumber Hangers

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

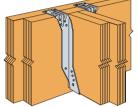
The BA hanger is a cost effective hanger targeted at high capacity I-joists and common Structural Composite Lumber applications. A min/max joist nail option gives dual use of this hanger. Minimum values featuring Positive Angle Nailing are targeted at I-joist without web stiffeners requirement and the maximum nailing generates higher capacities to support structural composite lumber. The unique two level embossment provides added stiffness to the top flange.

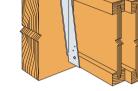
The LBV, B and HB hangers offer wide versatility for I-joists and structural composite lumber. An enhanced load capacity widens the range of applications for these hangers. The LBV features Positive Angle Nailing and does not require the use of web stiffeners for standard non modified I-joist installations.

MATERIAL: See tables, pages 122-136.

FINISH: LBV, B, BA and HB—Galvanized; all saddle hangers and all welded sloped and special hangers—Simpson Strong-Tie® gray paint. LBV, B, BA and HB may be ordered hot-dip galvanized; specify HDG.

INSTALLATION: • Use specified fasteners. See General Notes and nailer table.


- LBV. B. BA and HB may be used for weld-on applications. Minimum weld size is 1/8"x2" fillet weld to each side of each top flange tab. Distribute the weld equally on both top flanges. Welding cancels the top and face nailing requirements. Consult the code for special considerations when welding galvanized steel. The area should be well-ventilated, see page 22 for additional weld information. Weld on applications produce the maximum factored reisistance listed. Uplift values do not apply to welded applications.
- LBV hangers do not require the use of web stiffeners for non-sloped or non-skewed applications.
- · B and HB hangers require the use of web stiffeners.
- BA Min nailing does not require the use of web stiffeners. BA Max nailing does require web stiffeners.
- Ledgers must be evaluated for each application separately. Check TF dimension, nail length and nail location on ledger.

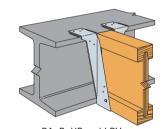

OPTIONS: • LBV, B and HB

Engineered Wood & Structural Composite Lumber Connectors

· See Hanger Options, page 213 for hanger modifications and associated reductions in resistance.

LBV HB BA Patent Pending (B Similar)

BA Installed LVL to LVL Max Nailing


Typical Double LBV Hanger Installation

SIMPSON

Strong-Tie

LBV features Positive Angle Nailing, no web stiffeners are required

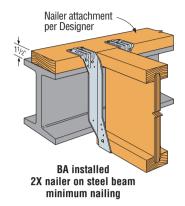
BA, B, HB and LBV are acceptable for weld-on applications (LBV shown). See Installation Information.

B SERIES WITH VARIOUS HEADER APPLICATIONS

		Fasteners		Factored Resistance								
Model				Uplift ¹		N	lormal (F	$C_{\rm D} = 1.00$	1)			
Series	Тор	Face	Joist	$(K_D = 1.15)$	D.Fir-L	S-P-F	LVL	PSL	LSL	I-Joist		
	тор	1 406	30131	lbs	lbs	lbs	lbs	lbs	lbs	lbs		
				kN	kN	kN	kN	kN	kN	kN		
	6-10dx1½	4-10dx1½	2-10dx1½	435	3165	2340	3760	3885	3295	2200		
	0 100X172	4 100X172	2 100X172	1.94	14.08	10.41	16.73	17.28	14.66	9.79		
LBV	6-10d	4-10d	2-10dx1½	435	3890	2805	3760	3885	4330	_		
LDV	0-100	4-100	Z-100X172	1.94	17.33	12.48	16.73	17.28	19.26	_		
	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	_		
	0-100	4-10u	Z-100X172	1.94	17.37	13.90	17.37	19.62	20.60	_		
	6-10dv116	10-10dx1½	2-10dv11/a	_	_	_	_	_	_	2420		
	0-10ux172	10-10ux172	2 2-100X1½	_	_	_	_	_	_	10.77		
BA	6-10d	10-10d	2-10dx1½	435	4470	3975	4695	5385	5665	_		
(Min)		10-100	Z-100X172	1.94	19.88	17.68	20.89	23.95	25.20	_		
	6-16d	10-16d	2-10dx1½	435	4990	4370	5835	5385	5820	_		
	0-100	10-100	Z-100X172	1.94	22.20	19.44	25.96	23.95	25.89	_		
	6-10d	10-10d	8-10dx1½	1960	5265	4035	5825	5945	5980	_		
BA	0-100	10-100	0-10UX172	8.72	23.42	17.95	25.91	26.45	26.60	_		
(Max)	6-16d	10-16d	8-10dx1½	1960	5940	4370	6490	7075	6185	_		
	0-100	10-100	0-100X172	8.72	26.42	19.44	28.87	31.47	27.51	_		
	6-10d	8-10d	6-10dx1½	1650	5265	3590	5825	5230	5965	_		
В	0-100	0-100	0-100X172	7.34	23.42	15.97	25.91	23.27	26.53	_		
D	6-16d	8-16d	6-16dx2½	1650	5940	3910	6490	5230	6185	_		
	0-10u	0-10u	U-10UXZ72	7.34	26.42	17.39	28.87	23.27	27.51	_		
HB ⁸	6-16d 16-16d		10-16d	3555	9335	5945	9525	9240	10475	_		
ווטי	0-10u	10-100	10-100	15.81	41.53	26.45	42.37	41.10	46.60	_		

- 1. Factored uplift resistances shown are for D.Fir-L. Multiply tabulated loads x 0.71 for either SPF joist or header.
- 2. Factored resistances shown are for header connection only. The Designer must ensure the joist is capable of generating the factored resistances shown.
- 3. Applies to LVL headers made primarily from Douglas Fir or Southern Pine. For LVL made primarily from Spruce-Pine-Fir or similar less dense veneers, use the values found in the SPF column.
- 4. I-joist values shown refer to I-joists made with SPF or IVI flanges
- 5. I-joists with flanges less than 15/16" thick used in combination with hangers thinner than 14 gauge may deflect an additional 1/32 inch beyond the standard 1/8" limit.
- 6. For flanges with thicknesses from 15/16" to 13/6", use 0.85 of the I-joist header value. For flanges with thicknesses from $1\frac{1}{8}$ " to $1\frac{1}{4}$ ", use 0.75 of the I-joist header value.
- 7. For LBV optional uplift, fill all triangle holes with 10dx11/2" nails. Uplift resistances are 1465 lbs (6.52 kN) D.Fir-L and 1040 lbs (4.63 kN) S-P-F.
- Values shown are for a minimum joist width of 21/2".
- 9. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long, $16dx2\frac{1}{2} =$ 0.162" dia. x 2½" long, 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Parallam is registered trademark of iLevel® by Weyerhaeuser.


BA/LBV/B/HB I-Joist & Structural Composite Lumber Hangers

SIMPSON Strong-Tie

NAILER TABLE

This shows the maximum factored resistances for BA, LBV, B, and HB hangers used on wood nailers. Nailers are wood members attached to the top of a steel I-beam, concrete or masonry wall. This table also applies to sloped-seat hangers.

Model		Header		nal Resistance 1.00)
No.	Nailer	Fasteners	D.Fir-L	S-P-F
NO.		i astellers	lbs	lbs
			kN	kN
	2x	10-10dx1½	2835	2340
	ZX	10-100X172	12.61	10.41
	2-2x	10-10d	2835	2340
LBV	Z-ZX	10-100	12.61	10.41
LDV	3x	10-16dx2½	3135	_
	ox	10-10ux272	13.95	_
	4x	10-16d	3135	_
	4X	10-160	17.44	_
	2x	10-10dx1½	3220	2870
	ZX	10-10ux 1 72	14.32	12.77
	2-2x	14-10d	3915	3660
BA	Z-ZX	14-10u	17.41	16.28
DA	3x	14-16dx2½	4055	_
	٥٨	14-10UX272	18.04	_
	4x	14-16d	4055	_
	47	14-10u	18.04	_
	2x	10-10dx1½	2835	2340
	2.1	10-10ux 1 72	12.63	10.42
	2-2x	14-10d	3915	3660
В	Z-ZX	14-10u	17.41	16.28
D	3x	14-16dx2½	4055	_
	υX	14-10UXZ72	18.04	_
	4x	14-16d	4055	_
	48	14-10U	18.04	
НВ	4x	22-16d	9015	
ПВ	4X	22-10u	40.15	_

- 1. Maximum factored uplift resistance (K_D = 1.15) is the lesser of the value shown in the table on page 118 or 385 lbs. (1.71kN).
- NAILS: 16d = 0.162" dia. x 3½" long, 16dx2½ = 0.162" dia. x 2½" long, 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

GLTV/HGLTV Heavy Duty Hangers

GLTV and HGLTV hangers are designed for use with structural composite lumber headers, and may take heavy loads. The top flange nails are sized and specifically located to prevent degradation of the header due to splitting of laminations.

For heavy loads with a face-mount application, see the HGUS series.

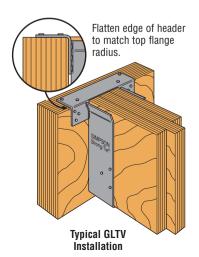
MATERIAL: Top flange—3 gauge; Stirrups—7 gauge

FINISH: Simpson Strong-Tie® gray paint

FACTORED RESISTANCES: • For hanger heights exceeding the joist height, the factored resistance is 0.50 of the tabulated resistance.

INSTALLATION: • Use all specified fasteners. Verify that the header can take the required fasteners specified in the table.


- This series may be used for weld-on applications. Minimum required weld is a $\frac{3}{16}$ " x $2\frac{1}{2}$ " fillet weld at each end of the top flange for GLTV, and a $\frac{1}{4}$ " x $2\frac{1}{2}$ " fillet weld at each end of the top flange for HGLTV. Weld-on applications produce maximum factored resistances listed. Uplift resistances do not apply to this application.
- Web stiffeners are required with I-joists using this hanger style.
- Nailers and ledgers must be a minimum of 4x lumber to guarantee the resistances given in the tables. Thinner lumber or laminated veneer lumber used as a nailer must be evaluated by the Building Designer. The HGLTV series cannot be used with a nailer.


OPTIONS: • Hot-dipped galvanized: specify HDG.

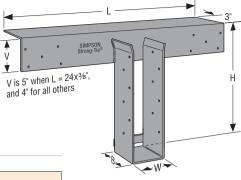
• See Hanger Options, page 213.

		Fasteners	3	Factored Resistance								
80-4-1				Uplift		Nor	mal (K _D = 1	.00)				
Model No.	Ton	Face	Joist	$(K_D = 1.15)$	D.Fir-L	S-P-F	LVL ⁴	PSL	LSL			
No.	Top	гасе	30121	lbs	lbs	lbs	lbs	lbs	lbs			
				kN	kN	kN	kN	kN	kN			
CLTV corios	GLTV series 4-16d 6-16		6-16d	2145	10455	7470	10890	10745	8590			
GLI V SEITES			0-10u	9.54	46.51	33.23	48.44	47.8	38.21			
HGLTV series	6-16d	1 10 10 1	0.404	2145	13070	9830	15365	11325	13795			
nuli v series	0-100	12-16d	6-16d	9.54	58.14	43.73	68.35	50.38	61.36			

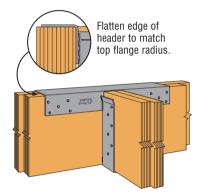
- Uplift resistances have been increased 15% for short-term loading with no further increase allowed. Reduce resistance when other load durations govern.
- 2. Uplift loads only apply when "H" is 28" or less.
- 3. S-P-F factored uplift resistance is 1520 lbs (6.76 kN).
- 4. Applies to LVL headers made primarily from Douglas Fir
- or Southern Pine. For LVL made primarily from Spruce Pine Fir or similar less dense veneers, use the values found in the S-P-F column.
- 5. For joist widths less than 3½" use 16d x 3½" nails into the joist.
- NAILS: 16d = 0.162" dia. x 3½" long. See page 24-25 for other nail sizes and information.

Engineered Wood & Structural Composite Lumber Connectors

SIMPSON Strong-Tie


The SCL series of top flange hangers are high load capacity connectors designed for use with Structural Composite Lumber. The large top flange distributes the load to the carrying member and the fasteners are located specifically for structural composite lumber applications.

MATERIAL: Stirrups—3 gauge; Top flange—1/4" or 3/8" hot rolled angle, see table FINISH: Simpson Strong-Tie® gray paint


INSTALLATION: • Use all specified fasteners. See General notes.

- All multiple members must be fastened together to act as one single unit.
- This series may be used for weld on application. Weld top flange using 1/4" x 4" long fillet welds spaced at 7" on center with 2" return around corners.
- · These hangers cannot be used with a nailer.

								F1			
		Dime		S	Faste	eners		Fact	ored Resist		
Model		(1	in)	1		1	Uplift	D. E	· ·	$K_D = 1.00$	201
No.	l	l	_				(K _D = 1.15)	D.Fir-L	S-P-F	LVL ²	PSL
	W	Н	В	L	Header	Joist	lbs	lbs	lbs	lbs	lbs
							kN	kN	kN	kN	kN
SCL3.62/9.5	35/8	91/2	4	18	6-16d	6-16d	2155	13245	6775	15850	15855
							9.59	58.92	30.14	70.51	70.53
SCL3.62/11.5	35/8	11½	4	18	6-16d	6-16d	2155 9.59	13245	6775 30.14	15850	15855 70.53
								58.92		70.51	
SCL3.62/11.88	35/8	11%	4	18	6-16d	6-16d	2155	13245	6775	15850	15855
							9.59 2155	58.92 13245	30.14 6775	70.51 15850	70.53 15855
SCL3.62/14	35/8	14	4	18	6-16d	6-16d	9.59	58.92	30.14	70.51	70.53
							2155	13245	6775	15850	15855
SCL3.62/16	35/8	16	4	18	6-16d	6-16d	9.59	58.92	30.14	70.51	70.53
							3255	17635	11490	21600	20915
SCL3.62/18	35/8	18	5	22	12-16d	12-16d	14.48	78.45	51.11	96.09	93.04
							3255	17635	11490	21600	20915
SCL3.62/18.75	35%	18¾	5	22	12-16d	12-16d	14.48	78.45	51.11	96.09	93.04
							3255	17635	11490	21600	20915
SCL3.62/19	35%	19	5	22	12-16d	12-16d	14.48	78.45	51.11	96.09	93.04
							2155	13245	6775	15850	15855
SCL5.37/9.5	5%	9½	4	18	6-16d	6-16d	9.59	58.92	30.14	70.51	70.53
			_				3255	17635	11490	21600	20915
SCL5.37/11.5	5%	11½	5	22	12-16d	12-16d	14.48	78.45	51.11	96.09	93.04
			_				3255	17635	11490	21600	20915
SCL5.37/11.88	5%	11%	5	22	12-16d	12-16d	14.48	78.45	51.11	96.09	93.04
	=0.		_				3255	17635	11490	21600	20915
SCL5.37/14	5%	14	5	22	12-16d	12-16d	14.48	78.45	51.11	96.09	93.04
001 5 07/40	F2/	40		04.2/	40.40.1	40.40.1	4305	23730	13025	29000	27350
SCL5.37/16	5%	16	6	24x3/8	10-16d	12-16d	19.15	105.56	57.94	129.00	121.66
COLE 07/10	5%	18	6	24x3/8	10.164	10.164	4305	23730	13025	29000	27350
SCL5.37/18	3%	10	0	Z4X%	10-16d	12-16d	19.15	105.56	57.94	129.00	121.66
SCL5.37/18.75	5%	18¾	6	24x3/8	10-16d	12-16d	4305	23730	13025	29000	27350
30L3.37/10.73	378	1074	0	24378	10-100	12-100	19.15	105.56	57.94	129.00	121.66
SCL5.37/19	5%	19	6	24x3/8	10-16d	12-16d	4305	23730	13025	29000	27350
30L3.37/19	J/8	19	U	247.78	10-100	12-100	19.15	105.56	57.94	129.00	121.66
SCL7.25/9.5	71/4	9½	4	18	6-16d	6-16d	2155	13245	6775	15845	15855
0017.20/0.0	1 /4	372	7	10	0 100	0 100	9.59	58.92	30.14	70.48	70.53
SCL7.25/11.5	71/4	11½	5	22	12-16d	12-16d	3255	17635	11490	21600	20915
0027.20711.0	174	1172	Ů		12 100	12 100	14.48	78.45	51.11	96.09	93.04
SCL7.25/11.88	71/4	11%	5	22	12-16d	12-16d	3255	17635	11490	21600	20915
0027.20711.00	1,74	1170	Ŭ		12 100	12 100	14.48	78.45	51.11	96.09	93.04
SCL7.25/14	71/4	14	5	22	12-16d	12-16d	3255	17635	11490	21600	20915
002/120/11						12 .00	14.48	78.45	51.11	96.09	93.04
SCL7.25/16	71/4	16	6	24x3/8	10-16d	12-16d	4305	23730	13025	29000	27350
				-			19.15	105.56	57.94	129.00	121.66
SCL7.25/18	71/4	18	6	24x3/8	10-16d	12-16d	4305	23730	13025	29000	27350
							19.15	105.56	57.94	129.00	121.66
SCL7.25/18.75	71/4	18¾	6	24x3/8	10-16d	12-16d	4305	23730	13025	29000	27350
							19.15	105.56	57.94	129.00	121.66
SCL7.25/19	71/4	19	6	24x3/8	10-16d	12-16d	4305	23730	13025	29000	27350
							19.15	105.56	57.94	129.00	121.66

SCL

Typical SCL Installation

- 1. Factored uplift resistances have been increased 15% for short term loading with no further increase allowed. Reduce when other load durations govern.
- 2. Factored uplift resistances shown are for D.Fir-L. Multiply tabulated loads x 0.71 for
- either SPF joist or header.

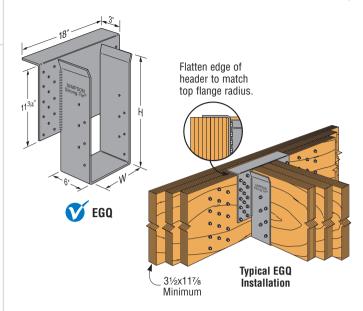
 3. Applies to LVL headers made primarily from D.Fir-L, assuming $\phi F_{CP} = 1092$ psi and a specific gravity of 0.50. See LVL manufacturer specifications.
- 4. **NAILS:** 16d = 0.162" dia. x 3½" long. See page 24-25 for other nail sizes and

EGQ High Capacity Hanger

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The EGQ is a high capacity connector for use with Structural Composite Lumber beams. Utilizing the Simpson Strong-Tie® Strong Drive® wood screws makes installation fast and easy.

EGQ hangers are precisely fabricated to individual order requirements. The H dimension required must be specified.


MATERIAL: Top flange—3 gauge; Stirrups—7 gauge

FINISH: Simpson Strong-Tie® gray paint

INSTALLATION: • Use all specified fasteners. See General Notes.

- Install with Simpson Strong-Tie SDS ¼"x3" wood screws, which are provided with the EGQ. (Lag screws will not achieve the same load.)
- All multiple members must be fastened together to act as a single unit.
- Multiple member headers may require additional fasteners at hanger locations. Quantity and location to be determined by Designer. See SDS section for additional information and SDS screws applications.
- Minimum header depth shall be 11%".

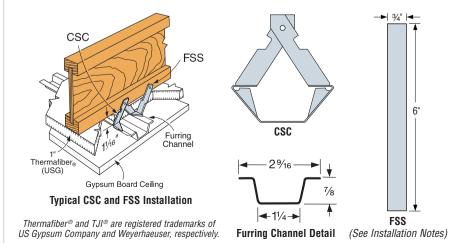
OPTIONS: • Can be skewed or sloped. See Hanger Options page 213.

			_			Factored Resistance							
1-1-1			nsions n)	Faste	eners	Unlift	PSL	LVL ¹	S-P-F LVL				
Joist or Purlin	Model	,	,			Uplift	Normal	Normal	Normal				
Size (in)	No.					$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.00)$	$(K_D = 1.00)$				
(111)		W	Min H	Header	Joist	lbs	lbs	lbs	lbs				
		"				kN	kN	kN	kN				
3½	EGQ3.62-SDS3	DS3 35% 117%		28-SDS 1/4"x3"	12-SDS 1/4"x3"	9040	25450	28410	19995				
372	EGQ3.02-3D33	378	11%	28-5D5 ¼ X3	12-303 74 83	40.21	113.21	126.38	88.95				
51/4	ECOE EO CDC2	5½	1111//8	28-SDS 1/4"x3"	12-SDS 1/4"x3"	9040	28030	30425	23930				
374	/4 EGQ5.50-SDS3		1178	20-303 74 X3	12-303 74 83	40.21	124.69	135.34	106.45				
7	7		117/	20 CDC 1/"v2"	12-SDS 1/4"x3"	9040	30605	32435	23930				
'	7 EGQ7.25-SDS3	71/4	11%	11% 28-SDS ¼"x3"		12-3D3 74 X3	40.21	136.14	144.28	106.45			

- Applies to LVL made primarily from Douglas Fir or Southern Pine. For LVL made primarily from other species, contact the LVL manufacturer for suitability.
- 2. "Min H" is the minimum joist height dimension that may be specified.
- 3. Use S-P-F LVL values for S-P-F glulam.
- 4. Multiply tabulated uplift values x 0.72 for S-P-F LVL

CSC Ceiling Support Clip /FSS Furring Stabilizer Strap

Provides 1" separation between the furring channel and joist to allow for the use of Thermafiber® insulation and the attachment of the furring channel to all joists. Provides an efficient sound barrier, and a one hour U.L. listed fire rating.


Field-form the FSS with the CSC to prevent furring channel rotation during installation. Furring channel must match dimensions shown to fit the CSC properly. U.L. listed. See Underwriters Laboratories, Inc., Design No. L530 for USG and TJI® I-joists.

MATERIAL: 24 gauge (minimum)

FINISH: Galvanized

INSTALLATION: • For CSC use 1-8dx1½ nail.

 For FSS use #8 self-tapping steel screw (not provided) into channel, twist 90°, bend upward and fasten to the side of joist bottom flange with screw or nail.

121

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

																		®
						nsions	;		Fastener	S			Fac		lesista			
Joist	Model	Web	0-		(1	n)					Uplift (KD=1.15)	D Fiv I	0.0.5		nal (K _D PSL	= 1.00	<u> </u>	Masonry
Size	No.	Stiff Reqd	Ga	w	Н	В	TF	Head		Joist	(KD=1.13)	D.FIT-L	Ibs	LVL	lbs	LSL	I-Juist	lbs
				"				Top	Face	00.01	kN	kN	kN	kN	kN	kN	kN	kN
	LBV1.56/9.25		14	1%6	91/4	3	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
	LB V 1.00/ 3.20		1-7	1710	074		L /2	0 100	4 100	L TOUXT72	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
1½ x 9¼	WP29.25	√	12	1%16	91/4	4	2 ³ ⁄ ₁₆	2-16d	_	2-10dx1½		4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	W/M20 05	✓	10	10/	91/4	41/	03/	2-16d DPLX		0.404541/	_	_	_	_	_	_	_	6060
	WM29.25	V	12	1%16	9 74	41/2	3¾	2-100 DPLX		2-10dx1½	_		_	_	_	_	_	26.96
	LT159	_	18	1%16	9½	2	1%	4-10d	2-10d	1-#8x11/4WS	105 0.47	2625 11.68	1725 7.67	2560 11.39	2480	2620 11.65	1695 7.54	_
											450	3490	2420	3550	3025	3465	1900	
	MIT29.5		16	1%16	9½	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	15.52	10.77	15.79	13.46	15.41	8.45	_
1½ x 9½	LBV1.56/9.5	_	14	1%16	9½	3	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
											1.94	17.37 4430	13.90 3855	17.37 5950	19.62 5430	20.60 5980	9.79	_
	WP29.5	✓	12	1%16	9½	4	23/16	2-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
	WM29.5	✓	12	1%6	9½	41/2	3¾	2-16d DPLX		2-10dx1½		_	_		_	_	_	6060
	***************************************	ľ		1710	072	172	074	L TOU DI EX		L 100X172	105	— 000F	1705	— 0F60		-		26.96
	LT151188	_	18	1%16	11%	2	1%	4-10d	2-10d	1-#8x11/4WS	105 0.47	2625 11.68	1725 7.67	2560 11.39	2480	2620 11.65	1695 7.54	_
	MIT211.88		16	1%6	11%	2½	25/16	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025	3465	1900	_
	WII1211.00		16	1916	1178	272	Z%16	4-10u	4-10u	2-10ux 1 72	2.00	15.52	10.77	15.79	13.46	15.41	8.45	_
1½ x 11%	LBV1.56/11.88	_	14	1%16	11%	3	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630	2200 9.79	_
	IMPO44 00	/	40	40/	447/	_	02/	0.40.4		0.40-1.41/	—	4430	3855	5950	5430	5980		_
	WP211.88	√	12	1%6	11%	4	23/16	2-16d		2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
	WM211.88	✓	12	1%16	11%	41/2	3¾	2-16d DPLX	_	2-10dx1½					_	_	_	6060
											435	3905	3125	3905	4410	4630	2200	26.96
1½ x 14	LBV1.56/14	_	14	1%16	14	3	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
1½ x 16	LBV1.56/16	_	14	1%16	16	3	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
											1.94 435	17.37 3905	13.90 3125	17.37 3905	19.62 4410	20.60 4630	9.79	_
13/ 1/71/	LBV1.81/7.25	_	14	19/16	71/4	3	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
1¾ x 7¼	WP1.81/7.25	1	12	1%16	71/4	3½	2 ³ / ₁₆	2-16d	_	2-10dx1½		4430	3855	5950	5430	5980	_	_
											— 175	19.71 2235	17.15 1690	26.47 2280	24.15	26.60 2615	1375	_
	ITS1.81/9.5	_	18	17/8	97/16	2	17/16	4-10d	2-10d	_	0.78	9.94	7.52	10.14	8.92	11.63	6.12	_
	LT179	_	18	1 13/16	9½	2	1%	4-10d	2-10d	1-#8x11/4WS	105	2625	1725	2560	2480	2620	1695	_
	21110			1 /10	072	_	170	1 100		1 # 0/(1/4 11/0	0.47	11.68	7.67	11.39	11.03	11.65	7.54	_
	MIT9.5	_	16	1 13/16	9½	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	3490 15.52	10.77	3550 15.79	3025 13.46	3465 15.41	1900 8.45	_
1¾ x 9½	LBV1.81/9.5	_	14	1 13/16	9½	3	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
	LDV 1.01/9.5		14	1 716	372	0	2/2	0-100	4-10u	Z-100X172	1.94	17.37	13.90				9.79	_
	WP9	✓	12	1 13/16	9½	3½	23/16	2-16d	_	2-10dx1½		4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	WM9	✓	10	1 ¹³ / ₁₆	9½	4½	3¾	2-16d DPLX		2-10dx1½	_	_	_	_	_	_	_	6060
	VVIVIS	V	12	I '716	9 72	4 72	374	2-100 DFLX		Z-100X172	_	_	_	_	_	_	_	26.96
	ITS1.81/11.88	_	18	1%	11 13/16	2	17/16	4-10d	2-10d	_	175 0.78	2235 9.94	1690 7.52	2280 10.14	2005 8.92	2615 11.63	1375 6.12	_
	LT474400		10	4 13/	447/		45/	4 404	0.404	4 //041/ MC	105	2625	1725	2560	2480	2620	1695	_
	LT171188	_	18	1 ¹³ / ₁₆	111//8	2	1%	4-10d	2-10d	1-#8x1¼WS	0.47	11.68	7.67	11.39	11.03	11.65	7.54	_
	MIT11.88	_	16	1 13/16	11%	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420 10.77	3550 15.79	3025 13.46	3465 15.41	1900 8.45	_
	D 44 O4 (44 OO (54):)		4.4	410/	447/		01/	0.404	40.40.1	0.40.1.41/	435	4990	4370	5835	5385	5820	2420	
1¾ x 11%	BA1.81/11.88 (Min)	_	14	1 13/16	111//8	3	2½	6-16d	10-16d	2-10dx1½	1.94	22.20	19.44	25.96	23.95	25.89	10.77	_
	BA1.81/11.88 (Max)	✓	14	1 13/16	11%	3	2½	6-16d	10-16d	8-10dx1½	1960	5940	4370	6490	7075 31.47	6185	_	
											8.72 435	26.42 3905	19.44 3125	3905	4410	27.51 4630	2200	_
	LBV1.81/11.88	_	14	1 13/16	11%	3	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
	WP11	✓	12	1 13/16	11%	3½	23/16	2-16d	_	2-10dx1½		4430	3855	5950	5430	5980	_	
											_	19.71	17.15	26.47	24.15	26.60	_	6060
	WM11	√	12	1 ¹³ / ₁₆	11%	41/2	3¾	2-16d DPLX		2-10dx1½		_	_	_	_	_	_	26.96

^{1.} When I-joist is used as a header, all header fasteners must be $10dx1\frac{1}{2}$. See foonotes on pages 115 and 118 for reduction values when flange material is less than $1\frac{1}{2}$ " thick. 2. See pages 114-121 for specific notes on individual model types.

					Dimer		;		Fastener	s			Fac		Resista		`	
Joist	Model	Web Stiff	Ga		(i	11)		Head	0,4		Uplift (KD=1.15)	D Eir-I	C-D-E	LVL	PSL	= 1.00 LSL	í	Masonry
Size	No.	Regd	ua	w	Н	В	TF	пеаи	ei .	Joist	lbs	Ibs	lbs	lbs	lbs	lbs	lbs	lbs
				"	ı	"	l	Top	Face	00101	kN	kN	kN	kN	kN	kN	kN	kN
	ITS1.81/14	_	18	1%	13¹⁵⁄₁6	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
	1101.01/14		10	1 /8	10 716		1716	4-10u	Z-10u		0.78	9.94	7.52	10.14	8.92	11.63	6.12	_
	LT1714	—	18	1 13/16	14	2	1%	4-10d	2-10d	1-#8x11/4 WS	105 0.47	2625 11.68	1725 7.67	2560 11.39	2480	2620 11.65	1695 7.54	_
	MITA O4/44		40	4 12/	44	01/	05/	4.40.1	4.40-1	0.40-1-41/	450	3490	2420	3550	3025	3465	1900	_
1¾ x 14	MIT1.81/14	_	16	1 13/16	14	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	15.52	10.77	15.79	13.46	15.41	8.45	_
1747.11	LBV1.81/14	_	14	1 13/16	14	3	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125	3905 17.37	4410 19.62	4630	2200 9.79	_
	WD44		40	4 10/	44	01/	02/	0.40.1		0.40.141/	— 1.54 —	4430	3855	5950		5980	9.79	
	WP14	√	12	1 13/16	14	3½	23/16	2-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
	WM14	✓	12	1 13/16	14	41/2	3¾	2-16d DPLX	_	2-10dx1½		_	_	_	_	_		6060 26.96
	IT04 04 (40		40	47/	4 = 15 /	-	47/	4.40.1	0.401		175	2235	1690	2280	2005	2615	1375	
	ITS1.81/16		18	1%	15 ¹⁵ /16	2	17/16	4-10d	2-10d	_	0.78	9.94	7.52	10.14	8.92	11.63	6.12	_
	LT1716	_	18	1 13/16	16	2	1%	4-10d	2-10d	1-#8x11/4 WS	105 0.47	2625	1725	2560		2620	1695	
											450	11.68 3490	7.67	11.39 3550	11.03 3025	11.65 3465	7.54 1900	_
	MIT1.81/16		16	1 13/16	16	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	15.52	10.77	15.79	13.46	15.41	8.45	_
1¾ x 16	LBV1.81/16	_	14	1 13/16	16	3	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	
											1.94 1650	17.37 5265	13.90 3590	17.37 5825	19.62 5230	20.60 5965	9.79	_
	B1.81/16	√	12	1 13/16	16	3	2½	6-10d	8-10d	6-10dx1½	7.34	23.42	15.97	25.91	23.27	26.53	_	_
	WP16	V	12	1 13/16	16	3½	23/16	2-16d	_	2-10dx1½		4430	3855	5950	5430	5980	_	_
		ļ .										19.71	17.15	26.47	24.15	26.60	_	6060
	WM16	✓	12	1 13/16	16	41/2	3¾	2-16d DPLX	_	2-10dx1½	_	_	_	_	_	_	_	26.96
	ITS2.06/9.5	_	18	21/8	97/16	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	
2 x 9½	1102.00/0.0		10	-/-	0710	_	1710	1 100	2 100		0.78 435	9.94 3905	7.52	10.14 3905	8.92 4410	11.63 4630	6.12 2200	_
	LBV2.06/9.5	_	14	21/16	9½	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
	ITS2.06/11.88	_	18	21/8	11%	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
2 x 11%	1102.00/11.00		10	270	1176		1710	7 100	2 100		0.78 435	9.94 3905	7.52	10.14 3905	8.92 4410	11.63 4630	6.12 2200	_
	LBV2.06/11.88	-	14	21/16	11%	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
	ITS2.06/14	<u> </u>	18	21/8	13¹⁵⁄₁6	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
2 x 14	1102.00/14		10	270	710		1710	7 100	2 100		0.78	9.94 3905	7.52	10.14 3905	8.92 4410	11.63	6.12	_
	LBV2.06/14	-	14	21/16	14	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	17.37	3125	17.37	19.62	4630	2200 9.79	_
	ITS2.06/16		18	21/8	15 ¹⁵ /16	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
2 x16	1102.00/10		10	270	710		1710	4 100	2 100		0.78 435	9.94 3905	7.52 3125	10.14 3905	8.92 4410	11.63 4630	6.12 2200	_
	LBV2.06/16	-	14	21/16	16	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37		17.37			9.79	_
	ITS2.06/9.5		18	21/8	97/16	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
21/16 x 91/2	1102.00/3.3		10	2/0	3716		1716	7 100	2 100		0.78	9.94	7.52	10.14		11.63	6.12	_
	LBV2.1/9.5	-	14	21/8	9½	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125	3905 17.37			2200 9.79	_
	ITS2.06/11.88	_	18	21/8	11 13/16	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	
21/16 x 111//8			10	270	11 /16		1716	7 100	2 100		0.78	9.94	7.52		8.92		6.12	_
	LBV2.1/11.88	-	14	21/8	11%	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125	17.37	4410 19.62	4630	2200 9.79	_
	ITS2.06/14	_	18	21/6	13¹⁵⁄₁6	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
21/16 x 14	1102.00/14		10	270	10 716		1716	7 100	2 100		0.78	9.94	7.52	10.14	8.92	11.63	6.12	_
	LBV2.1/14	_	14	21/8	14	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125	17.37	4410 19.62		2200 9.79	_
2½ x 16	LBV2.1/16		14	21/8	16	2½	2½	6-16d	4-16d	2-10dx1½	435	3905			4410		2200	_
2716 X 10	LDV2.1/10		14	278	10	2 72	2 72	0-10u	4-10u	Z-100X172	1.94	17.37			19.62		9.79	_
	ITS2.37/9.5	-	18	27/16	97/16	2	17/16	4-10d	2-10d	_	175 0.78	2235 9.94	7.52	10.14	2005 8.92		1375 6.12	_
25/ ₂ × 01/	LT220		18	2%	01/	n	15/	1_104	2-104	1-#8x1½ WS	105	2625			2480		1695	_
25/16 x 91/2	LT239	_	10	278	9½	2	1%	4-10d	2-10d	1-#UX174 WVS	0.47	11.68	7.67	11.39	11.03	11.65	7.54	_
	LBV2.37/9.5	-	14	25/16	9½	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37			4410 19.62		2200 9.79	_
	ITC0 2711 00		10	07/	1112/	0	17/	4 104	0 104		175	2235	1690		2005		1375	
	ITS2.37.11.88		18	Z'/16	1113/16	2	17/16	4-10d	2-10d	_	0.78	9.94	7.52	10.14	8.92	11.63	6.12	_
25/16 x 111/8	LT231188	_	18	25/16	1111//8	2	1%	4-10d	2-10d	1-#8x11/4 WS	105 0.47	2625 11.68	1725 7.67		2480		1695 7.54	_
	MITOC11 00		10	05/	447/	01/	05/	4.40.4	4 40 4	0.404.417	450	3490	2420		3025		1900	
	MIT3511.88	-	16	2%16	11%	2½	25/16	4-16d	4-16d	2-10dx1½	2.00			15.79			8.45	_

^{1.} When I-joist is used as a header, all header fasteners must be 10dx1½. See foonotes on pages 115 and 118 for reduction values when flange material is less than 1½" thick.

^{2.} See pages 114-121 for specific notes on individual model types.

Engineered Wood & Structural Composite Lumber Connectors

Strong-Tie

					Dimer	nsions	;		Fastener	'e			Fac	tored R	lesistaı	nce		
Joist	Model	Web			(i	n)				3	Uplift				_ ` -	= 1.00		
Size	No.	Stiff	Ga					Head	er		$(K_D = 1.15)$			LVL	PSL	LSL		Masonry
		Reqd		W	Н	В	TF	Top	Face	Joist	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
								-			kN 435	kN 3905	kN 3125	kN 3905	kN 4410	kN 4630	kN 2200	kN —
	LBV2.37/11.88	_	14	25/16	11%	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
25/16 x 117/8	W0544 00	/	10	05/	447/	01/	01/	0.404		0.40441/	_	2955	2375	3820	3190	_	_	_
(cont.)	W3511.88	√	12	25/16	11%	2½	2½	2-16d	_	2-10dx1½	_	13.15	10.56	16.99	14.19	_	_	_
	WM3511.88	✓	12	25/16	11%	3	3¾	2-16d DPLX	_	2-10dx1½		_	_	_	_	_	_	6060
		-									475	-	-		-	-	1075	26.96
	ITS2.37/14	—	18	27/16	13 ¹⁵ ⁄16	2	17/16	4-10d	2-10d	_	175 0.78	2235 9.94	1690 7.52	2280 10.14	2005 8.92	2615	1375 6.12	_
						_					105	2625	1725	2560	2480	2620	1695	_
	LT2314	-	18	2%	14	2	1%	4-10d	2-10d	1-#8x1¼WS	0.47	11.68	7.67	11.39	11.03	11.65	7.54	_
	MIT3514		16	25/16	14	2½	25/16	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025	3465	1900	_
25/16 x 14	WITTOOTT		10	2/10	17	2/2	2/16	7 100	4 100	2 10ux172	2.00	15.52	10.77	15.79	13.46	15.41	8.45	_
	LBV2.37/14	_	14	25/16	14	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125	3905 17.37	4410 19.62	4630	2200 9.79	_
											1.94	4430	3855	5950	5430	5980	9.79	_
	WP3514	√	12	25/16	14	21/2	23/16	2-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
	WM3514	/	12	25/	14	3	93/	2-16d DPLX		2-10dx1½	_	_	_	_	_	_	_	6060
	W W 33 14	V	12	25/16	14	3	3¾	2-100 DPLX		Z-100X172	_	_	_	_	_	_	_	26.96
	ITS2.37/16	_	18	27/16	15 ¹⁵ ⁄16	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	
											0.78	9.94	7.52 1725	10.14	8.92	11.63	6.12	_
	LT2316	l —	18	2%	16	2	1%	4-10d	2-10d	1-#8x11/4WS	105 0.47	2625 11.68	7.67	2560 11.39	2480	2620 11.65	1695 7.54	_
											450	3490	2420	3550	3025	3465	1900	_
05/ 10	MIT3516	—	16	25/16	16	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	15.52	10.77	15.79	13.46	15.41	8.45	_
25/16 x 16	L DV/0 07/16		11	05/	10	01/	01/	6 164	4 104	0.10dv11/	435	3905	3125	3905	4410	4630	2200	_
	LBV2.37/16	_	14	25/16	16	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
	WP3516	✓	12	25/16	16	2½	23/16	2-16d	_	2-10dx1½		4430	3855	5950	5430	5980	_	
	W1 0010	ľ		2710	10		2710	2 100		2 100X172	_	19.71	17.15	26.47	24.15	26.60	_	_
	WM3516	✓	12	25/16	16	3	3¾	2-16d DPLX	_	2-10dx1½	_		_	_	_	_		6060
											450	3490	2420	3550	3025	3465	1900	26.96
	MIT3518	—	16	25/16	18	21/2	25/16	4-10d	4-16d	2-10dx1½	2.00	15.52	10.77	15.79	13.46	15.41	8.45	_
	LUTOSAO		40	05/	40			4.40.1	0.40.1	0.40-1-41/	450	4570	2705	3725	3220	3775	_	_
	HIT3518	_	16	25/16	18	3	3	4-16d	6-16d	2-10dx1½	2.00	20.33	12.03	16.57	14.32	16.79	I	_
25/16 x 18	LBV2.37/18	_	14	25/16	18	2½	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
2710 X 10	LBV2.07/10		17	2710	10	L /2	L /2	0 100	7 100	Z TOUXT72	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
	WP3518	✓	12	25/16	18	2½	23/16	2-16d	_	2-10dx1½		4430	3855	5950	5430	5980		_
												19.71	17.15	26.47	24.15	26.60	_	6060
	WM3518	√	12	25/16	18	3	3¾	2-16d DPLX	_	2-10dx1½								26.96
	MITOGOO		10	05/	00	01/	05/	4 404	4 404	0.40441/	450	3490	2420	3550	3025	3465	1900	_
	MIT3520	_	16	25/16	20	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	15.52	10.77		13.46		8.45	_
	HIT3520	_	16	25/16	20	3	3	4-16d	6-16d	2-10dx1½	450	4570	2705	3725	3220	3775		_
	11110020			2710		_		1 100	0 100	2 100X172	2.00		12.03		14.32		_	_
25/16 x 20	LBV2.37/20	✓	14	25/16	20	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905	3125	3905	4410	4630	2200	_
											1.94	17.37 4430	13.90 3855		19.62 5430		9.79	_
	WP3520	✓	12	25/16	20	2½	23/16	2-16d	_	2-10dx1½		19.71	17.15			26.60		
	14/140500		40	05/			02/	0.40 DDI V		0.401.41/	_	_	_	_	_	_	_	6060
	WM3520	✓	12	25/16	20	3	3¾	2-16d DPLX	I	2-10dx1½	_	_	_	_	_	_	_	26.96
	ITS2.56/9.5	_	18	25/8	97/16	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
	1102.00/0.0		10	270	3710		1710	7 100	2 100		0.78	9.94	7.52	10.14	8.92	11.63	6.12	_
01/ 00/	LT259	l —	18	2%16	9½	2	1%	4-10d	2-10d	1-#8x11/4WS	105	2625	1725	2560	2480	2620	1695	_
2½ - 2½ x 9½											0.47 435	11.68 3905	7.67 3125	11.39 3905	11.03 4410	11.65 4630	7.54 2200	_
X 372	LBV2.56/9.5	-	14	2%16	9½	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90		19.62		9.79	_
	14/100 5	,	40	001	011	_	011	0.401		0.40.1.447	-	2955	2375		3190	_		_
	WI39.5	✓	12	2%16	9½	2	2½	2-16d	_	2-10dx1½	_	13.15	10.56		14.19	_	_	_
	ITS2.56/11.25		18	25/8	11 ³ ⁄ ₁₆	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
	1102.00/11.20		10	∠ 78	11716		1 /16	4-10u	2-10U		0.78	9.94	7.52	10.14	8.92	11.63	6.12	_
2½ x 11¼	LBV2.56/11.25	_	14	2%16	111/4	2½	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
		-	<u> </u>			_	_				1.94	17.37	13.90				9.79	_
	WI311.25	✓	12	2%16	1111/4	2	2½	2-16d	_	2-10dx1½		2955 13.15	2375	3820 16.99	3190	_		_
	1											10.10	10.00	10.00	17.10			

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

					Dimer	nsinns							Fac	tored F	lesistaı	ıce		
		Web				n)	•		Fastener	'S	Uplift				nal (K _D)	
Joist Size	Model No.	Stiff	Ga					Head	er		$(K_D = 1.15)$	D.Fir-L	S-P-F	LVL	PSL	LSL	I-Joist	Masonry
0120	NO.	Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
	ITS2.56/11.88	_	18	2%	11 ¹³ ⁄ ₁₆	2	17/16	4-10d	2-10d	_	175 0.78	2235 9.94	1690 7.52	2280 10.14	2005 8.92	2615 11.63	1375 6.12	_
	LT251188	_	18	2%16	11%	2	1%	4-10d	2-10d	1-#8x11/4WS	105 0.47	2625 11.68	1725 7.67	2560 11.39	2480	2620 11.65	1695 7.54	_
	LBV2.56/11.88	_	14	2%16	11%	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905	4410 19.62	4630 20.60	2200 9.79	_
2½ - 2½ x 11¾	MIT311.88	_	16	2%16	11%	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420	3550 15.79	3025 13.46	3465 15.41	1900 8.45	_
	BA2.56/11.88 (Min)	_	14	2%16	11%	3	2½	6-16d	10-16d	2-10dx1½	435 1.94	4990 22.20	4370 19.44	5835	5385 23.95	5820 25.89	2420 10.77	=
	BA2.56/11.88 (Max)	✓	14	2%16	11%	3	2½	6-16d	10-16d	8-10dx1½	1960 8.72	5940 26.42	4370 19.44	6490	7075 31.47	6185 27.51	_	=
	WPI311.88	✓	12	2%16	11%	2½	23/16	2-16d	_	2-10dx1½		4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	ITS2.56/14	_	18	25%	13 ¹⁵ / ₁₆	2	17/16	4-10d	2-10d	_	175 0.78	2235 9.94	1690 7.52	2280 10.14	2005	2615 11.63	1375 6.12	_
	LT2514	_	18	2%16	14	2	1%	4-10d	2-10d	1-#8x11/4 WS	105 0.47	2625 11.68	1725 7.67	2560 11.39	2480	2620 11.65	1695 7.54	=
	MIT314	_	16	2%16	14	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420	3550 15.79	3025 13.46	3465 15.41	1900	_
2½ - 29/16	BA2.56/14 (Min)	_	14	2%16	14	3	2½	6-16d	10-16d	2-10dx1½	435 1.94	4990	4370 19.44	5835	5385	5820 25.89	2420	_
x 14	BA2.56/14 (Max)	✓	14	2%16	14	3	2½	6-16d	10-16d	8-10dx1½	1960 8.72	5940 26.42	4370	6490	7075	6185 27.51		_
	LBV2.56/14	_	14	2%16	14	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410	4630	2200 9.79	_
	WPI314	✓	12	2%16	14	2½	23/16	2-16d	_	2-10dx1½		4430	3855 17.15	5950 26.47	5430 24.15	5980 26.60		_
	WMI314	✓	12	2%16	14	3	3¾	2-16d DPLX	_	2-10dx1½	_		_ _	_ _	_ _		_	6060 26.96
	ITS2.56/16	_	18	2%	15 ¹⁵ ⁄16	2	17/16	4-10d	2-10d	_	175 0.78	2235 9.94	1690 7.52	2280 10.14	2005 8.92	2615 11.63	1375 6.12	_
	LT2516	_	18	2%16	16	2	1%	4-10d	2-10d	1-#8x11/4WS	105 0.47	2625 11.68	1725 7.67	2560 11.39	2480 11.03	2620 11.65	1695 7.54	_
	MIT316	_	16	2%16	16	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420	3550 15.79	3025 13.46	3465 15.41	1900 8.45	_
2½ - 2%	BA2.56/16 (Min)	_	14	2%16	16	3	2½	6-16d	10-16d	2-10dx1½	435 1.94	4990 22.20	4370 19.44	5835 25.96	5385	5820 25.89	2420 10.77	_
x 16	BA2.56/16 (Max)	✓	14	2%16	16	3	2½	6-16d	10-16d	8-10dx1½	1960 8.72	5940 26.42	4370 19.44	6490 28.87	7075 31.47	6185 27.51	_	_
	LBV2.56/16	_	14	2%16	16	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630 20.60	2200 9.79	_
	WPI316	✓	12	2%16	16	2½	2¾6	2-16d	_	2-10dx1½	_	4430 19.71	3855 17.15		5430 24.15	5980 26.60	_	_
	WMI316	✓	12	2%16	16	3	3¾	2-16d DPLX	_	2-10dx1½		_	_	_	_	_	_	6060 26.96
	MIT318	_	16	2%16	18	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52		15.79	3025 13.46	3465 15.41	1900 8.45	_ _
	HIT318	_	16	2%16	18	3	2%	4-16d	6-16d	2-10dx1½	450 2.00	4570 20.33	2705 12.03		3220 14.32		_	_
2½ x 18	LBV2.56/18	_	14	2%16	18	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90		4410 19.62	4630 20.60	2200 9.79	_
	WPI318	✓	12	2%16	18	2½	23/16	2-16d	_	2-10dx1½		4430 19.71	3855 17.15		5430 24.15	5980 26.60	_	_
	WMI318	✓	12	2%16	18	3	3¾	2-16d DPLX	_	2-10dx1½	_	_	_	_	_	_	_	6060 26.96
	MIT320	✓	16	2%16	20	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420 10.77		3025 13.46		1900 8.45	_
	HIT320	_	16	2%16	20	3	2%	4-16d	6-16d	2-10dx1½	450 2.00	4570 20.33		16.57	3220 14.32	16.79	_	_
2½ x 20	LBV2.56/20	_	14	2%16	20	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37		17.37	4410 19.62	20.60	2200 9.79	_
	WPI320	✓	12	2%16	20	2½	23/16	2-16d	_	2-10dx1½	_	4430 19.71	3855 17.15	26.47		26.60	_	_
	WMI320	✓	12	2%16	20	3	3¾	2-16d DPLX	_	2-10dx1½		_ 	_ 	_ 	_ 		_	6060 26.96

^{1.} When I-joist is used as a header, all header fasteners must be $10dx1\frac{1}{2}$. See foonotes on pages 115 and 118 for reduction values when flange material is less than $1\frac{1}{2}$ " thick. 2. See pages 114-121 for specific notes on individual model types.

Engineered Wood & Structural Composite Lumber Connectors

					Dimer	nsions	.						Fac	tored R	lesista	nce		
loiet	Model	Web				n)			Fastener	S	Uplift					= 1.00)	
Joist Size	Model No.	Stiff	Ga					Head	er		(K _D =1.15)	D.Fir-L	S-P-F	LVL	PSL	LSL	I-Joist	Masonry
OIZU	140.	Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
	HIT322	-	16	2%16	22	3	2%	4-16d	6-16d	2-10dx1½	450 2.00	4570 20.33	2705	3725 16.57	3220 14.32	3775 16.79	_	_
	LBV2.56/22	_	14	2%16	22	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630 20.60	2200 9.79	_
2½ x 22	WPI322	✓	12	2%16	22	2½	23/16	2-16d		2-10dx1½	1.94	4430	3855	5950	5430	5980	9.79	_
		1									_	19.71 6900	17.15 5285	26.47 7695	24.15 5810	26.60 6870	_	_
	HWI322	√	11	2%16	22	4	2½	4-16d	_	4-10dx1½		30.69 4570	23.51 2705	34.23 3725	25.85 3220	30.56 3775	_	_
	HIT324	_	16	2%16	24	3	27/8	4-16d	6-16d	2-10dx1½	2.00	20.33	12.03	16.57	14.32	16.79	_	_
2 ½ x 24	LBV2.56/24	-	14	2%16	24	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630	9.79	_
	WPI324	✓	12	2%16	24	2½	23/16	2-16d	_	2-10dx1½	_	4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	HIT326	_	16	2%16	26	3	27/8	4-16d	6-16d	2-10dx1½	450	4570	2705	3725	3220	3775	_	_
2½ x 26	LBV2.56/26		14	2%16	26	2½	2½	6-16d	4-16d	2-10dx1½	2.00 435	20.33 3905	12.03 3125	16.57 3905	14.32 4410	16.79 4630	- 2200	_
272 X 20									4-10u		1.94	17.37 4430	13.90 3855	17.37 5950	19.62 5430	20.60 5980	9.79	_
	WPI326	√	12	2%16	26	2½	23/16	2-16d	_	2-10dx1½		19.71	17.15	26.47	24.15	26.60	_	_
2½ x 28	LBV2.56/28	_	14	2%16	28	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630 20.60	9.79	_
L/Z XLO	WPI328	✓	12	2%16	28	2½	23/16	2-16d	_	2-10dx1½		4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	LBV2.56/30	-	14	2%16	30	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630 20.60	2200 9.79	_
2½ x 30	WPI330	✓	12	2%16	30	2½	23/16	2-16d		2-10dx1½		4430	3855	5950	5430	5980	_	_
	LBV3.12/9.25	_	14	31/8	91/4	2½	2½	6-16d	4-16d	2-10dx1½	435	19.71 3905	17.15 3125	26.47 3905	24.15 4410	26.60 4630	2200	_
0.04/											1.94	17.37 4430	13.90 3855	17.37 5950	19.62 5430	20.60 5980	9.79	_
3 x 91/4	WPI29.25-2	✓	12	31/8	91/4	2½	23/16	2-16d		2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	6060
	WM29.25-2	√	12	31/8	91/4	2½	3¾	2-16d DPLX	_	2-10d	_	_	_	_	_	_	_	26.96
	LT2-159	-	18	31/8	9½	2	1%	4-10d	2-10d	2-#8x11/4WS	105 0.47	2625 11.68	7.67	2560 11.39	2480 11.03	2620 11.65	1695 7.54	_
	MIT29.5-2	_	16	31/8	9½	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420	3550 15.79	3025 13.46		1900 8.45	_
3 x 9½	LBV3.12/9.5	<u> </u>	14	31/8	9½	2½	2½	6-16d	4-16d	2-10dx1½	435	3905 17.37	3125	3905	4410	4630	2200	_
	WP29.5-2	✓	12	31/8	9½	2½	23/16	2-16d		2-10dx1½	1.94	4430	13.90 3855	5950	19.62 5430	5980	9.79	_
											_	19.71	17.15	26.47	24.15	26.60	_	6060
	WM29.5-2	✓	12	31/8	9½	2½	3¾	2-16d DPLX			— 435	3905	3125	- 3905	- 4410	- 4630	- 2200	26.96
	LBV3.12-11.25	_	14	31/8	111/4	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
3 x 111/4	WP211.25-2	✓	12	31/8	111/4	2½	23/16	2-16d	_	2-10dx1½	_	4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	WM211.25-2	✓	12	31/8	111/4	2½	3¾	2-16d DPLX	_	2-10d		_	_	_	_	_	_	6060 26.96
	LT2-151188	-	18	31/8	11%	2	1%	4-10d	2-10d	2-#8x11/4WS	105 0.47	2625 11.68	1725 7.67	2560 11.39	2480 11.03	2620 11.65	1695 7.54	_
	MIT211.88-2	_	16	31/8	11%	2½	25/16	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025	3465	1900	_
3 x 11%	LBV3.12/11.88		14	31/8	11%	2½	2½	6-16d	4-16d	2-10dx1½	2.00 435	15.52 3905	10.77 3125	15.79 3905	13.46 4410	15.41 4630	8.45 2200	<u> </u>
J A 1178		_									1.94	17.37 4430	13.90 3855		19.62 5430	20.60 5980	9.79	_ _
	WP211.88-2	✓	12	31/8	11%	2½	2¾6	2-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15		_	_
	WM211.88-2	✓	12	31/8	11%	2½	3¾	2-16d DPLX	_	2-10d	_	_ _	_	_	_	_	_	6060 26.96

^{1.} When I-joist is used as a header, all header fasteners must be 10dx1½. See foonotes on pages 115 and 118 for reduction values when flange material is less than 1½" thick.

^{2.} See pages 114-121 for specific notes on individual model types.

					Dimer		}		Fastener	'S			Fac	tored F				
Joist	Model	Web			(i	n)					Uplift	D E: 1	0.5.5		_ ` -	= 1.00	í	
Size	No.	Stiff	Ga			_		Head	er		(KD=1.15)				PSL	LSL		Masonry
		Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
3 x 14	LBV3.12/14	_	14	31/8	14	2½	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
											1.94 435	17.37 3905	13.90 3125	17.37 3905	19.62 4410	20.60 4630	9.79	_
3 x 16	LBV3.12/16	_	14	31/8	16	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
	LBV3.56/7.25	_	14	3%16	71/4	2½	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
3½ x 7¼											1.94 1665	17.37 6390	13.90 6390	17.37 6825	19.62 7085	20.60 5980	9.79	_
	WPU3.56/7.25	\checkmark	12	3%16	71/4	3	25/16	3-16d	4-16d	6-10dx1½	7.41	28.43	28.43	30.36	31.52	26.60	_	_
	ITS3.56/9.5	√ 3	18	35/8	97/16	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
				0,0	0710	_	1710				0.78 105	9.94 2625	7.52 1725	10.14 2560	8.92 2480	11.63 2620	6.12 1695	_
	LT359	√ 3	18	3%16	9½	2	1%	4-10d	2-10d	2-#8x11/4WS	0.47	11.68	7.67	11.39	11.03	11.65	7.54	_
	MIT49.5	√ 3	16	3%16	9½	2½	2 5/16	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025	3465	1900	_
	WII 143.3	•	10	3716	372	2 /2	2716	4-10u	4-10u	Z-100X172	2.00	15.52	10.77	15.79	13.46	15.41	8.45	_
	LBV3.56/9.5		14	3%16	9½	2½	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
	LDV0.30/9.3		14	3/16	372	2/2	2/2	0-10u	4-10u	Z-100X172	1.94	17.37	13.90	17.37	19.62	20.60	9.79	_
	HB3.56/9.5	/	10	3%16	9½	3½	3	6-16d	16-16d	10-16d	3555	9335	5945	9525	9240	10475	_	_
	1103.30/3.3	•	10	3716	372	372	٥	0-100	10-10u	10-100	15.81	41.53	26.45	42.37	41.10	46.60	_	_
	WDI40 F	/	10	20/	01/	01/	02/	0.404		0.40441/	_	4430	3855	5950	5430	5980	_	_
01/ 01/	WPI49.5	✓	12	3%16	9½	2½	23/16	2-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
3½ x 9½		,		20/	01/	01/	01/	4.40.1		0.40.1	_	6900	5285	7695	5810	6870	_	_
	HW49.5	✓	11	3%16	9½	2½	2½	4-16d	_	2-10d	_	30.69	23.51	34.23	25.85	30.56	_	_
	11141110 50/0 5		40	00/	01/	01/	01/	4.40-1	4.40.1	0.404	1775	10170	8875	10170	8325	8925	_	_
	HWU3.56/9.5	✓	10	3%16	9½	31/4	2½	4-16d	4-16d	6-10d	7.90	45.24	39.48	45.24	37.03	39.70	_	_
						_					2145	10455	7470	10890		8590	_	_
	GLTV3.59	√	7	3%16	9½	5	2 1/8	4-16d	6-16d	6-16d	9.54	46.51	33.23	48.44	47.80	38.21	_	_
	_										2145	13070	9830	15365		13795	_	_
	HGLTV3.59	√	7	3%16	9½	6	27/8	6-16d	12-16d	6-16d	9.54	58.14	43.73	68.35		61.37	_	_
											2155	13245	6775	15850		_		_
	SCL3.62/9.5	√	3	3%16	9½	4	3	_	6-16d	6-16d	9.59	58.92	30.14	70.51	70.53	_	_	_
											_		_	_	_	_	_	6060
	WM3.56/9.5	√	12	3%16	9½	2½	3¾	2-16d DPLX	_	2-10d						_	_	26.96
											175	2235	1690	2280	2005	2615	1375	20.00
	ITS3.56/11.88	√ 3	18	3%	11 ¹³ ⁄ ₁₆	2	17/16	4-10d	2-10d	_	0.78	9.94	7.52	10.14	8.92	11.63	6.12	_
											105	2625	1725	2560	2480	2620	1695	_
	LT351188	√ 3	18	3%16	11%	2	1%	4-10d	2-10d	2-#8x11/4WS	0.47	11.68	7.67	11.39	11.03	11.65	7.54	_
											450	3490	2420	3550			1900	_
	MIT411.88	√ 3	16	3%16	11%	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	15.52	10.77	15.79		15.41	8.45	_
											435	4990	4370		5385		2420	_
	BA3.56/11.88 (Min)	_	14	3%16	11%	3	2½	6-16d	10-16d	2-10dx1½	1.94	22.20		25.96			10.77	
											1960	5940	4370		7075		-	
	BA3.56/11.88 (Max)	\checkmark	14	3%16	11%	3	2½	6-16d	10-16d	8-10dx1½	8.72	26.42		28.87			_	_
											435	3905	3125	3905		4630	2200	
	LBV3.56/11.88	_	14	3%16	11%	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37		17.37	19.62		9.79	_
3½ x 11%											1650	5940	3910	6490		6185	9.79	_
	B3.56/11.88	√	12	3%16	11%	2½	2½	6-16d	8-16d	6-16d	7.34	26.42		28.87				
											3555	9335	5945	9525		10475		
	HB3.56/11.88	✓	10	3%16	11%	3½	2½	6-16d	16-16d	10-16dx2½	15.81	41.53		42.37		46.60		
												4430				5980		_
	WPI411.88	✓	12	3%16	11%	2½	23/16	2-16d	_	2-10dx1½			3855	5950				_
											1665	19.71	17.15	26.47				_
	WPU3.56/11.88	✓	12	3%16	11%	3	25/16	3-16d	4-16d	6-10dx1½	1665	6390	6390	6825				
											7.41	28.43		30.36			_	_
	HWI411.88	✓	11	3%16	11%	2½	2½	4-16d	_	2-10d		6900	5285	7695		6870		_
											4775	30.69	23.51		25.85		_	_
	HWU3.56/11.88	✓	10	3%16	11%	31/4	2½	4-16d	4-16d	6-10d	1775	10170	8875	10170		8925	_	_
											7.90	45.24	39.48	45.24	37.03	39.70	_	_

^{1.} When I-joist is used as a header, all header fasteners must be 10dx1½. See foonotes on pages 115 and 118 for reduction values when flange material is less than 1½" thick. 2. See pages 114-121 for specific notes on individual model types.

3. For 16 and 18 gauge, 3½" wide I-joist hangers, web stiffeners are required when the factored reaction is greater than 2330 lbs. (10.36 kN).

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

					Dimer	neinne	,						Fac	tored R	lesista	nce		
laiat	Madal	Web				n)	,		Fastener	S	Uplift					= 1.00)	
Joist Size	Model No.	Stiff	Ga					Head	er		$(K_D = 1.15)$			LVL	PSL	LSL		Masonry
		Reqd		W	Н	В	TF	Top	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
	GLTV3.511	√	7	3%16	11%	5	27/8	4-16d	6-16d	6-16d	2145	10455	7470	10890	10745	8590	_	_
	GLI VS.SII	•		3716	1178	J	278	4-100	0-10u	0-100	9.54	46.51	33.23	48.44		38.21	_	_
3½ x 11%	HGLTV3.511	✓	7	3%16	11%	6	2%	6-16d	12-16d	6-16d	2145 9.54	13070 58.14	9830		11325 50.38	13795 61.37	_	_
(cont.)	SCL3.62/11.88	✓	3	25/	117/	4	3	_	6 164	6-16d	2155	13245	6775	15850		—	_	_
	3013.02/11.00	•	3	3%	11%	4	3		6-16d	0-100	9.59	58.92	30.14	70.51	70.53	_	_	_
	WM3.56/11.88	✓	12	3%16	11%	2½	3¾	2-16d DPLX	_	2-10d		_	_	_		_	_	6060 26.96
	ITS3.56/14	√ 3	18	35/8	13 ¹⁵ ⁄16	2	17/16	4-10d	2-10d	_	175	2235	1690	2280	2005	2615	1375	_
	1100.00/14	ľ	10	078	710		1710	7 100	2 100		0.78	9.94 2625	7.52 1725	10.14 2560	8.92 2480	11.63 2620	6.12 1695	_
	LT3514	√ 3	18	3%16	14	2	1%	4-10d	2-10d	2-#8x11/4WS	105 0.47	11.68	7.67	11.39	11.03	11.65	7.54	_
	MIT414	✓3	16	3%16	14	2½	25/16	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025	3465	1900	_
	WIITTIT	ľ		0710		L /2	2710	7 100	7 100	L TOUXT72	2.00	15.52 4990	10.77 4370	15.79 5835	13.46 5385	15.41 5820	8.45 2420	_
	BA3.56/14 (Min)	-	14	3%16	14	3	2½	6-16d	10-16d	2-10dx1½	435 1.94	22.20	19.44		23.95	25.89	10.77	_
	DA2 56/14 (Max)		1/	29/	1/	2	01/	6 164	10 164	0.10dv11/	1960	5940	4370	6490	7075	6185	_	_
	BA3.56/14 (Max)	√	14	3%16	14	3	2½	6-16d	10-16d	8-10dx1½	8.72	26.42	19.44		31.47	27.51	_	_
	LBV3.56/14	_	14	3%16	14	21/2	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630	2200 9.79	_
											1650	5940	3910	6490	5230	6185	9.79	
	B3.56/14	√	12	3%16	14	2½	2½	6-16d	8-16d	6-16d	7.34	26.42	17.39	28.87	23.27	27.51	_	_
	HB3.56/14	✓	10	3%16	14	3½	3	6-16d	16-16d	10-16d	3555	9335	5945	9525	9240	10475	_	_
3½ x 14											15.81	41.53	26.45 3855	42.37 5950	41.10 5430	46.60 5980	_	_
	WPI414	✓	12	3%16	14	2½	23/16	2-16d DPLX	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
	WPU3.56/14	/	12	3%16	14	3	25/16	3-16d	4-16d	6-10dx1½	1665	6390	6390	6825	7085	5980	_	_
		ļ.		07.10				0.00		0 100/172	7.41	28.43	28.43 5285	30.36 7695	31.52 5810	26.60 6870	_	_
	HWI414	✓	11	3%16	14	2½	2½	4-16d	_	2-10d		30.69	23.51	34.23	25.85			
	HWU3.56/14	✓	10	3%16	14	31/4	2½	4-16d	4-16d	6-10d	1775	10170	8875	10170	8325	8925	_	_
	1111/03.30/14	ľ	10	0716	17	074	2/2	4 100	7 100	0 100	7.90	45.24	39.48	45.24	37.03	39.70	_	_
	GLTV3.514	✓	7	3%16	14	5	2%	4-16d	6-16d	6-16d	2145 9.54	10455 46.51	7470 33.23	10890 48.44	10745 47.80	8590 38.21	_	_
	HGLTV3.514	✓	7	3%16	14	6	27/8	6-16d	12-16d	6-16d	2145	13070	9830				_	_
	ПGL1 V3.514			3716	14	0	278	0-10u	12-100	0-100	9.54	58.14		68.35		_	_	_
	SCL3.62/14	✓	3	3%	14	4	3	_	6-16d	6-16d	2155 9.59	13245 58.92	30.14	15850 70.51	15855 70.53			_
			40	00/		04/	00/	0.40 DDI V		0.401			-	-	-			6060
	WMI414	√	12	3%16	14	2½	3¾	2-16d DPLX	_	2-10d	_	_	_	_	_	_	_	26.96
	ITS3.56/16	✓3	18	35%	15 ¹⁵ ⁄ ₁₆	2	17/16	4-10d	2-10d	_	175 0.78	2235 9.94	1690	2280 10.14	2005 8.92	2615 11.63	1375 6.12	_
		/2				_					105	2625	7.52 1725	2560	2480	2620	1695	_
	LT3516	✓3	18	3%16	16	2	1%	4-10d	2-10d	2-#8x11/4WS	0.47	11.68	7.67		11.03		7.54	_
	MIT416	√ 3	16	3%16	16	2½	25/16	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025		1900	_
											2.00 435	15.52 4990	10.77 4370	5835	13.46 5385		8.45 2420	_
	BA3.56/16 (Min)	_	14	3%16	16	3	2½	6-16d	10-16d	2-10dx1½	1.94	22.20		25.96			10.77	_
3½ x 16	BA3.56/16 (Max)	√	14	3%16	16	3	2½	6-16d	10-16d	8-10dx1½	1960	5940	4370		7075		_	_
	,										8.72 1650	26.42 5940	19.44 3910	28.87 6490	31.47 5230		_	_
	B3.56/16	✓	12	3%16	16	2½	2½	6-16d	8-16d	6-16d	7.34	26.42	17.39		23.27			_
	HB3.56/16	✓	10	3%16	16	3½	3	6-16d	16-16d	10-16d	3555	9335	5945	9525	9240	10475	_	_
			.0	0/10	.0	072		0 100	10 100	10 100	15.81	41.53	26.45		41.10		_	_
	WPI416	✓	12	3%16	16	2½	23/16	2-16d DPLX	_	2-10dx1½	_	4430 19.71	3855 17.15		5430 24.15	5980 26.60	_	_
	WPU3.56/16	√	10	3%16	16	3	25/16	3-16d	Λ-16d	6-10dx1½	1665	6390	6390		7085		_	_
	WF U3.30/10	v	12	J 7/16	10	٥	Z716	3-100	4-16d	U-IUUXI /2	7.41	28.43	28.43	30.36	31.52	26.60	_	_

^{1.} When I-joist is used as a header, all header fasteners must be 10dx1½. See foonotes on pages 115 and 118 for reduction values when flange material is less than 1½" thick.

^{2.} See pages 114-121 for specific notes on individual model types.

3. For 16 and 18 gauge, 3½" wide I-joist hangers, web stiffeners are required when the factored reaction is greater than 2330 lbs. (10.36 kN).

					Dimer	nsions	;		Fastener	e			Fac	tored F	lesista	nce		
Joist	Model	Web			(i	n)					Uplift				_ ` -	= 1.00	í	
Size	No.	Stiff	Ga					Head	er		$(K_D = 1.15)$		-	LVL	PSL	LSL		Masonry
		Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
	HWI416	✓	11	3%16	16	2½	2½	4-16d	_	2-10d	_	6900 30.69	5285 23.51	7695 34.23	5810 25.85	6870 30.56	_	_
	HWU3.56/16	✓	10	3%16	16	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	10170 45.24	8875 39.48	10170 45.24	8325 37.03	8925 39.70	_	_
	GLTV3.516	✓	7	3%16	16	5	27/8	4-16d	6-16d	6-16d	2145	10455	7470	10890	10745	8590	_	_
3½ x 16 (cont.)	HGLTV3.516	✓	7	3%16	16	6	27/8	6-16d	12-16d	6-16d	9.54 2145	46.51 13070		48.44 15365	11325	38.21 13795	_	_
					-						9.54 2155	58.14 13245		68.35 15850		61.37	_	_
	SCL3.62/16	✓	3	35%	16	4	3	_	6-16d	6-16d	9.59	58.92	30.14	70.51	70.53	_	_	-
	WMI416	√	12	3%16	16	2½	3¾	2-16d DPLX		2-10d	_	_	_	_	—	_	_	26.96
	MIT418	✓3	16	3%16	18	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420 10.77	3550 15.79	3025 13.46	3465 15.41	1900 8.45	_
	HIT418	√ 3	16	3%16	18	3	2%	4-16d	6-16d	2-10dx1½	450 2.00	4570 20.33	2705 12.03	3725 16.57	3220 14.32	3775 16.79	_	_
	LBV3.56/18	_	14	3%16	18	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630 20.60	2200 9.79	_
	HB3.56/18	✓	10	3%16	18	3½	3	6-16d	16-16d	10-16d	3555	9335	5945	9525	9240	10475	_	_
	WPI418	✓	12	3%16	18	2½	23/16	2-16d		2-10dx1½	15.81	41.53 4430	26.45 3855	5950	41.10 5430	46.60 5980	_	_
		· ✓	12	3%16	18	3	25/16	3-16d	4-16d	6-10dx1½	1665	19.71 6390	17.15 6390	26.47 6825	24.15 7085	26.60 5980	_	_
3½ x 18	WPU3.56/18										7.41	28.43 6900	28.43 5285	30.36 7695	31.52 5810	26.60 6870	_	_
	HWI418	✓	11	3%16	18	2½	2½	4-16d	_	2-10d	— 1775	30.69 10170	23.51 8875		25.85 8325	30.56 8925	_	_
	HWU3.56/18	√	10	3%16	18	31/4	2½	4-16d	4-16d	6-10d	7.90	45.24	39.48	45.24	37.03	39.70	_	_
	GLTV3.518	✓	7	3%16	18	5	2%	4-16d	6-16d	6-16d	2145 9.54	10455 46.51	7470 33.23	10890 48.44	47.80	38.21	_	_
	HGLTV3.518	✓	7	3%16	18	6	2%	6-16d	12-16d	6-16d	2145 9.54	13070 58.14		15365 68.35		13795 61.37	_	_
	SCL3.62/18	✓	3	3%16	18	5	3	_	12-16d	12-16d	3255 14.48	17635 78.45	11490 51.11	21600 96.09	20915 93.04	_	_	_
	WMI418	✓	12	3%16	18	2½	3¾	2-16d DPLX	_	2-10d	_	_	_	_	_	_	_	6060 26.96
	GLTV3.56/18.75	√	7	3%16	18¾	5	27/8	4-16d	6-16d	6-16d	2145	10455	7470	10890		8590	_	
31% x 183%	HGLTV3.56/18.75	✓	7	3%16	18¾	6	27/8	6-16d	12-16d	6-16d	9.54 2145	46.51 13070		48.44 15365			_	_
072 X 1074		ļ .	•								9.54 3255			68.35 21600			_	<u> </u>
	SCL3.62/18.75	√	3	3%16		5	3	_	12-16d	12-16d	14.48 450	78.45 3490	51.11 2420	96.09 3550	93.04 3025	- 3465	- 1900	_
	MIT420	√ 3	16	3%16	20	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	15.52 4570	10.77		13.46		8.45	_
	HIT420	✓3	16	3%16	20	3	2%	4-16d	6-16d	2-10dx1½	2.00	20.33	12.03	16.57	14.32	16.79	_	_
	LBV3.56/20	—	14	3%16	20	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37		3905 17.37	19.62	20.60	9.79	_
	HB3.56/20	✓	10	3%16	20	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335		9525 42.37			_	_
	WPI420	✓	12	3%16	20	2½	23/16	2-16d	_	2-10dx1½	_	4430 19.71	3855	5950 26.47	5430	5980	_	_
3½ x 20	WPU3.56/20	✓	12	3%16	20	3	25/16	3-16d	4-16d	6-10dx1½	595 2.65	6390	6390		7085	5980	_	_
	HWI420	✓	11	3%16	20	2½	2½	4-16d		2-10d		6900	5285	7695	5810	6870	_	_
	GLTV3.520	✓	7	3%16	20	5	27/8	4-16d	6-16d	6-16d	2145	30.69 10455		10890		8590	_	_
											9.54 2145			48.44 15365			_	_
	HGLTV3.520	√	7	3%16	20	6	27/8	6-16d	12-16d	6-16d	9.54	58.14		68.35			_	- 6060
	WMI420	√	12	3%16	20	2½	3¾	2-16d DPLX	_	2-10d	_	_	_	_	_	_	_	26.96

^{1.} When I-joist is used as a header, all header fasteners must be 10dx1½. See foonotes on pages 115 and 118 for reduction values when flange material is less than 1½" thick.

^{2.} See pages 114-121 for specific notes on individual model types.
3. For 16 and 18 gauge, 3½" wide I-joist hangers, web stiffeners are required when the factored reaction is greater than 2330 lbs. (10.36 kN).

Engineered Wood & Structural Composite Lumber Connectors

					Nimer	nsions							Fac	tored R	lesista	nce		®
1-1-4	B# - 4 - 1	Web		'		n)	,		Fastener	S	Uplift		1 40			= 1.00)	
Joist Size	Model No.	Stiff	Ga					Head	er		(K _D =1.15)	D.Fir-L	S-P-F	LVL	PSL	LSL	I-Joist	Masonry
0.20		Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
	HIT422	✓3	16	3%16	22	3	2%	4-16d	6-16d	2-10dx1½	450 2.00	4570 20.33	2705 12.03	3725 16.57	3220 14.32	3775 16.79	_	_
	LBV3.56/22	_	14	3%16	22	2½	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
	HB3.56/22	✓	10	3%16	22	3½	3	6-16d	16-16d	10-16d	1.94 3555	17.37 9335	13.90 5945	17.37 9525	19.62 9240	20.60 10475	9.79	_
3½ x 22		· ·							10-100		15.81	41.53 4430	26.45 3855	42.37 5950	41.10 5430	46.60 5980	_	_
	WPI422	✓	12	3%16	22	2½	23/16	2-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
	WPU3.56/22	✓	12	3%16	22	3	25/16	3-16d	4-16d	6-10dx1½	595 2.65	6390 28.43	6390 28.43	6825 30.36	7085 31.52	5980 26.60	_	_
	HWI422	✓	11	3%16	22	2½	2½	4-16d	_	4-10d		6900 30.69	5285 23.51	7695 34.23	5810 25.85	6870 30.56	_	_
	HIT424	√ 3	16	3%16	24	3	23/8	4-16d	6-16d	2-10dx1½	450 2.00	4570 20.33	2705 12.03	3725 16.57	3220 14.32	3775 16.79	_	_
	LBV3.56/24	_	14	3%16	24	2½	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
		/									1.94 3555	17.37 9335	13.90 5945	17.37 9525	19.62 9240	20.60 10475	9.79	_
3½ x 24	HB3.56/24	✓	10	3%16	24	3½	3	6-16d	16-16d	10-16d	15.81	41.53	26.45	42.37	41.10	46.60	_	_
	WPI424	✓	12	3%16	24	2½	23/16	2-16d	_	2-10dx1½		4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	MDHO FC/04		10	09/	0.4	_	05/	0.404	4 404	0.40441/	595	6390	6390	6825	7085	5980	_	_
	WPU3.56/24	√	12	3%16	24	3	25/16	3-16d	4-16d	6-10dx1½	2.65	28.43	28.43	30.36	31.52	26.60	_	_
	HWI424	✓	11	3%16	24	2½	2½	4-16d	_	4-10d	_	6900 30.69	5285 23.51	7695 34.23	5810 25.85	6870 30.56	_	_
	HIT426	√ 3	16	3%16	26	3	23/8	4-16d	6-16d	2-10dx1½	450	4570	2705	3725	3220	3775	_	_
	LBV3.56/26		14	3%16	26	2½	2½	6-16d	4-16d	2-10dx1½	2.00 435	20.33 3905	12.03 3125	16.57 3905	14.32 4410	16.79 4630	2200	_
											1.94 3555	17.37 9335	13.90 5945	17.37 9525	19.62 9240	20.60 10475	9.79	_
3½ x 26	HB3.56/26	✓	10	3%16	26	3½	3	6-16d	16-16d	10-16d	15.81	41.53	26.45 3855	42.37	41.10 5430	46.60	_	_
	WPI426	✓	12	3%16	26	2½	23/16	2-16d	_	2-10dx1½	_	4430 19.71	17.15	5950 26.47	24.15	5980 26.60	_	_
	WPU3.56/26	✓	12	3%16	26	3	25/16	3-16d	4-16d	6-10dx1½	595 2.65	6390 28.43	6390 28.43	6825 30.36	7085 31.52	5980 26.60	_	_
	HWI426	✓	11	3%16	26	2½	2½	4-16d	_	4-10d	_	6900 30.69	5285 23.51	7695 34.23	5810 25.85	6870 30.56	_	_
	LBV3.56/28	_	14	3%16	28	21/2	2½	6-16d	4-16d	2-10dx1½	435	3905	3125	3905	4410	4630	2200	_
	25 (0.00 / 20			0710		-/-	-/-	0 100	1 100	2 100/172	1.94 3555	17.37 9335	13.90 5945	17.37 9525	19.62 9240	20.60 10475	9.79	_
	HB3.56/28	✓	10	3%16	28	3½	3	6-16d	16-16d	10-16d	15.81	41.53	26.45		41.10	46.60		_
3½ x 28	WPI428	√	12	3%16	28	2½	23/16	2-16d	_	2-10dx1½		4430	3855		5430	5980	_	_
071 X 20		ļ ,		07.10			27.0			2 100/11/2	— 505	19.71 6390	17.15 6390	26.47 6825	24.15 7085	26.60 5980	_	
	WPU3.56/28	✓	12	3%16	28	3	25/16	3-16d	4-16d	6-10dx1½	595 2.65	28.43	28.43				_	_
	HWI428	✓	11	3%16	28	2½	2½	4-16d	_	4-10d	_	6900 30.69	5285 23.51	7695 34.23	5810 25.85	6870 30.56	_	_
	LBV3.56/30	_	14	3%16	30	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410	4630 20.60	2200 9.79	_
	HB3.56/30	✓	10	3%16	30	3½	3	6-16d	16-16d	10-16d	3555	9335	5945	9525	9240	10475	_	_
3½ x 30	WPI430	✓	12	3%16	30	2½	23/16	2-16d		2-10dx1½	15.81	41.53 4430	26.45 3855	5950	41.10 5430	46.60 5980	_	_
											_ 	19.71 6900	17.15 5285	26.47 7695	24.15 5810	26.60 6870	_ _	_
	HWI430	√	11	3%16	30	2½	2½	4-16d	_	4-10d	_	30.69	23.51	34.23	25.85	30.56	_	_
3½ x 32	WPI432	✓	12	3%16	32	2½	23/16	2-16d	_	2-10dx1½	_	4430 19.71		5950 26.47	5430 24.15	5980 26.60	_	_
072 X 02	HWI432	✓	11	3%16	32	2½	2½	4-16d	_	4-10d		6900 30.69	5285 23.51	7695 34.23	5810 25.85	6870 30.56	_	_
												55.50	_5.01	0 1.20	_5.50	00.00		

^{1.} When I-joist is used as a header, all header fasteners must be $10dx1\frac{1}{2}$. See foonotes on pages 115 and 118 for reduction values when flange material is less than $1\frac{1}{2}$ " thick.

^{2.} See pages 114-121 for specific notes on individual model types.
3. For 16 and 18 gauge, 3½" wide I-joist hangers, web stiffeners are required when the factored reaction is greater than 2330 lbs. (10.36 kN).

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

					Dimer	ncione							Fac	tored F	Resista	nce		®
		Web			i)		•		Fastener	S	Uplift		1 46			= 1.00)	
Joist	Model	Stiff	Ga		<u> </u>	<u>, </u>		Head	er		(KD=1.15)	D.Fir-L	S-P-F	LVL	PSL	LSL		Masonry
Size	No.	Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
4 x 9½	LBV4.12/9.5	-	14	41/8	9½	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630 20.60	2200 9.79	_
4 x 11%	LBV4.12/11.88	_	14	41/8	11%	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630 20.60	2200 9.79	_
4 x 14	LBV4.12/14	_	14	41//8	14	2½	2½	6-16d	4-16d	2-10dx1½	435	3905 17.37	3125 13.90	3905 17.37	4410	4630	2200 9.79	_
4 x 16	LBV4.12/16	_	14	41//8	16	2½	21/2	6-16d	4-16d	2-10dx1½	435	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630	2200 9.79	
	MIT4.28/9.5	_	16	43/32	91/2	2½	25/16	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025	3465	1900	_
41/8 x 91/2	LBV4.28/9.5	_	14	43/32	9½	2½	2½	6-16d	4-16d	2-10dx1½	435	15.52 3905	10.77 3125	15.79 3905	13.46 4410	15.41 4630	8.45 2200	_
	MIT4.28/11.88	_	16	43/32	11%	2½	25/16	4-16d	4-16d	2-10dx1½	1.94 450	17.37 3490	13.90	17.37 3550	19.62 3025	20.60 3465	9.79	_
41/8 x 117/8	LBV4.28/11.88		14	43/32	11%	2½	2½	6-16d	4-16d	2-10dx1½	2.00 435	15.52 3905	10.77 3125	15.79 3905	13.46 4410	15.41 4630	8.45 2200	_
	MIT4.28/14	_	16	43/32	14	2½	25/16	4-16d	4-16d	2-10dx1½	1.94 450	17.37 3490	13.90 2420	17.37 3550	19.62 3025	20.60 3465	9.79	_
4½ x 14	LBV4.28/14		14	43/32	14	2½	2½	6-16d	4-16d	2-10dx1½	2.00 435	15.52 3905	10.77 3125	15.79 3905	13.46 4410	15.41 4630	8.45 2200	_
4½ x 16	LBV4.28/16		14	43/32	16	21/2	21/2	3-16d	4-16d	2-10dx1½	1.94 435	17.37 3905	13.90 3125	17.37 3905	19.62 4410	20.60 4630	9.79 2200	_
470 X 10	MIT359.5-2		16	43/4	9½	21/2	2 ⁵ / ₁₆	4-16d	4-16d	2-10dx1½	1.94 450	17.37 3490	13.90 2420	17.37 3550	19.62 3025	20.60 3465	9.79 1900	_
45/ 01/			-								2.00 435	15.52 3905	10.77 3125	15.79 3905	13.46 4410	15.41 4630	8.45 2200	_
4% x 9½	LBV4.75/9.5	_	14	43/4	9½	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37 4430	13.90 3855	17.37 5950	19.62 5430	20.60 5980	9.79	_
	WP359.5-2	✓	12	43/4	9½	2½	25/16	3-16d	_	2-10d	- 450	19.71 3490	17.15 2420	26.47 3550	24.15 3025	26.60 3465	— 1900	_
	MIT3511.88-2	_	16	4¾	117/8	2½	2½	4-16d	4-16d	2-10dx1½	2.00 435	15.52 3905	10.77 3125	15.79 3905	13.46 4410	15.41 4630	8.45 2200	
4% x 11%	LBV4.75/11.88	_	14	4¾	117/8	2½	25/16	6-16d	4-16d	2-10dx1½	1.94	17.37 4430	13.90 3855	17.37 5950	19.62 5430	20.60	9.79	_
	WP3511.88-2	√	12	4¾	117/8	2½	2½	3-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	-
	WM3511.88-2	√	12	4¾	117/8	2½	25/16	2-16d DPLX	_	2-10d	_	_	_	_	_	_	_	26.96
	MIT3514-2	_	16	43/4	14	2½	25/16	4-16d	4-16d	2-10dx1½	2.00	3490 15.52	2420 10.77		13.46	_	1900 8.45	_
4% x 14	LBV4.75/14	_	14	4¾	14	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37		3905 17.37	19.62	4630 20.60	9.79	_
	WP3514-2	✓	12	43/4	14	2½	25/16	3-16d	_	2-10dx1½		4430 19.71	3855 17.15	26.47		5980 26.60		_
	WM3514-2	✓	12	43/4	14	2½	3¾	2-16d DPLX	_	2-10d	_ _	_	_	_	_	_		6060 26.96
	MIT4.75/16	_	16	4¾	16	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420 10.77	3550 15.79	3025 13.46	3465 15.41	1900 8.45	_
15% v 16	LBV4.75/16	_	14	43/4	16	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630 20.60	2200 9.79	_
4% x 16	WP3516-2	✓	12	43/4	16	2½	25/16	3-16d	_	2-10dx1½	_	4430 19.71	3855 17.15	5950 26.47		5980 26.60	_	_
	WM3516-2	✓	12	43/4	16	2½	3¾	2-16d DPLX	_	2-10d		_	_	_	_	_		6060 26.96
	LBV4.75/18	_	14	43/4	18	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37		4630 20.60	2200 9.79	_
4% x 18	WP3518-2	✓	12	43/4	18	2½	25/16	3-16d	_	2-10dx1½	_	4430 19.71	3855 17.15		5430		_	_
	WM3518-2	✓	12	43/4	18	2½	3¾	2-16d DPLX	_	2-10d			_ _	_ _	_	_ _	_	6060 26.96
	1	1																

^{1.} When I-joist is used as a header, all header fasteners must be $10dx1\frac{1}{2}$. See foonotes on pages 115 and 118 for reduction values when flange material is less than $1\frac{1}{2}$ " thick. 2. See pages 114-121 for specific notes on individual model types.

Engineered Wood & Structural Composite Lumber Connectors

					Dimer	neinne							Fac	tored F	tesista	nce		***************************************
		Web				n)	•		Fastener	S	Uplift		1 40		nal (K _D)	
Joist	Model	Stiff	Ga		Ò	Ĺ		Head	er		(KD=1.15)	D.Fir-L	S-P-F	LVL	PSL	LSL	í	Masonry
Size	No.	Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
	LBV4.75/20	_	14	4¾	20	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630	2200 9.79	
4% x 20	WP3520-2	✓	12	43/4	20	2½	25/16	3-16d	_	2-10dx1½		4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	WM3520-2	√	12	43/4	20	2½	3¾	2-16d DPLX	_	2-10d	_	-	_			_	_	6060
	MIT39.5-2	_	16	51//8	91/2	2½	25/16	4-16d	4-16d	2-10dx1½	450	3490	2420	3550	3025	3465	1900	26.96
5 x 9½	LBV5.12/9.5	 	14	51/8	91/2	2½	2½	6-16d	4-16d	2-10dx1½	2.00 435	15.52 3905	10.77 3125	15.79 3905	13.46 4410	15.41 4630	8.45 2200	_
0 10 72	WPI39.5-2	✓	12	51/8	91/2	2½	25/16	3-16d	_	2-10dx1½	1.94	17.37 4430	13.90 3855	17.37 5950	19.62 5430	20.60 5980	9.79	
												19.71 3490	17.15 2420	26.47 3550	24.15 3025	26.60 3465	- 1900	_ _
	MIT311.88-2		16	51//8	11%	2½	25/16	4-16d	4-16d	2-10dx1½	2.00 435	15.52 3905	10.77 3125	15.79 3905	13.46 4410	15.41 4630	8.45 2200	_
5 x 11%	LBV5.12/11.88	√	14	51/8	11%	2½	2½	6-16d	4-16d	2-10dx1½	1.94	17.37 4430	13.90 3855	17.37 5950	19.62 5430	20.60	9.79	_
	WPI311.88-2	-	12	51/%	11%	2½	25/16	3-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
	MIT314-2	-	16	51/8	14	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420 10.77	3550 15.79	3025 13.46	3465 15.41	1900 8.45	_
5 x 14	LBV5.12/14	-	14	51/8	14	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410 19.62	4630	9.79	_
	WPI314.2	✓	12	51//8	14	2½	25/16	3-16d	_	2-10dx1½		4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	MIT5.12/16	_	16	51//8	16	2½	25/16	4-16d	4-16d	2-10dx1½	450 2.00	3490 15.52	2420 10.77	3550 15.79	3025 13.46	3465 15.41	1900 8.45	_
	LBV5.12/16	_	14	51//8	16	2½	2½	6-16d	4-16d	2-10dx1½	435 1.94	3905 17.37	3125 13.90	3905 17.37	4410	4630	2200 9.79	_
5 x 16	HB5.12/16	✓	10	51//8	16	3½	3	6-16d	16-16d	10-16d	3555	9335	5945	9525	9240	10475	_	
	WPI316-2	✓	12	51/8	16	2½	25/16	3-16d	_	2-10dx1½	15.81 —	41.53	26.45 3855	42.37 5950	41.10 5430	46.60 5980	_	_
	B5.12/18	√	12	51//8	18	2½	2½	6-16d	8-16d	6-16d	— 1650	19.71 5940	17.15 3910	26.47 6490	24.15 5230	26.60 6185	_	_
5 x 18	HB5.12/18	✓	10	51/8	18	3½	3	6-16d	16-16d	10-16d	7.34 3555	26.42 9335	17.39 5945	28.87 9525	23.27 9240	27.51 10475	_	_
0 X 10	WPI318-2	· ✓	12	51/8	18	2½	25/16	3-16d	_	2-10dx1½	15.81 —	41.53 4430	26.45 3855	42.37 5950	41.10 5430	46.60 5980		_
											— 1650	19.71 5940	17.15 3910	26.47 6490	24.15 5230	26.60 6185	_	
	B5.12/20	√	12	51/8	20	2½	2½	6-16d	8-16d	6-16d	7.34 3555	26.42 9335		28.87	23.27	27.51	_	_ _
5 x 20	HB5.12/20	√	10	51/8	20	3½	3	6-16d	16-16d	10-16d	15.81		26.45	42.37		46.60	_	<u> </u>
	WPI320-2	√	12	51//8	20	2½	25/16	3-16d	_	2-10dx1½	_	19.71	17.15	26.47	24.15	26.60	_	_
	B5.12/22	✓	12	51//8	22	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42		28.87	23.27	27.51	_	_
5 x 22	HB5.12/22	✓	10	51/8	22	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	42.37	41.10	46.60	_	_
	WPI322-2	✓	12	51//8	22	2½	25/16	3-16d	_	2-10dx1½	_ _	4430 19.71			5430 24.15		_	_ _
F 5.	B5.12/24	✓	12	51//8	24	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910 17.39		5230 23.27		_	_
5 x 24	HB5.12/24	✓	10	51//8	24	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335	5945 26.45	9525	9240	10475	_	_
	HB5.12/26	✓	10	51//8	26	3½	3	6-16d	8-16d	10-16d	3555 15.81	9335	5945 26.45	9525	9240	10475		
5 x 26	WPI326-2	✓	12	51//8	26	2½	25/16	3-16d	_	2-10dx1½	_	4430	3855	5950	5430	5980	_	_
	B5.12/28	√	12	51//8	28	2½	2½	6-16d	8-16d	6-16d	— 1650	19.71 5940	3910	26.47 6490	5230	6185	_	_
5 x 28	HB5.12/28	✓	10	51/8	28	3½	3	6-16d	16-16d	10-16d	7.34 3555	26.42 9335	5945		9240	10475	_	_
	1100.12/20	•	10	J /8	20	J /2	٦	J-10U	10-10u	10-10U	15.81	41.53	26.45	42.37	41.10	46.60	_	_

^{1.} When I-joist is used as a header, all header fasteners must be 10dx1½. See foonotes on pages 115 and 118 for reduction values when flange material is less than 1½" thick.

^{2.} See pages 114-121 for specific notes on individual model types.

Engineered Wood & Structural Composite Lumber Connectors

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

	1				D:	!							Eoo	tored E	Popieto	200		®
		Web			Dimer (i	nsions n)	;		Fastener	s	Uplift		Fac	tored F Norn	tesistai nal (K _D)	
Joist	Model	Stiff	Ga		<u> </u>	ĺ		Head	er		(KD=1.15)	D.Fir-L	S-P-F		PSL	LSL	í –	Masonry
Size	No.	Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
5 00	B5.12/30	✓	12	51%	30	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910 17.39	6490 28.87	5230 23.27	6185 27.51	_	_
5 x 30	HB5.12/30	✓	10	51%	30	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	9525 42.37	9240 41.10	10475 46.60	_	_
51/4 x 71/4	WPU5.50/7.25	✓	12	5½	71/4	3	25/16	3-16d	4-16d	6-10d	1665 7.41	6390	6390 28.43	6825	7085 31.52	5980	_	_
	HB5.50/9.25	✓	10	5½	91/4	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335	5945	9525 42.37	9240 41.10	10475 46.60	_	_
51/4 x 91/4	HWU5.50/9.25	✓	10	5½	91/4	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	8250 36.70	8250 36.70	8250 36.70	8250 36.70	8250 36.70	_	_
	GLTV5.50/9.25	✓	7	5%16	91/4	5	27/8	4-16d	6-16d	6-16d	2145	10455	7470	10890	10745	8590	_	_
	HB5.50/9.5	✓	10	5½	9½	3½	3	6-16d	16-16d	10-16d	9.54 3555	46.51 9335	33.23 5945	9525	47.80 9240	38.21	_	_
	WP5.50/9.5	✓	12	5½	9½	2½	25/16	3-16d	_	2-10d	15.81	41.53 4430	3855	42.37 5950		46.60 5980	_	_
	HWU5.50/9.5	· ✓	10	5½	91/2	31/4	2½	4-16d	4-16d	6-10d	1775	19.71 8250	17.15 8250	26.47 8250	24.15 8250	26.60 8250	_	_
51/4 x 91/2	GLTV5.59	✓	7	5%16	91/2	5	27/8	4-16d	6-16d	6-16d	7.90 2145	36.70 10455	36.70 7470	36.70 10890	36.70 10745	36.70 8590	_	_
J/4 X J/2	HGLTV5.59	ļ .	7	5%16	91/2	6	27/8	6-16d	12-16d	6-16d	9.54 2145	46.51 13070	33.23 9830	48.44 15365	47.80 11325	38.21 13795	<u> </u>	_ _
		√									9.54 2155	58.14 13245	43.73 6775	68.35 15850	50.38 15855	61.37	_	_
	SCL5.37/9.5	√	3	5%	9½	4	2¾	_	6-16d	6-16d	9.59	58.92 —	30.14	70.51	70.53	_	_	
	WM5.50/9.5	V	12	5½	9½	2½	3¾	2-16d DPLX	_	2-10d	— 3555	9335	- 5945	- 9525	- 9240	-	_	26.96
	HB5.50/11.25	√	10	5½	1111/4	3½	3	6-16d	16-16d	10-16d	15.81 1775	41.53 8250	26.45 8250		41.10 8250	46.60 8250	_	_
5¼ x 11¼	HWU5.50/11.25	√	10	5½	111/4	31/4	2½	4-16d	4-16d	6-10d	7.90	36.70 10455	36.70 7470	36.70 10890	36.70	36.70	_	_
	GLTV5.50/11.25	√	7	5%16	1111/4	5	27/8	4-16d	6-16d	6-10d	9.54	46.51	33.23	48.44	47.80	38.21	_	_
	HB5.50/11.88	✓	10	5½	11%	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335	5945 26.45		9240	10475 46.60	_	_
	WP5.50/11.88	✓	12	5½	11%	2½	25/16	3-16d	_	2-10d	_	4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980 26.60	_	_
	HWU5.50/11.88	✓	10	5½	11%	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	8250 36.70	8250 36.70	8250 36.70	8250 36.70	8250 36.70	_	_
5¼ x 11%	GLTV5.511	✓	7	5%16	11%	5	21/8	4-16d	6-16d	6-16d	2145 9.54	46.51	33.23	10890 48.44	47.80	38.21	_ _	_
	HGLTV5.511	✓	7	5%16	11%	6	21/8	6-16d	12-16d	6-16d	2145 9.54			15365 68.35			_	_
	SCL5.37/11.88	✓	3	5%	11%	5	2¾	_	12-16d	12-16d	3255 14.48	17635 78.45		21600 96.09		_	_	_
	WM5.50/11.88	✓	12	5½	11%	2½	3¾	2-16d DPLX	_	2-10d		_	_	_	_	_	_	6060 26.96
	HB5.50/14	✓	10	5½	14	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	9525 42.37		10475 46.60	_	_
	HWU5.50/14	✓	10	5½	14	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	8250 36.70	8250 36.70	8250 36.70		8250 36.70	_	_
5¼ x 14	GLTV5.514	✓	7	5%16	14	5	27/8	4-16d	6-16d	6-16d	2145 9.54	10455	7470	10890 48.44	10745	8590	_	_
	HGLTV5.514	√	7	5%16	14	6	21/8	6-16d	12-16d	6-16d	2145 9.54		9830	15365 68.35	11325	13795	_	_
	SCL5.37/14	✓	3	5%	14	5	2¾	_	12-16d	12-16d	3255 14.48		11490	21600 96.09	20915		_	_
	GLTV5.516	√	7	5%16	16	5	27/8	4-16d	6-16d	6-16d	2145 9.54	10455	7470	10890 48.44	10745	8590		
5¼ x 16	HGLTV5.516	✓	7	5%16	16	6	27/8	6-16d	12-16d	6-16d	2145 9.54	13070	9830	15365 68.35	11325	13795		_
	SCL5.37/16	√	3/8	53%	16	6	25/8	_	10-16d	12-16d	4305 19.15		13025	29000	27350	_	_	_
											19.10	סכ.כטו	57.94	129.00	121.00	_	_	_

					Dimer	ncione					1		Far	tored R	peieta	nce		®
		Web				n)	•		Fastener	s	Uplift		1 46			= 1.00)	
Joist Size	Model No.	Stiff	Ga					Head	er		(KD=1.15)	D.Fir-L	S-P-F	LVL	PSL	LSL	i	Masonry
0120	No.	Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
	HB5.50/18	✓	10	5½	18	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	9525 42.37	9240 41.10	10475 46.60	_	_
	HWU5.50/18	✓	10	5½	18	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	8250 36.70	8250 36.70	8250 36.70	8250 36.70	8250 36.70	_	_
5¼ x 18	GLTV5.518	✓	7	5%16	18	5	27/8	4-16d	6-16d	6-16d	2145 9.54	10455	7470 33.23	10890	10745 47.80	8590 38.21	_	_
	HGLTV5.518	✓	7	5%16	18	6	2%	6-16d	12-16d	6-16d	2145 9.54	13070	9830 43.73	15365	11325 50.38	13795 61.37	_	_
	SCL5.37/18	✓	3/8	5%	18	6	25%	_	10-16d	12-16d	4305	23730 105.56	13025	29000 129.00	27350	_	_	_
	GLTV5.50/18.75	✓	7	5½	18¾	5	27/8	4-16d	6-16d	6-16d	2145 9.54	10455 46.51	7470 33.23		10745 47.80			_
5¼ x 18¾	HGLTV5.50/18.75	✓	7	5½	18¾	6	27/8	6-16d	12-16d	6-16d	2145	13070	9830	15365	11325	13795	_	_
	SCL5.37/18.75	✓	3/8	5%	18¾	6	25%	_	10-16d	12-16d	9.54 4305	58.14 23730		29000		61.37	_	_
	HB5.50/20	√	10	5½	20	3½	3	6-16d	16-16d	10-16d	19.15 3555	9335	57.94 5945	9525	9240	10475	_	_
	HW5.50/20	✓	11	5½	20	2½	2½	4-16d	_	2-10d	15.81	41.53 6900	26.45 5285	42.37 7695	41.10 5810	46.60 6870	_ _	_
5¼ x 20	HWU5.50/20	▼	10	5½	20	31/4	21/2	4-16d	4-16d	6-10d	— 1490	30.69 8250	23.51 8250	34.23 8250	25.85 8250	30.56 8250	_	_
374 X 20		<u> </u>									6.63 2145	36.70 10455	36.70 7470	36.70 10890	36.70 10745	36.70 8590	_	_
	GLTV5.520	√	7	5%16	20	5	27/8	4-16d	6-16d	6-16d	9.54 2145	46.51 13070	33.23 9830	48.44 15365	47.80 11325	38.21 13795	_	_
	HGLTV5.520	√	7	5%16	20	6	2%	6-16d	12-16d	6-16d	9.54 1775	58.14 8250	43.73 8250	68.35 8250	50.38 8250	61.37 8250	_	_
7 x 7½	HWU7.12/7.25	√	10	71/8	71/4	31/4	2½	4-16d	4-16d	6-10d	7.90 3555	36.70 9335	36.70 5945	36.70 9525	36.70 9240	36.70 10475	_	_
	HB7.12/9.25	✓	10	71//8	91/4	3½	3	6-16d	16-16d	10-16d	15.81	41.53	26.45	42.37	41.10 5430	46.60 5980	_	_
7 x 91/4	WPI49.25-2	√	12	71//8	91/4	2½	25/16	3-16d	_	2-10dx1½	_	19.71	3855 17.15	5950 26.47	24.15	26.60	_	_
	HWU7.12/9.25	✓	10	71//8	91/4	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	8250 36.70	8250 36.70	8250 36.70	8250 36.70	8250 36.70	_	_
	GLTV49.25-2	✓	7	71//8	91/4	5	2%	4-16d	6-16d	6-16d	2145 9.54	10455 46.51	7470 33.23	10890 48.44	10745 47.80	8590 38.21	_	_
	B7.12/9.5	✓	12	71//8	9½	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910 17.39	6490 28.87	5230 23.27	6185 27.51	_	_
	HB7.12/9.5	✓	10	71/8	9½	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	9525 42.37		10475 46.60	_	_
	WPI49.5-2	✓	12	71/8	9½	2½	25/16	3-16d	_	2-10dx1½	_	4430 19.71	3855 17.15		5430 24.15	5980 26.60	_	_
7 x 9½	HWU7.12/9.5	✓	10	71//8	9½	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	8250 36.70	8250 36.70	8250 36.70	8250 36.70	8250 36.70	_	_
	GLTV49.5-2	✓	7	71//8	9½	5	27/8	4-16d	6-16d	6-16d	2145 9.54	10455 46.51	_	10890 48.44			_	_
	SCL7.25/9.5	✓	3	71/4	9½	4	23/4	_	6-16d	6-16d	3255 14.48			21600	20915		_	_
	WMI49.5-2	✓	12	71/8	9½	2½	3¾	2-16d DPLX	_	2-10d			_ _			_	_	6060 26.96
	HB7.12/11.25	√	10	71//8	1111/4	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945		9240	10475	_	
	WPI411.25-2	√	12	71//8	111/4	2½	25/16	3-16d	_	2-10dx1½	— —	4430 19.71	3855		5430		_	_
	HWU7.12/11.25	√	10	71/8	1111/4	31/4	2½	4-16d	4-16d	6-10d	1775	8250	8250	8250	8250	8250	_	_
7 x 111/4	GLTV411.25-2	√	7	71/8	1111/4	5	2%	4-16d	6-16d	6-16d	7.90 2145	36.70 10455					_	_
	HGLTV411.25-2	✓	7	71//8	111/4	6	27/8	6-16d	12-16d	6-16d	9.54 2145	46.51 13070	9830	_	11325	13795	_	_
	WMI411.25-2	·	12	71/8	1111/4	2½	33/4	2-16d DPLX	_	2-10d	9.54	58.14	_	68.35	_	_	_	6060
		_		. / 0	,		5/7	b. EX			_	_	_	_	_	_	_	26.96

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

Strong-Tie

Engineered Wood & Structural Composite Lumber Connectors

					Dimer		;		Fastener	s	12 17 27		Fac		lesista		\	
Joist	Model	Web Stiff	Ga		(i	n)		Head	or		Uplift (KD=1.15)	D Fir-I	Q_D_E	LVL	nai (K _d PSL	= 1.00	í	Masonry
Size	No.	Reqd		w	н	В	TF			Joist	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
						_		Тор	Face		kN	kN	kN	kN	kN	kN	kN	kN
	B7.12/11.88	1	12	71/8	11%	2½	2½	6-16d	8-16d	6-16d	1650	5940	3910	6490	5230	6185	_	_
		ļ.,									7.34 3555	26.42 9335	17.39 5945	28.87 9525	23.27 9240	27.51 10475	_	_
	HB7.12/11.88	✓	10	71/8	117/8	3½	3	6-16d	16-16d	10-16d	15.81	41.53	26.45	42.37	41.10	46.60	_	_
	WPI411.88-2	✓	12	71/8	11%	2½	25/16	3-16d	_	2-10dx1½	_	4430	3855	5950	5430	5980	_	_
											1775	19.71 8250	17.15 8250	26.47 8250	24.15 8250	26.60 8250	_	_
7 x 11%	HWU7.12/11.88	✓	10	71/8	11%	31/4	2½	4-16d	4-16d	6-10d	7.90	36.70	36.70	36.70	36.70	36.70	_	_
7 X 1170	GLTV411.88-2	✓	7	71/8	11%	5	2%	4-16d	6-16d	6-16d	2145 9.54	10455	7470 33.23	10890	10745 47.80	8590 38.21	_	_
	UOLTV444 00 0	/	7	71/	447/	_	07/	0.404	10 104	0.404	2145	13070	_		11325			
	HGLTV411.88-2	√	7	71/8	11%	6	27/8	6-16d	12-16d	6-16d	9.54	58.14		68.35		61.37	_	_
	SCL7.25/11.88	✓	3	71/4	11%	5	2¾	_	12-16d	12-16d	3255 14.48	17635 78.45	11490 51.11	21600 96.09		_	_	
	WMI411.88-2	✓	12	71/8	11%	2½	3¾	2-16d DPLX		2-10d	—		—	_	-	_	_	6060
	VV IVII4 I 1.00-2	V	12	1 78	1178	272	374	2-100 DFLX		2-10u		-				-	_	26.96
	B7.12/14	✓	12	71/8	14	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910 17.39	6490 28.87	5230	6185	_	_
	HB7.12/14	/	10	71/8	14	3½	3	6-16d	16-16d	10-16d	3555	9335	5945	9525	9240	10475	_	_
	1107.12/14	-	10	1 /8	14	372	J	0-100	10-100	10-100	15.81	41.53	26.45		41.10	46.60	_	_
	WPI414-2	✓	12	71/8	14	2½	25/16	3-16d	_	2-10dx1½	_	4430 19.71	3855 17.15	5950 26.47	5430 24.15	5980	_	_
	HWU7.12/14	1	10	71/8	14	31/4	2½	4-16d	4-16d	6-10d	1775	8250	8250	8250	8250	8250	_	_
7 x 14	11007.12/14	ľ	10	1 70	1-7	074	L /2	7 100	4 100	0 100	7.90 2145	36.70 10455	36.70 7470	36.70 10890	36.70 10745	36.70 8590	_	_
	GLTV414-2	✓	7	71/8	14	5	2%	4-16d	6-16d	6-16d	9.54	46.51	_	48.44		38.21		_
	HGLTV414-2	1	7	71/8	14	6	27/8	6-16d	12-16d	6-16d	2145	13070			11325		_	
		ļ ,	-								9.54 3255	58.14 17635		68.35 21600		61.37	_	_
-	SCL7.25/14	✓	3/8	71/4	14	5	2¾	_	12-16d	12-16d	14.48	78.45	51.11	96.09		_	_	_
	WMI414-2	1	12	71/8	14	2½	3¾	2-16d DPLX	_	2-10d		_	_	_	_	_	_	6060
							211				1650		3910	6490	5230	6185	_	26.96
	B7.12/16	✓	12	71/8	16	2½	2½	6-16d	8-16d	6-16d	7.34	26.42	17.39	28.87	23.27	27.51	_	_
	HB7.16/16	✓	10	71/8	16	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335	5945 26.45	9525	9240	10475	_	
	WPI416-2	√	12	71/8	16	2½	2 5/16	3-16d		2-10dx1½	-	4430	3855	5950	5430	5980	_	_
	WF1410-2	•	12	1 78	10	272	Z%16	3-10u	_	Z-10UX 1 72		19.71	17.15	26.47	24.15	26.60	_	_
	HWU7.12/16	✓	10	71/8	16	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	8250 36.70	8250 36.70	8250 36.70	8250 36.70	8250 36.70	_	_
7 x 16	GLTV416-2	1	7	71/8	16	5	27/8	4-16d	6-16d	6-16d	2145	10455	7470	10890	10745	8590	_	_
	GET V410 Z	,	· ·	170	10		270	7 100	0 100	0 100	9.54 2145	46.51 13070			47.80		_	<u> </u>
	HGLTV416-2	✓	7	71/8	16	6	2%	6-16d	12-16d	6-16d	9.54		43.73				_	_
	SCL7.25/16	✓	3/8	71/4	16	5	23/4	_	10-16d	12-16d	4305		13025				_	
											19.15	105.56	57.94	129.00	121.66	_		6060
	WMI416-2	√	12	71/8	16	2½	3¾	2-16d DPLX	_	2-10d	_	_	_	_	_	_	_	26.96
	B7.12/18	✓	12	71/8	18	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910		5230 23.27		_	
	LID710/10	√	10	71/	10	01/	2	6 164	10 104	10.164	3555	9335			9240			
	HB7.12/18	V	10	71/8	18	3½	3	6-16d	16-16d	10-16d	15.81		26.45	42.37	41.10	46.60	_	
	HWI418-2	✓	11	71/8	18	2½	2½	4-16d	_	2-10d		6900 30.69	5285 23.51		5810 25.85		_	_
	HWU7.12/18	√	10	71/8	18	31/4	2½	4-16d	4-16d	6-10d	1775	8250	8250		8250		_	_
7 x 18	110007.12/10	-	10	1 /8	10	074	2/2	4-100	4-100	0-10u	7.90	36.70 10455	36.70 7470		36.70		_	_
	GLTV418-2	√	7	71/8	18	5	21/8	4-16d	6-16d	6-16d	2145 9.54		33.23				_	_
	HGLTV418-2	1	7	71/8	18	6	27/8	6-16d	12-16d	6-16d	2145	13070	9830	15365	11325	13795	_	
											9.54 4305	58.14 23730	43.73 13025				_	_
	SCL7.25/18	√	3/8	71/4	18	6	25/8	_	10-16d	12-16d	19.15	105.56					_	
	WMI418-2	√	12	71/8	18	21/2	3¾	2-16d DPLX	_	2-10d		_	_	_		_	_	6060
	0171/440 75 0	1			4007	-	07/	4.40 !	0.40	0.40.1	2145	10455	7470	10890	10745	8590	_	26.96
7 x 18¾	GLTV418.75-2	√	7	71/8	18¾	5	27/8	4-16d	6-16d	6-16d	9.54	46.51	33.23	48.44	47.80	38.21	_	_
7 / 10/4	SCL7.25/18.75	✓	3/8	71/8	18¾	6	25/8	_	10-16d	12-16d	4305 19.15	23730 105.56	13025				_	
	1	1	ĺ	I	I	I		1	I		19.10	100.00	37.94	129.00	121.00	_		_

					Dimer	sions	.						Fac	tored F	lesista	nce		®
loiet	Medel	Web				n)			Fastener	S	Uplift					= 1.00)	
Joist Size	Model No.	Stiff						Head	er		$(K_D = 1.15)$	D.Fir-L	S-P-F	LVL	PSL	LSL	I-Joist	Masonry
OIZU	110.	Reqd		W	Н	В	TF	Тор	Face	Joist	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN	lbs kN
	B7.12/20	✓	12	71//8	20	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910 17.39	6490 28.87	5230 23.27	6185 27.51	_	
	HB7.12/20	✓	10	71//8	20	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	9525 42.37	9240 41.10	10475 46.60	_	_
7 x 20	HWI420-2	✓	11	71/8	20	2½	2½	4-16d	_	2-10d	_	6900 30.69	5285 23.51	7695 34.23	5810 25.85		_	_
	HWU7.12/18	✓	10	71/8	20	31/4	2½	4-16d	4-16d	6-10d	1775 7.90	8250 36.70	8250 36.70	8250 36.70	8250 36.70	8250 36.70	_	_
	GLTV420-2	✓	7	71//8	20	5	2%	4-16d	6-16d	6-16d	2145 9.54	10455	7470 33.23	10890 48.44	47.80	38.21	_	_
	HGLTV420-2	✓	7	71/8	20	6	2%	6-16d	12-16d	6-16d	2145 9.54	13070 58.14	9830 43.73	68.35	11325 50.38	61.37	_	_
	B7.12/22	✓	12	71//8	22	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910 17.39	6490 28.87	5230 23.27	6185 27.51	_	_
	HB7.12/22	✓	10	71//8	22	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	9525 42.37	9240 41.10	10475 46.60	_	_
7 x 22	HWI422-2	✓	11	71//8	22	2½	2½	4-16d	_	4-10d	_	6900 30.69	5285 23.51	7695 34.23	5810 25.85		_	_
	GLTV422-2	✓	7	71/8	22	5	27/8	4-16d	6-16d	6-16d	2145 9.54	10455 46.51	7470 33.23	10890 48.44	47.80	38.21	_	_
	HGLTV7.12/22	✓	7	71//8	22	6	27/8	6-16d	12-16d	6-16d	2145 9.54	13070 58.14	9830 43.73	68.35	50.38	61.37	_	_
	B7.12/24	✓	12	71/8	24	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910 17.39	6490 28.87	5230 23.27	6185 27.51	_	_
	HB7.12/24	✓	10	71//8	24	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	9525 42.37	9240 41.10	10475 46.60	_	_ _
7 x 24	HWI424-2	✓	11	71//8	24	2½	2½	4-16d	_	4-10d		6900 30.69	5285 23.51	7695 34.23	5810 25.85		_ _	_
	GLTV424-2	✓	7	71//8	24	5	2%	4-16d	6-16d	6-16d	2145 9.54	10455 46.51	7470 33.23	48.44	10745 47.80	38.21	_	_
	HGLTV424-2	✓	7	71/8	24	6	27/8	6-16d	12-16d	6-16d	2145 9.54	13070 58.14	9830 43.73	15365 68.35			_	_
	B7.12/26	✓	12	71/8	26	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42	3910 17.39	6490 28.87	5230 23.27	6185 27.51	_	_
	HB7.12/26	✓	10	71/8	26	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53	5945 26.45	9525 42.37	9240 41.10	10475 46.60	_	_
7 x 26	HWI426-2	✓	11	71/8	26	2½	2½	4-16d	_	6-10d		6900 30.69	5285 23.51	7695 34.23	5810 25.85	6870 30.56	_ _	_
	GLTV426-2	✓	7	71//8	26	5	27/8	4-16d	6-16d	6-16d	2145 9.54	10455 46.51			47.80	38.21	_	_
	HGLTV426-2	✓	7	71//8	26	6	27/8	6-16d	12-16d	6-16d	2145 9.54	13070 58.14	43.73	68.35	50.38	61.37	_	_
	B7.12/28	✓	12	71//8	28	2½	2½	6-16d	8-16d	6-16d	1650 7.34	5940 26.42		28.87		27.51	_	_
	HB7.12/28	✓	10	71/8	28	3½	3	6-16d	16-16d	10-16d	3555 15.81	9335 41.53		42.37	41.10	10475 46.60	_	_
7 x 28	HWI428-2	✓	11	71//8	28	2½	2½	4-16d	_	6-10d	_	6900 30.69	5285 23.51		5810 25.85	30.56	_	_
	GLTV428-2	✓	7	71//8	28	5	27/8	4-16d	6-16d	6-16d	2145 9.54		33.23	10890 48.44	47.80	38.21	_	_
	HGLTV428-2	✓	7	71//8	28	6	27/8	6-16d	12-16d	6-16d	2145 9.54		43.73	68.35	50.38	61.37	_	_
	HWI430-2	✓	11	71//8	30	2½	2½	4-16d	_	6-10d	_	6900 30.69	5285 23.51		5810 25.85	30.56	_	_
7 x 30	GLTV430-2	✓	7	71//8	30	5	27/8	4-16d	6-16d	6-16d	2145 9.54		33.23	10890 48.44	47.80	38.21	_	_
	HGLTV430-2	✓	7	71/8	30	6	21//8	6-16d	12-16d	6-16d	2145 9.54		43.73	68.35	50.38	61.37	_	_
	HWI432-2	✓	11	71/8	32	2½	2½	4-16d	_	6-10d	_	6900 30.69	5285 23.51		5810 25.85	30.56	_	_
7 x 32	GLTV432-2	✓	7	71/8	32	5	21//8	4-16d	6-16d	6-16d	2145 9.54		33.23	10890	47.80	38.21	_	_
	HGLTV432-2	✓	7	71//8	32	6	27/8	6-16d	12-16d	6-16d	2145 9.54	13070 58.14		15365 68.35			_	_

THAI 1-Joist & Structural Composite Lumber Hangers

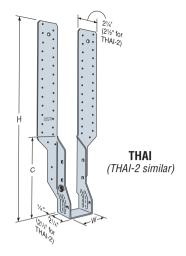
Designed for I-joists, the THAI has extra long straps and can be field-formed to give height adjustability and top flange hanger convenience. Positive angle nailing helps eliminate splitting of the I-joist's bottom flange.

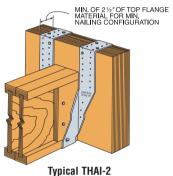
MATERIAL: THAI-2-14 gauge: all others-18 gauge

FINISH: Galvanized

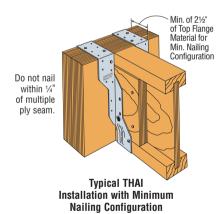
INSTALLATION: • THAI-2 must be factory-ordered for hanger width needed.

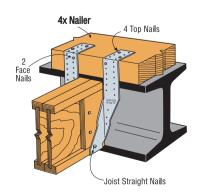
See table for allowable widths.


- Use all specified fasteners. Verify that the header can take the required fasteners specified in the table.
- Web stiffeners are required for all I-joists used with these hangers.
- When a total of 20 face nails are used in THAI straps, or 30 face nails are used in THAI-2 straps, the maximum factored resistance is achieved.
- Reduce the resistance given by the factored lateral nail shear capacity for each nail less than maximum.
- A minimum nailing configuration is shown for top nailing installations.
 The strap must be field-formed over the top of the header by a minimum of 2½".


Joist Dime	ensions (in)	Model	Hai	nger Dimensions	(in)
Width	Depth	No.	W¹	Н	C
1½	91⁄4 - 14"	THAI222	1%6	221/8	9%
13/4	91⁄4 - 14"	THAI1.81/22	1 13/16	22¾	91/4
2	91⁄4 - 14"	THAI2.06/22	21/16	22%	91/8
21/4 to 25/16	91⁄4 - 14"	THAI3522	25/16	22½	9
2½	9¼ - 14"	THAI322	2%16	22%	81/8
3½	9¼ - 14"	THAI422	3%16	211//8	83/8
3 to 51/4	91⁄4 - 14"	THAI-2	31/8 to 55/16	2111/16	813/16

1. The W dimension should be ordered at 1/16" to 1/8" greater than the joist width.

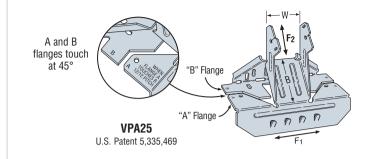

		Fasteners			Factored F	Resistance	
	Hea	der			D.Fir-L	S-P-F	LVL
Nailing				Uplift (K _D =1.15)	Normal	Normal	Normal
Option	Ton	Face	Joist	()	$(K_D = 1.00)$	$(K_D = 1.00)$	$(K_D = 1.00)$
	Тор	гасе		lbs	lbs	lbs	lbs
				kN	kN	kN	kN
	4-10dx1½	2-10dv11/	2-10dx1½	_	2035	1735	2595
THAI Minimum	4-10ux 1 72	Z-10UX 1 72	Z-100X172	1	9.05	7.72	11.54
	4-10d	2-10d	2-10dx11//	_	3000	2385	2810
	4-10u	2-10u	2-10ux 1 72	1	13.35	10.61	12.50
THAI Maximum		20-10d	2-10dx1½	410	3025	2150	3025
THAI WAXIIIIUIII		20-10u	Z-10ux 1 72	1.82	13.46	9.56	13.46
THAI-2 Minimum	4-10d	2-10d	2-10dx11//	_	2800	2800	2800
THAI-2 WIIIIIIIIIIII	4-10u	2-10u	2-10ux 1 72	_	12.46	12.46	12.46
THAI-2 Maximum		30-10d	2-10dx1½	410	6090	4325	6090
I HAI-Z WAXIIIIUIII		30-10d	Z-10UX 1 ½	1.82	27.09	19.24	27.09


- Uplift loads have been increased 15% for wind or earthquake loading with no further increase allowed; reduce where other loads govern.
- 2. The minimum header depth to achieve the maximum nail configuration is 16".
- Applies to LVL headers made primarily from Douglas Fir or Southern Pine. For LVL made primarily from Spruce Pine Fir or similar less dense veneers, use the values found in the S-P-F column.
- 4. Factored uplift resistances shown are for D.Fir-L.
- Multiply tablulated resistances x 0.71 for either SPF joist or header.
- 5. NAILS: 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information

Installation

Typical THAI Minimum Nailing Configuration on a 4x Nailer

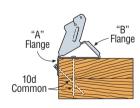
Engineered Wood & Structural Composite Lumber Connectors

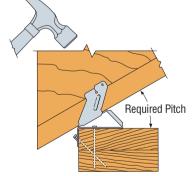

SIMPSON Strong-Tie

The VPA may be sloped in the field, offering a versatile solution for attaching rafters to the top plate. It will adjust to accommodate slopes between 3:12 and 12:12, making it a complement to the versatile LSSU. This connector eliminates the need for notched rafters, beveled top plates and toe nailing.

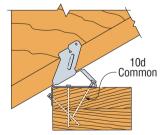
MATERIAL: 18 gauge FINISH: Galvanized

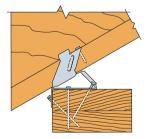
INSTALLATION: • Use all specified fasteners.


See General Notes.


			Fas	teners				Factored P	esistance			
	Actual					D.F	ir-L			S-I	P-F	
Model	Joist	W	0	Onwind	Wind/E	arthquake (K	(D=1.15)	Normal	Wind/E	arthquake (K	D=1.15)	Normal
No.	Width	(in)	Carrying Member	Carried Member	Uplift	F ₁	F ₂	$(K_D = 1.00)$	Uplift	F ₁	F ₂	$(K_D = 1.00)$
	(in)		MICHIDGI	Mellinei	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
					kN	kN	kN	kN	kN	kN	kN	kN
VPA2	11/2	1%6	8-10d	2-10dx1½	405	695	405	1695	370	615	370	1555
VFAZ	1 /2	I 716	0-10u	Z-10ux1/2	1.80	3.09	1.80	7.54	1.65	2.74	1.65	6.92
VPA25	13/4	113/16	8-10d	2-10dx1½	405	695	405	1695	370	615	370	1555
VIAZJ	174	1 /16	0-100	Z-100X172	1.80	3.09	1.80	7.54	1.65	2.74	1.65	6.92
VPA2.06	2	21/16	9-10d	2-10dx1½	405	695	405	2050	370	615	370	1855
VI A2.00	2	Z /16	3-10u	Z-100X172	1.80	3.09	1.80	9.12	1.65	2.74	1.65	8.25
VPA2.1	21/16	21/8	9-10d	2-10dx1½	405	695	405	2050	370	615	370	1855
VI AZ.I	2/16	2/8	3-10u	Z-100X172	1.80	3.09	1.80	9.12	1.65	2.74	1.65	8.25
VPA35	21/4 - 25/16	25/16	9-10d	2-10dx1½	405	695	405	2050	370	615	370	1855
VIAGO	2/4 - 2/16	Z/16	3-10u	Z-10UX172	1.80	3.09	1.80	9.12	1.65	2.74	1.65	8.25
VPA3	2½	2%16	9-10d	2-10dx1½	405	695	405	2050	370	615	370	1855
V1710	L /2	£ / 10	5 10u	2 100X172	1.80	3.09	1.80	9.12	1.65	2.74	1.65	8.25
VPA4	PA4 3½ 3% ₁₆	11-10d	2-10dx1½	405	695	405	2050	370	615	370	1855	
VPA4	J 72	3 710	1. 100	L 100X172	1.80	3.09	1.80	9.12	1.65	2.74	1.65	8.25

- 1. Factored uplift and lateral resistances have been increased 15% for earthquake or wind loading; no further increase is allowed.
- 2. Resistances may not be increased for short-term load duration.
- 3. **NAILS:** 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.


VPA INSTALLATION **SEQUENCE**

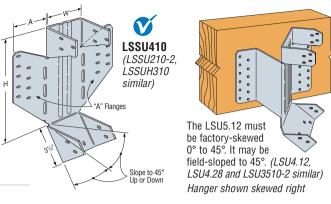

Install top nails and face PAN nails in "A" flange to outside wall top plate.

STEP 2 Seat rafter with a hammer, adjusting "B" flange to the required pitch.

STEP 3 Install "B" flange nails in the obround nail holes, locking the pitch.

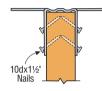
STEP 4 Bend tab with hammer and install 10dx1½" nail into tab nail hole. Hammer nail in at an approximate 45° angle to limit splitting

LSU/LSSU/LSSUI Light Slopeable/Skewable U Hangers for I-Joists and SCL

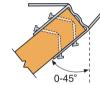

WEINEER ED This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

This series attach joists or rafters to headers, sloped up or down, and skewed left or right, up to 45°.

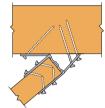
MATERIAL: See table FINISH: Galvanized


INSTALLATION: • Use all specified fasteners. See General Notes.

- Attach the sloped joist at both ends so that the horizontal force developed by the slope is fully supported by the supporting members.
- Web stiffeners required for I-joist applications.
- To see an installation video on this product, visit www.strongtie.com.
- 10dx1½" nails cannot be substituted for specified face nails for skewed or sloped and skewed combinations.



LSU and LSSU INSTALLATION SEQUENCE


(For Skewed or Sloped/Skewed Applications)

Nail hanger to slope-cut carried member, installing seat nail first. No bevel necessary. Install joist nails at 45° angle.

Skew flange from 0-45°. Bend other flange back along centerline of slots until it meets the header. Bend one time only.

Attach hanger to the carrying member, acute angle side first. Install nails at an angle.

These products are available with Dimensions **Factored Resistance Fasteners** additional corrosion protection. (in) D.Fir-L Actual Additional products on this page Model Uplift Normal Uplift Normal Joist Ga may also be available with this Width No. $(K_D=1.15) (K_D=1.00) (K_D=1.15) (K_D=1.00)$

	wiutii	NU.		W	Н	Α	Header	Joist	(110)	(ND=1.00)	(NU-1.10)	(ND-1.00)
	(in)			_ vv		_ ^	licauci	30131	lbs	lbs	lbs	lbs
									kN	kN	kN	kN
						SL	OPED ONL	Y HANGERS	_			
	41/	1.0011040	10	40/	01/				1240	3090	1130	2325
1	1½	LSSU210	18	1%16	81/2	1%	10-10d	7-10dx1½	5.52	13.75	5.03	10.34
	13/4	LSSUI25	18	113/16	81/2	1½	10-10d	7-10dx1½	1240	3090	1130	2325
	174	L000120	10	1 716	072	1 /2	10-10u	7-10UX172	5.52	13.75	5.03	10.34
	2	LSSUI2.06	18	21/16	81/2	13/4	10-10d	7-10dx1½	1240	3090	1130	2325
									5.52 1240	13.75 3090	5.03 1130	10.34 2325
	21/16	LSSU2.1	18	21/8	81/2	13/4	10-10d	7-10dx1½	5.52	13.75	5.03	10.34
	01/ 05/	1.0011105	40	05/	01/	45/	40.40.1	7.40 1.41/	1240	3090	1130	2325
	21/4 - 25/16	LSSUI35	18	25/16	81/2	1%	10-10d	10-10d 7-10dx1½		13.75	5.03	10.34
	2½	LSSUH310	16	2%16	81/2	31/8	18-16d	12-10dx1½	1625	4205	1155	2985
	2 /2	L00011010	10	2/16	072	J /8	10-10u	12-10UX172	7.23 1625	18.70	5.14	13.28
	3	LSSU210-2	16	31/8	81/2	27/8	18-16d	8-16d 12-10dx1½		5355	1155	3805
									7.23 1625	23.82 5355	5.14 1155	16.93 3805
	31/2	LSSU410	16	3%16	81/2	2%	18-16d	12-10dx1½	7.23	23.82	5.14	16.93
					_		04.40.1		1960	7015	1395	4980
	4	LSU4.12	14	41/8	9	21/4	24-16d	16-10dx1½	8.72	31.20	6.21	22.15
	A 17.	LSU4.28	14	41/4	9	23/8	24-16d	16-10dx1½	1960	7015	1395	4980
	41/8	L3U4.20	14	4 74	9	278	24-10u	10-10ux 1 72	8.72	31.20	6.21	22.15
	41/2 - 43/4	LSU3510-2	14	43/4	87/8	3%	24-16d	16-10dx1½	1960	7015	1395	4980
	1/2 1/4	2000010 2		174	070	070	21 100	10 100/(172	8.72	31.20	6.21	22.15
	5	LSU5.12	14	51/8	9	21/4	24-16d	16-10dx1½	1285 5.72	5465 24.31	910 4.05	3880 17.26
				C K E I	WED II	VNCED	S UD SI UE	PED AND SKEV			4.00	17.20
									1240	2090	910	1485
١	11/2	LSSU210	18	1%16	81/2	1%	9-10d	7-10dx1½	5.52	9.30	4.05	6.61
	101			1407					1240	2090	910	1485
	1¾	LSSUI25	18	1 13/16	81/2	1½	9-10d	7-10dx1½	5.52	9.30	4.05	6.61
	2	LSSUI2.06	18	21/16	81/2	13/4	9-10d	7-10dx1½	1240	2090	910	1485
		L00012.00	10	2/16	072	174	3-10u	7-10UX172	5.52	9.30	4.05	6.61
	21/16	LSSU2.1	18	21/8	81/2	13/4	9-10d	7-10dx1½	1240	2090	910	1485
									5.52 1240	9.30 2090	4.05 910	6.61
	21/4 - 25/16	LSSUI35	18	25/16	81/2	1%	9-10d	7-10dx1½	5.52	9.30	4.05	1485 6.61
									1625	2620	1155	1860
	21/2	LSSUH310	16	2%16	81/2	31/8	14-16d	12-10dx1½	7.23	11.65	5.14	8.27
	3	LSSU210-2	10	31/8	81/2	07/	14-16d	12-10dx1½	1625	3055	1155	2170
	3	L550210-2	16	3 1/8	8 1/2	27/8	14-160	12-100X1½	7.23	13.59	5.14	9.65
	31/2	LSSU410	16	3%16	81/2	2%	14-16d	12-10dx1½	1625	3055	1155	2170
	0 72	2000110	-10	0710	072		11100	TE TOURT 72	7.23	13.59	5.14	9.65
	4	LSU4.12	14	41/8	9	21/4	24-16d	16-10dx1½	1960 8.72	3765 16.75	1395 6.21	2675
									1960	3765	1395	11.90 2675
	41/8	LSU4.28	14	41/4	9	2%	24-16d	16-10dx1½	8.72	16.75	6.21	11.90
	41/ 42/	1.0110540.0	4.4	43/	07/	05/	04.40-1	10.10411/	1960	3765	1395	2675
	41/2 - 43/4	LSU3510-2	14	4¾	87/8	3%	24-16d	16-10dx1½	8.72	16.75	6.21	11.90
	5	LSU5.12	14	51/8	9	21/4	24-16d	16-10dx1½	1285	2600	910	1845
		2000.12	'7	U/°	J	- /4	2-7 TOU	10 10UX172	5.72	11.57	4.05	8.21

option, check with Simpson Strong-Tie for details.

- 1. Factored uplift resistances include a 15% increase for earthquake or wind loading; no further increase is allowed; reduce where other loads govern.
- 2. LSU3510-2, LSU4.12, LSU4.28 and LSU5.12 skew option must be factory-ordered.
- 3. Minimum 11" joist height for LSU3510-2, LSU4.12, LSU4.28 and LSU5.12; 91/2" for all others.
- 4. **NAILS:** 16d = 0.162" dia. x 3½" long, 10d = 0.148" dia. x 3" long. 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

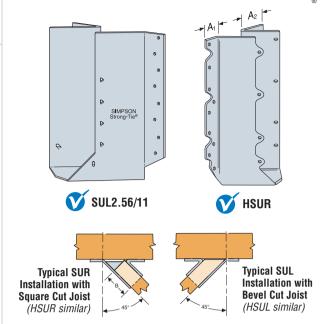
SUR/SUL/HSUR/HSUL Skewed 45° Hangers for I-Joist and SCL WEINEERED.

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features

The SUR/L1.81, 2.06, 2.1, 2.37, 2.56 and HSUR/L series are 45° skewed hangers designed specifically to ease the installation of single and double I-joists. In addition to Positive Angle Nailing these hangers encapsulate the top flange of the I-joist, so no web stiffeners are required for standard installation.

The full range of 45° skewed hangers feature obround nail holes on the acute side allowing nails to be easily installed parallel to the header and joist. Installation is further simplified with no required bevel cuts.

MATERIAL: See table


FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

- Illustrations show left and right skews SUR/L (SUR = skewed right; SUL = skewed left).
- The joist end may be square cut or bevel cut.
- Web stiffeners are required for I-joist applications for all hangers requiring more than two joist fasteners or where the hanger does not overlap the top flange of the joist.
- Fill all round and obround nail holes with specified fasteners to achieve table values. Where noted, triangle holes in the joist flange may be filled for additional uplift capacity (see Footnote 2).

OPTIONS: • These hangers will accommodate a 40° to 50° skew.

 Available with the A₂ flange turned in on 2-2x and 4x models only (see illustration). For example, specify HSURC410, HSULC410, SURC210-2, or SULC210-2.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

					Di	imensio	ns		Fac	teners		Factored F		
	Antural					(in)			1 43		D.F	ir-L	S-I	P-F
	Actual Joist Size	Model	Ga								Uplift	Normal	Uplift	Normal
	(in)	No.	ua	w	н	D D			Heeder	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	(111)			VV	п	В	A ₁	A ₂	Header	Juist	lbs	lbs	lbs	lbs
											kN	kN	kN	kN
	1½ x 9¼-9½	SUR/L210	16	1%16	81/8	2	11/8	15/16	10-16d	10-10dx1½	2085	3820	1480	2710
	1 72 X 974-972	SUN/LZIU	10	I 716	0 78		1 78	I 916	10-10u	10-10ux172	9.27	16.99	6.58	12.05
	1½ x 11¼-16	SUR/L214	16	1%	10	2	11/8	15/16	12-16d	12-10dx1½	2690	4585	2175	3255
	172 X 1174 10	0011/1214	10	1716	10		170	1710	12 100	12 100X172	11.97	20.40	9.67	14.48
	1¾ x 9¼-9½	SUR/L1.81/9	16	1 13/16	9	3	1%	25/16	12-16d	2-10dx1½	275	3140	195	2220
	1717.071.072	0011, 21101, 0		. ,					12 100	2 100/172	1.22	13.97	0.87	9.88
	1¾ x 11¼-11¾	SUR/L1.81/11	16	1 13/16	11	3	1%	25/16	16-16d	2-10dx1½	275	3140	195	2220
											1.22	13.97	0.87	9.88
	1¾ x 14-16	SUR/L1.81/14	16	1 13/16	13¾	3	1%	25/16	20-16d	2-10dx1½	275 1.22	3140 13.97	195	2220
										2-10dx1½ - 2-10dx1½ -	385	3950	0.87 385	9.88 2805
	2 x 9½	SUR/L2.06/9	16	21/16	91/16	33/16	1%	21/8	14-16d		1.71	17.57	1.71	12.48
											385	3950	385	2805
	2 x 11%	SUR/L2.06/11	16	21/16	111/4	3¾16	1%	21/8	16-16d		1.71	17.57	1.71	12.48
l											385	3950	385	2805
	2 x 14-16	SUR/L2.06/14	16	21/16	13%	33/16	1%	21/8	18-16d	2-10dx1½	1.71	17.57	1.71	12.48
	01/01/	CUD // 0.1/0	10	01/	01/	03/	40/	01/	14101	0.40441/	385	3950	385	2805
	21/16 x 91/2	SUR/L2.1/9	16	21/8	91/16	3¾16	1%6	21/8	14-16d	2-10dx1½	1.71	17.57	1.71	12.48
	21/16 x 111//8	SUR/L2.1/11	16	21/8	113/16	33/16	1%6	21/8	16-16d	2-10dx1½	385	3950	385	2805
	Z/16 X 11/8	3011/LZ.1/11	10	2/8	11716	3716	1716	2/8	10-100	Z-100X172	1.71	17.57	1.71	12.48
	21/16 x 14-16	SUR/L2.1/14	16	21/8	13%16	33/16	1%16	21/8	18-16d	2-10dx1½	385	3950	385	2805
	2710 X 11 10	0011/22:1/11	10	270	10710	0710	1710	-/-	10 100	Z TOUXT72	1.71	17.57	1.71	12.48
	21/4-25/16 x 91/2	SUR/L2.37/9	16	23/8	815/16	33/16	15/16	21/8	14-16d	2-10dx1½	385	3950	385	2805
											1.71	17.57	1.71	12.48
	21/4-25/16 x 111//8	SUR/L2.37/11	16	23/8	113/16	3¾16	1 5⁄16	21/8	16-16d	2-10dx1½	385 1.71	3950 17.57	385 1.71	2805 12.48
											385	3950	385	2805
	21/4-25/16 x 14-16	SUR/L2.37/14	16	23/8	137/16	3¾16	1 5⁄16	21/8	18-16d	2-10dx1½	1.71	17.57	1.71	12.48
											385	3950	385	2805
	2½ x 9¼-9½	SUR/L2.56/9	16	29/16	813/16	3¾16	11/8	21/8	14-16d	d 2-10dx1½	1.71	17.57	1.71	12.48
ł	01/ 00/ 441/ 447/	0110/10/50/11	40	00/	442/	02/	41/	01/	40.40.	6d 2-10dx1½	385	3950	385	2805
	2½-2 ¹ 6 x 11¼-11 ⁷ 8	SUR/L2.56/11	16	21/16	113/16	3¾16	11/8	21/8	16-16d		1.71	17.57	1.71	12.48
	2½ x 14-16	SUR/L2.56/14	16	29/	135/16	3¾16	11/8	21/8	18-16d	3d 2-10dx1½	385	3950	385	2805
	Z72 X 14-10	3UH/LZ.30/14	10	29/16	13716	3%16	1 78	278	10-100		1.71	17.57	1.71	12.48

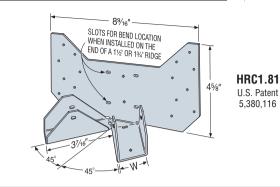
- 1. Factored uplift resistances have been increased by 15% for earthquake or wind loading with no further increase allowed; reduce for other load durations as required by code.
- 2. Triangle holes may be filled (requires web stiffeners) with 10dx1½" nails for additional uplift.
 - SUP/SUL 9 and 11 inch and all HSUR/HSUL models have four additional holes. The factored uplift resistance is 1345 lbs (5.98 kN) D.Fir-L and 965 lbs (4.29 kN) S-P-F. SUR/SUL 14 inch models have an additional six holes. The factored uplift resistance 1795 lbs (7.98 kN) D.Fir-L and 1385 lbs (6.16 kN) S-P-F.
- 3. NAILS: 16d = 0.162" dia. x 3½" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

SUR/SUL/HSUR/HSUL Skewed 45° Hangers for I-Joist and SCL

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

				Di	imensio	ns		Fac	teners		Factored F	Resistance	
					(in)			1 43	1611613	D.F	ir-L	S-I	P-F
Actual Joist Size	Model	Ga								Uplift	Normal	Uplift	Normal
(in)	No.	ua	w	н	В	۸.	٨٠	Hoodor	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
()			VV	п	В	A ₁	A ₂	Header	20121	lbs	lbs	lbs	lbs
										kN	kN	kN	kN
	SUR/L210-2	10	01/	011/	05/	47/	02/	44404	0.40401/	1695	4065	1540	2875
3 x 9½-14	SUR/L210-2	16	31/8	811/16	25/6	1 ½16	2%	14-16d	6-16dx2½	7.54	18.08	6.85	12.81
3 X 974-14	HSUR/L210-2	14	31/8	811/16	27/16	11/4	27/16	20-16d	6-16dx2½	1840	5270	1540	3745
	113011/1210-2	14	378	0 /16	2/16	1 /4	2/16	20-10u	0-100X272	8.18	23.44	6.85	16.66
	SUR/L214-2	16	31/8	1211/16	2½	17/16	21/8	18-16d	8-16dx2½	2265	4095	2090	2895
3 x 14-20	0011/22112		070	12 710	L /2	1710	270	10 100	0 100XE72	10.08	18.22	9.30	12.90
	HSUR/L214-2	14	31/8	1211/16	27/16	11/4	23/16	26-16d	8-16dx2½	2455	6875	2095	4880
										10.92	30.58	9.32	21.71
	SUR/L410	16	3%16	81/2	25/6	1	23/8	14-16d	6-16d	1695	4065	1540	2875
3½ x 9¼-14										7.54	18.08	6.85 1540	12.81
	HSUR/L410	14	3%16	81/2	27/16	1	23/16	20-16d	6-16d	1840 8.18	5270 23.44	6.85	3745 16.66
										2265	4095	2090	2895
	SUR/L414	16	3%16	12½	25/8	1	23/8	18-16d	8-16d	10.08	18.22	9.30	12.90
3½ x 14-20										2455	6875	2095	4880
	HSUR/L414	14	3%16	12½	27/16	1	23/16	26-16d	8-16d	10.92	30.58	9.32	21.71
										275	2995	195	2350
4 x 9½	HSUR/L4.12/9	14	41/8	9	3	1 7/16	2%	12-16d	2-10dx1½	1.22	13.34	0.87	10.47
4 x 11%					_		201			275	4190	195	2965
4 x 11%	HSUR/L4.12/11	14	41/8	1111/8	3	1 ½16	2%	16-16d	2-10dx1½	1.22	18.64	0.87	13.21
444	LICUD /I 4 10 /14	14	41/8	13¾	3	1 ½16	03/	00.404	0.40441/	275	4190	195	2965
4 x 14	HSUR/L4.12/14	14	4 78	1374	3	I 716	2%	20-16d	2-10dx1½	1.22	18.64	0.87	13.21
4 x 16	HSUR/L4.12/16	14	41/8	15¾	3	17/16	2%	24-16d	2-10dx1½	275	4190	195	2965
7 / 10	110011/14.12/10	17	7/0	1074	0	1716	270	24 10u	2 100X172	1.22	18.64	0.87	13.21
41/8 x 91/2	HSUR/L4.28/9	14	45/16	9	23/4	17/16	23/8	12-16d	2-10dx1½	275	2995	195	2350
	110011, 21120, 0		.,,,,		-/-	.,		.2 .00	2 100/172	1.22	13.34	0.87	10.47
41/s x 117/s-16	HSUR/L4.28/11	14	45/16	111/8	23/4	17/16	23/8	16-16d	2-10dx1½	275	4190	195	2965
										1.22	18.64	0.87	13.21
4% x 9½	HSUR/L4.75/9	14	43/4	815/16	23/4	1 ½16	23/8	12-16d	2-10dx1½	275 1.22	2995	195	2350
										275	13.34 4190	0.87 195	10.47 2965
4% x 11%	HSUR/L4.75/11	14	43/4	1015/16	23/4	1 ½16	23/8	16-16d	2-10dx1½	1.22	18.64	0.87	13.21
										275	4190	195	2965
4% x 14	HSUR/L4.75/14	14	43/4	13¾	23/4	1 ½16	23/8	20-16d	2-10dx1½	1.22	18.64	0.87	13.21
	_									275	4190	195	2965
4% x 16	HSUR/L4.75/16	14	43/4	15¾	23/4	1 7/16	2%	24-16d	2-10dx1½	1.22	18.64	0.87	13.21
5 01/	110115 // 5 40 /0		F1/		0127	47/	02/	10.10.1	0.401.41/	275	2995	195	2350
5 x 9½	HSUR/L5.12/9	14	51/8	9	213/16	17/16	2%	12-16d	2-10dx1½	1.22	13.34	0.87	10.47
5 x 11%	LICUD/LE 10/11	11	E1/	11	213/16	17/16	03/	10 104	2-10dx1½	275	4190	195	2965
3 X 1178	HSUR/L5.12/11	14	51/8	11	∠ .9/16	I 716	2%	16-16d	Z-10UX172	1.22	18.64	0.87	13.21
5 x 14	HSUR/L5.12/14	14	51/8	13¾	213/16	17/16	2%	20-16d	2-10dx1½	275	4190	195	2965
J A 14	110011/120.12/14	14	J/8	1074	2 716	1 / 16	2/8	20-10u	2-10UX172	1.22	18.64	0.87	13.21
5 x 16	HSUR/L5.12/16	14	51/8	15¾	213/16	17/16	2%	24-16d	2-10dx1½	275	4190	195	2965
0 % 10			0,0	.5,4	_ /10	. / 10				1.22	18.64	0.87	13.21

See footnotes on page 138.

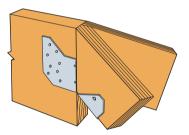

HRC Hip Ridge Connectors

The HRC series are field slopeable connectors that attach hips to ridge members or trusses. The HRC may be sloped to 45° with no reduction in loads.

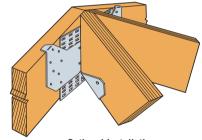
MATERIAL: HRC1.81—16 gauge; HRC44—14 gauge

FINISH: Galvanized INSTALLATION:

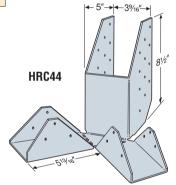
- Use all specified fasteners. See General Notes.
- On end of ridge—use optional diamond holes to secure the HRC. Bend face flanges back flush with ridge, and complete nailing.
- On face of ridge-adjust to correct height and install nails.
- Double bevel-cut hip members to achieve full bearing capacity.
- The HRC may be sloped to 45° with no reduction in resistances.


	Mem	ber Size	Faste	nore		Factored F	Resistance	
	((in)	Гази	511613	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S-I	P-F	
Model					Uplift	Down	Uplift	Down
No.	w	Didgo	Carrying	Each	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	VV	Ridge	Member	Hip	lbs	lbs	lbs	lbs
					kN	kN	kN	kN
HRC1.81	113/16	2x or	16-10dx1½	2-10dx1½	445	1340	400	950
TING 1.01	I '716	1¾" wide	10-10ux172	Z-100X172	1.98	5.96	1.78	4.23
LIDC44	3%6	4x	24-16d	6-16d	790	2625	560	2035
HRC44	3 7/16	4X	24-100	0-100	3.51	11.68	2.49	9.05

 Factored resistances shown are for each hip. Total factored resistance of the connector is double this number.


SIMPSON

Strong-Tie

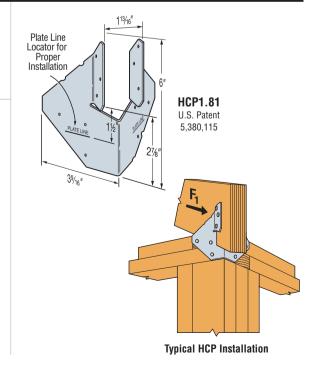

- Factored uplift resistances include a 15% increase for earthquake or wind loading; no further increase allowed.
- 3. NAILS: 16d = 0.162'' dia. $x \ 31/2''$ long, $10dx \ 11/2' = 0.148''$ dia. $x \ 11/2''$ long. See page 24-25 for other nail sizes and information.

Typical HRC Installation on the End of a Ridge

Optional Installation for HRC1.81 only

HCP Hip Corner Plates

The HCP connects a rafter or joist to double top plates at a 45° angle.


MATERIAL: 18 gauge FINISH: Galvanized

INSTALLATION: • Use all specified fasteners. See General Notes.

- Attach HCP to double top plates; birdsmouth not required for table loads.
- Install rafter and complete nailing. Rafter may be sloped to 45°.

		Faste	eners		Factored F	Resistance	
				D.F	ir-L	S-I	P-F
Model	Hip Size	_	_	Uplift	F ₁	Uplift	F ₁
No.	(in)	To Hip	To Plates	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
				lbs	lbs	lbs	lbs
				kN	kN	kN	kN
HCP1.81	13/4	6-10dx1½	6-10dx1½	1020	355	890	325
1107 1.01	1 74	U-10UX 1 72	0-10UX 1 72	4.54	1.58	3.96	1.45

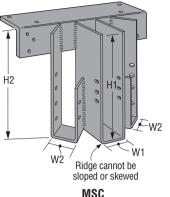
- The HCP can be installed on the inside and the outside of the wall with a flat bottom chord truss and achieve twice the factored resistance.
- Factored uplift resistances include a 15% increase for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- 3. NAILS: 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long See page 24-25 for other nail sizes and information.

MSC Multiple Seat Connector

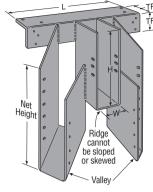
The MSC supports the ridge and two valleys for roof construction. Ideal for dormer roof applications.

MATERIAL: Top Flange – 3 gauge;

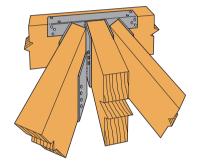
MSC1.81, MSC2, MSC4. Stirrups – 11 gauge; MSC5 stirrups – 7 gauge.


FINISH: Simpson Strong-Tie® gray paint.

INSTALLATION:


- Distribute the total load evenly about the centerline to avoid eccentric loading.
- Fasten all built-up members together as one unit.
- Net height will be calculated based on specified valley member depth and slope by the factory unless noted otherwise.

SLOPED AND/OR SKEWED VALLEYS


- The valley stirrups can be sloped 45° and skewed 25° to 45° (MSC5 skewed 20° to 40°).
- The total design capacity of the hanger is split between the ridge (20%) and each valley (40%).
- For two valley connections with no ridge member, divide the total capacity by two for each valley load.

MSC with Valley Sloped and Skewed 45°

Typical MSC Installation

		Dimer	nsions		Ea	steners	Val	leys			Fa	actored R	esistance	$(K_D = 1.0$	0)		
		(i	n)		Га	31611613	Val	icys		D.Fir-L			S-P-F		LV	L^7 (G = 0.	50)
Model No.									Valley	Ridge	Total	Valley	Ridge	Total	Valley	Ridge	Total
	W	H (Min)	TF	L	Header	Joist	Max. Skew	Max. Slope	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
		(,					ORON	оторо	kN	kN	kN	kN	kN	kN	kN	kN	kN
						18-10dx1½		0°	3085	1545	7715	2335	1170	5840	4150	2075	10375
MSC2	1%16	5½	27/8	12	10-16d	10-10ux 1 72	45°	U	13.72	6.87	34.32	10.39	5.20	25.98	18.46	9.23	46.15
IVISUZ	I 716	372	278	12	10-160	26-10dx1½	45	45°	2450	1225	6120	1855	925	4635	3290	1645	8225
						20-10ux 1 72		45	10.90	5.45	27.22	8.25	4.11	20.62	14.64	7.32	36.59
						18-10dx1½		0°	3085	1545	7715	2335	1170	5840	4150	2075	10375
MSC1.81	113/16	5½	2%	12	10-16d	10-10UX 1 72	45°	U	13.72	6.87	34.32	10.39	5.20	25.98	18.46	9.23	46.15
101001.01	1 716	J 72	278	12	10-100	26-10dx1½	43	45°	2450	1225	6120	1855	925	4635	3290	1645	8225
						20-10ux 1 72		45	10.90	5.45	27.22	8.25	4.11	20.62	14.64	7.32	36.59
						18-10d		0°	5460	2730	13650	4135	2070	10340	5460	2730	13650
MSC4	3%16	7½	27/8	18	10-16d	10-100	45°	U	24.29	12.14	60.72	18.39	9.21	46.00	24.29	12.14	60.72
101304	3716	1 72	278	10	10-160	26-10d	45	45°	5460	2730	13650	4135	2070	10340	5460	2730	13650
						20-10u		45	24.29	12.14	60.72	18.39	9.21	46.00	24.29	12.14	60.72
						18-16d		0°	10565	5280	26410	7990	3995	19975	10565	5280	26410
MSC5	51/4	9½	2%	26	13-16d	10-100	45°	0	47.00	23.49	117.48	35.54	17.77	88.86	47.00	23.49	117.48
IVIOUJ	J 74	372	278	20	13-100	26-16d	40	45°	9130	4565	22825	6905	3450	17260	9130	4565	22825
						20-10u		40	40.61	20.31	101.53	30.72	15.35	76.78	40.61	20.31	101.53

- 1. Factored resistances shown for each valley.
- Other valley-ridge load distributions are allowed provided the sum of all three members is distributed symmetrically about the centre of the hanger and combined do not exceed the total resistance.
- 3. MSC4 is also available in 31/8" Glulam width.
- 4. MSC5 is also available in widths up to 5½".
- 5. MSC1.81 and MSC2 are available in saddle configurations. (e.g. MSCD1.81)
- 6. For the MSC5 with all three members sloped to 45° (max.) multiply the tabulated resistance x 0.64. This connection requires 30-16d joist nails.
- 7. Factored resistances shown for LVL assume $\phi F_{CP} = 1092 \text{ psi } (7.53 \text{ MPa}).$
- 8. NAILS: 16d = 0.162" dia. x 3½" long, 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

SDW Strong-Drive® Structural Wood Screws

The Strong-Drive® SDW screw is a 0.22" diameter, high-strength structural wood screw specifically designed for fastening together multi-ply wood members such as plated trusses, engineered-lumber products and solid-sawn lumber. The SDW installs easily with no pre-drilling and is available in optimized lengths for fastening 2, 3 and 4-ply trusses or 13/4" structural composite lumber (SCL). The SDW enables single-side fastening, while still allowing concurrent loading on both sides of the assembly.

- Low-profile head for reduced interference during handling or installation of hardware on the assembly
- · High shear values enable wider screw spacing
- · Bold thread design firmly cinches plies together to close gaps in multi-ply assemblies
- · Optimal screw lengths provide maximum penetration

MATERIAL: Heat-treated carbon steel

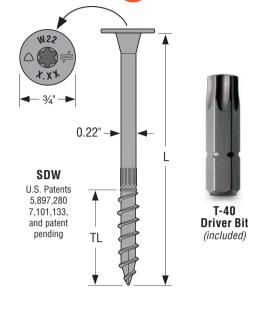
FINISH: Black E-coat™

WARNING: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, the SDW wood screws should only be used in dry, interior and non-corrosive environments.

INSTALLATION: • Use all specified fasteners. See General Notes.

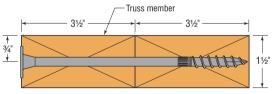
- SDW screws install best with a low-speed ½" drill and a T-40 6-lobe bit. The matched bit included with the screws is recommended for best results.
- Pre-drilling is typically not required. SDW screws may be installed through metal truss plates as approved by the Truss Designer (pre-drilling required through the plate using a maximum of 5/32" bit).
- Screw heads that are countersunk flush to the wood surface are acceptable if the screw has not spun out.

NOTES TO THE DESIGNER:

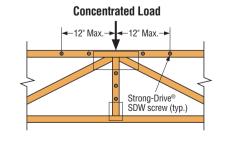

Engineered Wood & Structural Composite Lumber Connectors

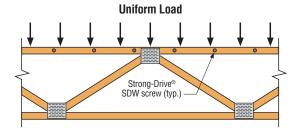
- 1. Factored lateral and withdrawal resistances are based on testing per ICC-ES AC233 and section 10.11 of CSA 086-09.
- 2. Factored lateral resistances may be increased 15% for short-term load duration ($K_D = 1.15$). For load durations other than standard or short-term, see 4.3.2.2 of CSA 086-09 for reduction values.
- 3. Fastener spacing, end and edge distances shall conform to Table 10.9.2.1 CSA 086 using a diameter value of 0.30" (see table on page 145).
- 4. Maximum fastener spacing is recommended not to exceed 24" on-centre except as approved by a qualified Designer.
- 5. Structural composite lumber (SCL) is laminated veneer lumber (LVL), parallel strand lumber (PSL) or laminated strand lumber (LSL). Verify the effective specific gravity (SG) with structural composite lumber manufacturer for selection of tabulated values.
- 6. Factored resistances are based on the capacity of the Simpson Strong-Tie® SDW22 fasteners. The capacity of the multi-ply assembly must be checked by a qualified Designer using the reduced cross-sectional area per 10.2.2.5 CSA 086-09.
- 7. For top loaded solid sawn 2x built-up assemblies that are evenly loaded across the entire assembly width, the recommended fastener spacing is two rows at 32" o.c., For top-loaded SCL 1¾" built up assemblies that are evenly loaded across the entire assembly width, the recommended fastener spacing is two rows at 24" o.c. for up to 18" deep members, and 3 rows at 24" o.c. for members deeper than 18".
- 8. For more information see F-SDWCAN.

Factored Lateral Resistance for 3x2 and 4x2 Parallel-Chord Trusses

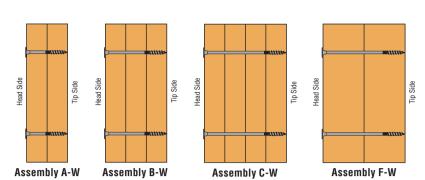

		Nominal	Side		l Lateral (K _D = 1.00)
Assembly	Model No.	Length	Member Thickness	D.Fir-L	S-P-F
		(in)	(in)	lbs	lbs
				kN	kN
2-ply 3x2 PCT	SDW22500	5	21/2	405	290
2-ply 3x2 PG1	3DW22300	5	Z 72	1.80	1.29
2-ply 4x2 PCT	SDW22634	63/4	3½	405	290
2-ply 4x2 F01	301122034	074	372	1.80	1.29

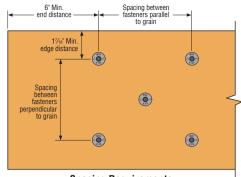
- 1. To transfer uniform loads applied to simply supported spans on assembly top chord:
 - Space screws as required to transfer half the load into the supporting truss.
 - b. Minimum screw spacing shall be 4" o.c.
- 2. To transfer concentrated loads applied to simply supported spans on an assembly top chord or vertical web:
 - a. Concentrated loads must be applied at the panel joints.
 - b. Screws to be installed within 12" of the concentrated load on top-chord assembly
- 3. Gap between the trusses shall not exceed 1/8" o.c.
- Floor sheathing shall be screwed or nailed to each top-chord ply. (Fastener spacing per the applicable Code requirements, or 12" o.c.)
- SDW screws shall not be installed in areas where lumber wane exceeds 1/4".
- Truss members must be evaluated using a reduced cross-sectional area due to the 0.22" diameter SDW screw
- 7. Other configurations acceptable as long as approved by Truss Designer.




SIMPSON

Strong-Tie




SDW Screw Position in 2-Ply 4x2 Truss (2-ply 3x2 similar)

Strong-Tie

Spacing Requirements (See table below)

Sideloaded Multi-Ply Truss Assemblies - Factored Uniform Load Applied to Outer Ply

					Maximum Factored Uniform Load Applied to Outer Ply																				
Multiple	Multiple Members			D.Fir-L							S-P-F														
		Nominal	Loaded	SDW @ 12" o.c.		SDW @ 16" o.c.		SDW @ 24" o.c.		SDW @ 12" o.c.		SDW @ 16" o.c.		SDW @ 24" o.c.											
		Length (in)	Side	2 Rows	3 Rows	2 Rows	3 Rows	2 Rows	3 Rows	2 Rows	3 Rows	2 Rows	3 Rows	2 Rows	3 Rows										
Assembly	Component	()		plf	plf	plf	plf	plf	plf	plf	plf	plf	plf	plf	plf										
				kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m										
	2-ply 2x Truss		Head	1340	2010	1005	1508	670	1005	1160	1740	870	1305	580	870										
A-W		3	Heau	19.55	29.33	14.66	22.00	9.78	14.66	16.93	25.39	12.69	19.04	8.46	12.69										
A-11			Tip	1220	1830	915	1373	610	915	1040	1560	780	1170	520	780										
			Пр	17.80	26.70	13.35	20.03	8.90	13.35	15.17	22.76	11.38	17.07	7.59	11.38										
	3-ply 2x Truss		Head	1364	2046	1023	1535	682	1023	1214	1822	911	1366	607	911										
B-W		45/8	Hoad	19.91	29.86	14.93	22.39	9.95	14.93	17.72	26.58	13.29	19.93	8.86	13.29										
D W		770	Tip	1229	1844	922	1383	615	922	1094	1642	821	1231	547	821										
			Пр	17.94	26.91	13.45	20.18	8.97	13.45	15.97	23.95	11.98	17.96	7.98	11.98										
													Head	1213	1820	910	1365	607	910	1080	1620	810	1215	540	810
		6	6	6	6	6	6	6	6		Hoad	17.70	26.55	13.28	19.92	8.85	13.28	15.76	23.64	11.82	17.73	7.88	11.82		
			Tip	1093	1640	820	1230	547	820	973	1460	730	1095	487	730										
C-W	4-ply		Пр	15.95	23.93	11.96	17.95	7.98	11.96	14.20	21.30	10.65	15.98	7.10	10.65										
- VV	2x Truss		Head	1213	1820	910	1365	607	910	1080	1620	810	1215	540	810										
		63/8	Hoau	17.70	26.55	13.28	19.92	8.85	13.28	15.76	23.64	11.82	17.73	7.88	11.82										
		078	Tip	1093	1640	820	1230	547	820	973	1460	730	1095	487	730										
			ı, ı,	15.95	23.93	11.96	17.95	7.98	11.96	14.20	21.30	10.65	15.98	7.10	10.65										

Sideloaded Multi-Ply SCL Assemblies - Factored Uniform Load Applied

							Maxim	ıum Factor	ed Uniforn	n Load Ap	plied to Ou	ter Ply													
Multiple	e Members	M ! 1		SCL (SG = 0.5)							SCL (SG = 0.42)														
		Nominal	Loaded	SDW @ 12" o.c.		SDW @ 16" o.c.		SDW @ 24" o.c.		SDW @ 12" o.c.		SDW @ 16" o.c.		SDW @ 24" o.c.											
		Length (in)	Side	2 Rows	3 Rows	2 Rows	3 Rows	2 Rows	3 Rows	2 Rows	3 Rows	2 Rows	3 Rows	2 Rows	3 Rows										
Assembly	Component	(111)		plf	plf	plf	plf	plf	plf	plf	plf	plf	plf	plf	plf										
				kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m	kN/m										
			Head	1560	2340	1170	1755	780	1170	1300	1950	975	1463	650	975										
A-W	2-ply 1¾" SCL	3¾	Heau	22.76	34.14	17.07	25.61	11.38	17.07	18.97	28.45	14.23	21.34	9.48	14.23										
A-vv			378	378	J /8	Tip	1360	2040	1020	1530	680	1020	1140	1710	855	1283	570	855							
			ПР	19.84	29.76	14.88	22.32	9.92	14.88	16.63	24.95	12.48	18.71	8.32	12.48										
	3-ply 1¾" SCL	5	Head	1484	2226	1113	1670	742	1113	1289	1934	967	1451	645	967										
B-W			Ticau	21.66	32.48	16.24	24.36	10.83	16.24	18.81	28.22	14.11	21.16	9.41	14.11										
D W			Tip	1244	1867	933	1400	622	933	1094	1642	821	1231	547	821										
			ПР	18.16	27.23	13.62	20.43	9.08	13.62	15.97	23.95	11.98	17.96	7.98	11.98										
													Head	1320	1980	990	1485	660	990	1147	1720	860	1290	573	860
C-W	4-ply	63/4	Hoad	19.26	28.89	14.44	21.67	9.63	14.44	16.73	25.10	12.55	18.82	8.37	12.55										
O W	1¾" SCL	074	Tip	1107	1660	830	1245	553	830	973	1460	730	1095	487	730										
			ПР	16.15	24.22	12.11	18.17	8.07	12.11	14.20	21.30	10.65	15.98	7.10	10.65										
			Head	2280	3420	1710	2565	1140	1710	2020	3030	1515	2273	1010	1515										
F-W	2-ply 3½" SCL	63/4	Hoad	33.27	49.90	24.95	37.43	16.63	24.95	29.47	44.21	22.10	33.16	14.74	22.10										
1 - 44	3½" SCL	074	Tip	2280	3420	1710	2565	1140	1710	1960	2940	1470	2205	980	1470										
			110	33.27	49.90	24.95	37.43	16.63	24.95	28.60	42.90	21.45	32.17	14.30	21.45										

- 1. Each ply is assumed to carry same proportion of load.
- 2. Loads may be applied to the head side and tip side concurrently provided neither published capacity is exceeded. (Example: a 4-ply D.Fir-L truss assembly with a head side load of 1300 plf and tip side load of 1200 plf may be fastened together with 3 rows of 6" SDW @ 16" o.c.)
- 3. When hangers are installed on tip side, hanger face fasteners
- must be a minimum of 3" long.

 4. Hanger load spacing on the multi-ply assembly should not exceed 24" o.c. for side-loaded members unless approved by the Designer.

Spacing Requirements (See diagram above)

Coometru	Minimum Dimensions (in)					
Geometry	D.Fir-L	S-P-F				
a - Spacing parallel to grain	6	5				
b - End distance parallel to grain	6	6				
c - Spacing perpendicular to grain	3	2½				
d - Edge distance perpendicular to grain	1 7⁄ ₁₆	1 ½16				

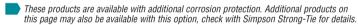
LUL/LUS/LJS/HUS/HHUS/HGUS Standard & Double Shear Joist Hangers

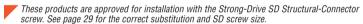
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

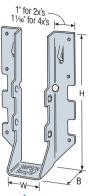
Most hangers in this series have double shear nailing – an innovation that distributes the load through two points on each joist nail for greater strength. This allows for fewer nails, faster installation, and the use of all common nails for the same connection. (Do not bend or remove tabs)

Double shear hangers range from the light capacity LUS hangers to the highest capacity HGUS hangers. For medium load truss applications, the HUS offers a lower cost alternative and easier installation than the HGUS hangers, while providing greater load capacity and bearing than the LUS.

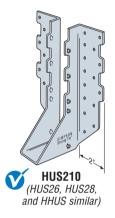
MATERIAL: See tables below and on page 147

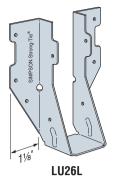

FINISH: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, page 18-19.

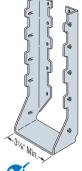

INSTALLATION: • Use all specified fasteners. See General Notes.

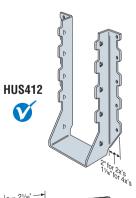

- Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances (except LUL).
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- Not designed for welded or nailer applications.
- With 3x carrying members, use 16dx2½" nails into the header and 16d commons into the joist with no reduction in resistance. With 2x carrying members, use 10dx1½" nails into the header and 10d commons into the joist, and reduce the resistance to 0.64 of the table value.

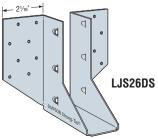
OPTIONS: • LUS and LUL hangers cannot be modified.


- HUS hangers available with the header flanges turned in for 2-2x (31/8") and 4x only, with no load reduction. See HUSC Concealed Flange illustration.
- · Concealed flanges are not available for HGUS.
- Other sizes available; consult your Simpson Strong-Tie representative.
- See hanger options on page 212.





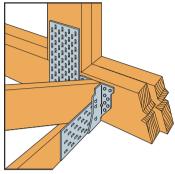




HUSC Concealed Flanges (not available for HHUS, HGUS and HUS2x)

				Dime	nsion	S	Foot	teners	Factored Resistance						
				(i	n)		газ	GIIGI 2	D.F	ir-L	S-I	P-F			
	Model No.	Ga							Uplift	Normal	Uplift	Normal			
		ua	w	н	В	de3	Header	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$			
			VV	п	D	ue°	пеаиег		lbs	lbs	lbs	lbs			
									kN	kN	kN	kN			
							SI	NGLE 2x SIZ	ES						
	111004	10	40/	01/	43/	01/	4 404	0.404	710	1625	645	1155			
	LUS24	18	1%16	31/8	13/4	21/4	4-10d	2-10d	3.16	7.23	2.87	5.14			
	LU24L	22	1%6	3	15/8	211/16	4-10d	2-10dx1½	360	1020	320	725			
	LUZ4L	22	1716	٥	178	2.716	4-10u	Z-100X172	1.60	4.54	1.42	3.22			
	LU26L	22	1%16	5	15/8	45/8	6-10d	4-10dx1½	720	1605	645	1140			
	LUZUL	22	1716	J	1 78	478	0-10u	4-10ux172	3.20	7.14	2.87	5.07			
	LUS26	18	1%16	43/4	13/4	33/4	4-10d	4-10d	1420	2170	1290	1630			
	L0020	10	1716	774	1 /4	074	4 100	4 10u	6.32	9.65	5.74	7.25			
	HUS26	16	1%	5%	3	315/16	14-16d	6-16d	2705	4940	2065	3875			
	110020	10	170	078		0 710	14 100		11.30	21.97	9.20	17.24			
	LJS26DS	18	19/16	5	31/2	45/8	16-16d	6-16d	2055	4265	1460	3815			
	LUULUBU		1710		0 72	170	10 100	0 100	9.14	18.97	6.49	16.97			
	HGUS26	12	15/8	5%	5	41/8	20-16d	8-16d	2685	6625	2685	5700			
					-			0.100	11.96	29.51	11.96	25.35			
	LU28L	20	1%6	63/4	15%	57/8	8-10d	6-10dx1½	1140	2185	1020	1550			
				_					5.07	9.72	4.54	6.89			
	LUS28	18	1%16	6%	13/4	3¾	6-10d	4-10d	1420	2520	1290	1790			
	_								6.32	11.21	5.74	7.96			
	HUS28	16	1%	71/16	3	61/16	22-16d	8-16d	3605 16.04	5365 23.86	2675 11.90	4345 19.33			
									3310	7675	3310	6900			
	HGUS28	12	1%	71/8	5	61/8	36-16d	12-16d	14.74	34.19	14.74	30.73			
									1140	2495	1020	1770			
	LU210L	20	1 %16	8	1%	7%	10-10d	6-10dx1½	5.07	11.10	4.54	7.87			
									1420	2785	1290	2210			
	LUS210	18	1%16	713/16	13/4	3%	8-10d	4-10d	6.32	12.39	5.74	9.83			
									0.02	12.00	0.17	0.00			

See footnotes on page 147.


Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

FACE MOUNT HANGERS

- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

				Dimer		3	Fast	eners	Factored Resistance					
			(in)						D.Fir-L S-P-F					
	Model	Ga							Uplift	Normal	Uplift	Normal		
	No.		W	Н	В	de ³	Header	Joist		(K _D = 1.00)	(KD = 1.15)			
									lbs kN	kN	kN	lbs kN		
							DOLL	BLE 2x SIZ		KIV	KIN	KIN		
									835	2020	590	1435		
	LUS24-2	18	31/8	31/8	2	1½	4-16d	2-16d	3.71	8.99	2.62	6.38		
	LUS26-2	18	31/8	47/8	2	4	4-16d	4-16d	1720	2595	1545	1920		
			0,0	.,,		·			7.65 2850	11.54 7335	6.87 2065	8.54 5205		
•	HHUS26-2	14	35/16	5%	3	315/16	14-16d	6-16d	12.68	32.63	9.20	23.15		
	HGUS26-2	12	35/16	57/16	4	41/8	20-16d	8-16d	4385	8950	3110	6355		
	1100020 2	12	0710	0710		170	20 100	0 100	19.51	39.81	13.83 1545	28.27		
•	LUS28-2	18	31/8	7	2	4	6-16d	4-16d	1720 7.65	3325 14.79	6.87	2575 11.45		
	HHUS28-2	14	35/16	75/16	3	61//8	22-16d	8-16d	3765	8940	2675	6345		
	11110020-2	14	3 / 16	1 / 16	0	078	22-10u	0-10u	16.75	39.77	11.90	28.22		
	HGUS28-2	12	35/16	73/16	4	61//8	36-16d	12-16d	6070 27.00	12980 57.74	4310 19.17	9215 40.99		
	1110010 0	10	01/	0	2	c	8-16d	6-16d	2580	4500	2320	3195		
	LUS210-2	18	31/8	9		6	0-100	0-10u	11.48	20.02	10.32	14.21		
)	HHUS210-2	14	35/16	93/16	3	8	30-16d	10-16d	4745 21.11	9660 42.97	4310 19.17	7000 31.14		
			05/	201		24.			6840	14645	4855	10400		
	HGUS210-2	12	35/16	93/16	4	81//8	46-16d	16-16d	30.43	65.14	21.60	46.26		
							TRII	PLE 2x SIZ						
	HGUS26-3	12	415/16	5½	4	41/8	20-16d	8-16d	4385	8950	3110	6355		
									19.51 6070	39.81 12980	13.83 4310	28.27 9215		
	HGUS28-3	12	415/16	71/4	4	6%	36-16d	12-16d	27.00	57.74	19.17	40.99		
	HHUS210-3	14	411/16	9	3	715/16	30-16d	10-16d	4745	10545	4310	7485		
			1 710			7 710	00 100	10 100	21.11 6840	46.91 14645	19.17 4855	33.29 10400		
	HGUS210-3	12	415/16	91/4	4	8%	46-16d	16-16d	30.43	65.14	21.60	46.26		
							QUADE	RUPLE 2x S			_,,,,,			
	HGUS26-4	12	6%16	57/16	4	41/8	20-16d	8-16d	4385	8950	3110	6355		
	1100020 4	12	0716	3 716	7	7/0	20 100	0 100	19.51	39.81	13.83	28.27		
	HGUS28-4	12	6%16	73/16	4	61//8	36-16d	12-16d	6070 27.00	12980 57.74	4310 19.17	9215 40.99		
	HHUS210-4	14	61/8	87/8	3	713/16	30-16d	10-16d	4745	10545	4310	7485		
	111103210-4	14	078	078	3	1 .216	30-10u	10-100	21.11	46.91	19.17	33.29		
	HGUS210-4	12	6%16	93/16	4	81/8	46-16d	16-16d	6840 30.43	14645 65.14	4855 21.60	10400 46.26		
	110110040 4	40	00/	405/		401/	50.40 d	00.404	7640	14995	5425	10645		
	HGUS212-4	12	6%16	10%	4	101/8	56-16d	20-16d	33.98	66.70	24.13	47.35		
	HGUS214-4	12	6%16	12%	4	111//8	66-16d	22-16d	10130 45.06	16400 72.95	7195 32.00	11645 51.80		
								4x SIZES	43.00	12.93	32.00	31.00		
	111040	10	00/	42/	0	07/			1720	2595	1545	1920		
•	LUS46	18	3%16	43/4	2	37/16	4-16d	4-16d	7.65	11.54	6.87	8.54		
)	HHUS46	14	35/8	51/4	3	315/16	14-16d	6-16d	2540 11.30	7335 32.63	2065 9.20	5205 23.15		
			251						4385	8950	3110	6355		
	HGUS46	12	35/8	51/4	4	41/16	20-16d	8-16d	19.51	39.81	13.83	28.27		
)	LUS48	18	3%16	63/4	2	37/16	6-16d	4-16d	1720	3325	1545	2575		
									7.65 3765	14.79 8940	6.87 2675	11.45 6345		
•	HHUS48	14	35/8	71/8	3	61//8	22-16d	8-16d	16.75	39.77	11.90	28.22		
	HGUS48	12	35/8	71/16	4	61/16	36-16d	12-16d	6070	12980	4310	9215		
			270	. 710		2710			27.00 2580	57.74 4500	19.17 2320	40.99 3195		
	LUS410	18	3%16	8¾	2	5%16	8-16d	6-16d	11.48	20.02	10.32	14.21		
	HGUS410	12	35/8	9	4	81/16	46-16d	16-16d	6840	14645	4855	10400		
	11000410	12	37/8	9	4	0 716	40-10U	10-100	30.43	65.14	21.60	46.26		
	HGUS412	12	35/8	107/16	4	101/16	56-16d	20-16d	7640 33.98	14995 66.70	5425 24.13	10645 47.35		
	110110444	10	05/	107/	4	4447	00.401	00.40.1	10130	16400	7195	11645		
	HGUS414	12	35/8	127/16	4	111/16	66-16d	22-16d	45.06	72.95	32.00	51.80		

Typical HUS26 Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

Double Shear Nailing Top View

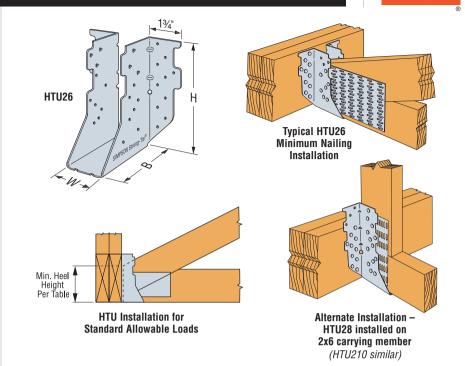
Double Shear Nailing Side View Do not bend tab back

Dome Double Shear Nailing prevents tabs breaking off (available on some models)

U.S. Patent 5,603,580

- Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase is allowed.
- Designer must ensure that hanger is compatible with truss when reduced heel height is used.
- 3. de is the distance from the bearing seat to the top joist nail.
- Resistances shown require a minimum 2-ply girder truss. For fastening to single-ply truss request technical bulletin T-N10FORTRUSS and/or see installation notes.
- installation notes.

 5. NAILS: 16d = 0.162" dia. x 3½" long.
 See page 24-25 for other nail sizes and information.


The HTU face mount truss hangers have nail patterns designed specifically for shallow heel heights, so that full factored resistances (with minimum nailing) apply to heel heights as low as 3%". Minimum and maximum nailing options provide solutions for varying heel heights and end conditions.

MATERIAL: 16 gauge FINISH: Galvanized INSTALLATION:

- Use all specified fasteners. See General Notes.
- Can be installed filling round holes only, or filling round and triangle holes for maximum values.
- See alternate installation for applications using the HTU26 on a 2x4 carrying member or HTU28 or HTU210 on a 2x6 carrying member for additional uplift capacity.

OPTIONS:

• See Hanger Options on pages 212 for skew options.

Standard Installation

		Di	mensio	ns	Fac	teners	Factored Resistance					
	Min.		(in) Tastellers		D.F	ir-L	S -I	P-F				
Model	Heel						Uplift	Normal	Uplift	Normal		
No.	Height		н	_		loiet	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$		
	(in)	W	н	В	Header	Joist	lbs	lbs	lbs	lbs		
							kN	kN	kN	kN		
					SINGL	E 2x SIZES						
LITUOS	01/	45/	F7/	01/	00.40.4	44 40 1.41/	1370	4990	975	3145		
HTU26	3½	1%	57/16	3½	20-16d	11-10dx1½	6.09	22.20	4.34	13.99		
HTU26 (Min)	37/8	1%	57/16	3½	20.164	14 10dv11/	2350	5240	1670	3300		
HTUZO (IVIIII)	378	176	3 716	372	20-10u	10-16d 14-10dx1½ - 10-16d 20-10dx1½ - 16-16d 14-10dx1½ - 16-16d 26-10dx1½ -	10.45	23.31	7.43	14.68		
HTU26 (Max)	5½	1%	57/16	3½	20-164	16d 14-10dx1½ –	2925	6565	2075	4660		
111020 (IVIAX)	372	176	J 716	372	20-10u	20-100X172	13.01	29.20	9.23	20.73		
HTU28 (Min)	37/8	1%	71/16	3½	26-16d	14-10dv11/6	2325	6380	1650	4530		
111020 (Willi)	378	176	1 /16	3 /2	20-10u	14-100X172	10.34	28.38	7.34	20.15		
HTU28 (Max)	71/4	71/4	1%	71/16	3½	26-16d	26-10dv11/	4035	8900	2865	6320	
TITOZO (Wax)		170	1710	072	20 100	20 100/172	17.95	39.59	12.74	28.11		
HTU210 (Min)	37/8	1%	91/16	3½	32-16d	14-10dx1½	2510	7135	1780	5065		
1110210 (11111)		170	0710	072	02 100	11 100/172	11.17	31.74		22.53		
HTU210 (Max)	91/4	1%	91/16	3½	32-16d	32-10dx1½	6245	9820		6970		
	0,,	.,,	0,10	0,2			27.78	43.68	Uplift) (K _D = 1.15) lbs kN 975 4.34 1670 7.43 2075 9.23 1650 7.34 2865 12.74	31.00		
					DOUB	LE 2x SIZES						
HTU26-2 (Min)	37/8	35/16	57/16	3½	20-16d	14-10d	2430	6275		4035		
THOSE E (WIIII)	0,0	0710		072			10.81	27.91		17.95		
HTU26-2 (Max)	5½	35/16	57/16	3½	20-16d	20-10d	3495	7195		5110		
	0,2	07.10	0710	0,2	20 .00	20 .00	15.55	32.00		22.73		
HTU28-2 (Min)	37/8	35/16	71/16	3½	26-16d	14-10d	2460	6920		4915		
()				•			10.94	30.78	-	21.86		
HTU28-2 (Max)	71/4	35/16	71/16	3½	26-16d	26-10d	5590	9790		6950		
(0,,,			24.87	43.55		30.92		
HTU210-2 (Min)	37/8	35/16	91/16	3½	32-16d	14-10d	2470	7730		5490		
. ,							10.99	34.38		24.42		
HTU210-2 (Max)	91/4	35/16	91/16	3½	32-16d	32-10d	7585	11955		8490		
,							33.74	53.18	23.95	37.77		

1. Minimum heel heights required for tabulated values are based on a minimum 2:12 roof pitch. Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

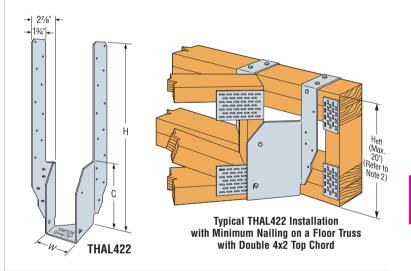
- 2. Factored uplift resistances has been increased 15% for wind or earthquake; reduce where other loads
- govern. 3. NAILS:

16d = 0.162" dia. x 3½" long, 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

Alternate Installation for 2-2x4 and 2-2x6 Headers

			Fas	teners		Factored F	Resistance	
	Min				D.F	ir-L	S-I	P-F
Model	Min. Heel	Minimum Header			Uplift	Normal	Uplift	Normal
No.	Height	Size	Header	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	(in)				lbs	lbs	lbs	lbs
					kN	kN	kN	kN
HTU26 (Min)	37/8	2-2x4	10-16d	14-10dx1½	1740	3340	1235	2370
HTUZO (WIIII)	378	Z-ZX4	10-160	14-100X172	7.74	14.86	5.49	10.54
HTU26 (Max)	5½	0.0v4	10.164	20.10dv11/	2470	4015	1755	2850
HTU26 (Max)	3 72	2-2x4	10-16d	20-10dx1½	10.99	17.86	7.81	12.68
HTU28 (Max)	07/	2-2x6	20-16d	26-10dx1½	4150	6395	2945	4540
HIUZO (Wax)	37/8	2-280	20-16d	20-10ux172	18.46	28.45	13.10	20.19
HTU210 (May)	x) 7½ 2-2x6 20-16d 32-10dx1½ 4150	6395	2945	4540				
HTU210 (Max)	1 74	2-280	20-16d	32-10dx1½	18.46	28.45	13.10	20.19

See table footnotes on page 148.


THAR/L422 Adjustable Truss Hangers

Designed for 4x2 floor trusses and 4x beams, the THAR/L422 has a standard skew of 45 degrees. Straps must be bent for top flange installation. PAN nailing helps eliminate splitting of 4x2 truss bottom chords.

MATERIAL: 16 gauge FINISH: Galvanized

INSTALLATION: Use all specified fasteners. See General Notes. Two different installation methods may be used:

- Maximum Nailing—A minimum of four top and 12 face nails must be used. Straps must be field-formed over the header a minimum of 2½". Install 10dx1½" nails into carried member PAN nail holes and 10d common nail into round nail hole. Install 10d common nails into carrying member.
- Minimum Nailing—A minimum of four top and 2 face nails must be used. Straps must be field-formed over the header a minimum of 2½". Install nails as detailed above. For single 4x carrying members, use 10dx1½" nails and refer to the table for reduced values.

	Din	nensio	ns				Faste	eners			Factored F	Resistance	
		(in)			Effective	Hea	ader	Jo	ist	D.F	ir-L	S-I	P-F
Model				Minimum Carrying	Height					Uplift	Normal	Uplift	Normal
No.	w	Н	С	Member	H _{eff} (in)	Тор	Face	Straight	Slant	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	VV	"	U		(111)	, тор	raue	Straight	Statit	lbs	lbs	lbs	lbs
										kN	kN	kN	kN
				Cingle Av2	9 min.	4-10dx1½	2-10dx1½	1-10dx1½	2-10dx1½	1	1445	1	1025
		35/8 225/8		Single 4x2	9 111111.	4-10ux172	Z-100X172	1-10ux172	Z-10UX172	_	6.44	_	4.56
THAR/L422 (Min)	25%		8		9 to 12	4-10d	2-10d	1-10d	2-10dx1½		2215	_	1575
THAN/L422 (WIII)	J 78			Double 4x2	3 10 12	4-100	Z-10u	1-100	Z-100X172	-	9.87	_	7.01
				Double 4X2	. 10	4-10d	2-10d	1-10d	2-10dx1½	_	1695	_	1205
					> 12	> 12 4-10d	2-10u	1-100	Z-10UX172		7.55	_	5.36
THAR/L422 (Max)	25/2	225/8	25/8 8	Double 1v2	0 min	1-10d	8-10d	1-10d	2-10dx1½	585	2585	415	1835
	3%	22/8		Double 4x2	9 min. 4-10d	0-100	1-100	Z-100X172	2.61	11.51	1.85	8.16	

- 1. Factored uplift resistances have been increased 15% for wind or earthquake loading with no further increase allowed.
- Where the top of the carried member is flush with the top of the carrying member, Heff is equal to the depth of the carried member. Otherwise, Heff shall be measured from the top of the bearing seat to the top of the carrying member.
- 3. NAILS: 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

THA/THAC Adjustable Truss Hangers

or a combination of these features.

This product is preferable to similar connectors because of
a) easier installation, b) higher capacities, c) lower installed cost,

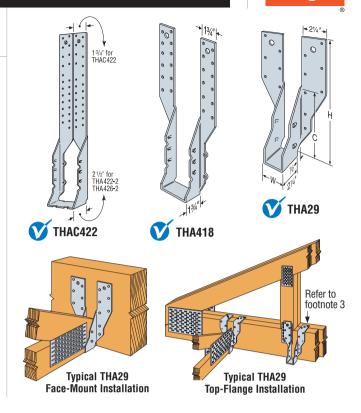
The THA series have extra long straps that can be field-formed to give height adjustability and top flange hanger convenience. THA hangers can be installed as top flange or face mount hangers.

The THA218-2, THA222-2, THA418, THA422, and THA426 models have added nail holes in the straps to ease top-flange installation and provide more nail hole options for meeting top and face nailing requirements.

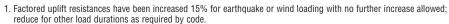
MATERIAL: See table

FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.

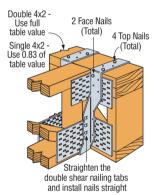
INSTALLATION: • Use all specified fasteners. See General Notes.


Two different installation methods may be used:

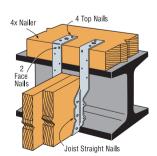
• Top-Flange Installation—The straps must be field formed over the header a minimum of $2\frac{1}{2}$ " for the THA29, $1\frac{1}{2}$ " for the THA213 and THA413, and 2" for all others. Install top and face nails according to the table. Top nails shall not be within $\frac{1}{4}$ " from the edge of the top flange members.


For the THA29, nails used for joist attachment must be driven at an angle so that they penetrate through the corner of the joist and into the header. For all other top-flange installations, straighten the double shear nailing tabs and install the nails straight into the joist.

Face-Mount Installation—Install all face nails according to the table.
 Not all nail holes will be filled on all models. On models where there are more nail holes than required, the lowest 4 face holes must be filled. Nails used for the joist attachment must be driven at an angle so that they penetrate through the corner of the joist into the header.


OPTIONS: • THA hangers available with the header flanges turned in for 3%" (except THA413) and larger, with no load reduction – order THAC hanger.

			Di	mensio	ns		Fas	teners			Factored F	Resistance	
				(in)		Hea	ader	Jois	t	D.F	ir-L	S-I	P-F
Min.	Model	Ga								Uplift	Normal	Uplift	Normal
Joist Size	No.	uа	w	н	C	T	F	Otus i mb.t	Olamb	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
			VV	п	U	Top	Face	Straight	Slant	lbs	lbs	lbs	lbs
										kN	kN	kN	kN
						TOP	-FLANG	E INSTALL <i>a</i>	TION				
2x4	THA29	18	15/8	911/16	51/8	4-10d	4-10d		4-10d	1050	3450	750	2720
2.84	ITIAZ9	10	178	9.716	378	4-10u	4-10u		4-10u	4.67	15.35	3.34	12.10
	THA213	18	15%	135/16	5½	4-10d	2-10d	4-10dx1½	_		2225	_	1760
2x6	ITIAZIO	10	178	10/16	J /2	4-10u	2-10u	4-10ux172		_	9.90	_	7.83
ZXO	THA218	18	15/8	173/16	5½	4-10d	2-10d	4-10dx1½	_		2225		1760
			.,,	,							9.90		7.83
	THA218-2	16	31/8	1711/16	8	4-16d	2-16d	6-16dx2½	_		2675	_	2405
2-2x10								6-16dx2½ —			11.90	_	10.70
	THA222-2	16	31/8	223/16	8	4-16d	2-16d	6-16dx2½	_		2675		2405
											11.90 2225		10.70
4x6	THA413	18	35/8	135/16	41/2	4-10d	2-10d	4-10d	_	_	9.90	_	1655 7.36
											2675		2405
4x10	THA418	16	35/8	17½	71/8	4-16d	2-16d	6-16d	_	_	11.90	_	10.70
										_	2675	_	2405
4x2	THA422	16	35/8	22	71/8	4-16d	2-16d	6-16d	_	_	11.90	_	10.70
Truss	T114 400		05/		7-/	4.40.1	4.40.1	0.40.1			3590	_	2660
	THA426	14	3%	26	71/8	4-16d	4-16d	6-16d	_	_	15.97	_	11.83
	TU 1 1 2 2 2	14	71/4	2211/16	93/4	1 164	1 164	6 164		_	4605	_	3225
2-4x2	THA422-2	14	7 74	22.716	974	4-16d	4-16d	6-16d			20.48	_	14.35
Truss	THA426-2	14	71/4	261/16	93/4	4-16d	4-16d	d 6-16d		_	4605	_	3225
	111/4/20-2	14	1 /4	20716	374	7-10u	1 -100	0-10u		_	20.48	_	14.35


^{2.} For single 4x2 top chord carrying members, THA 4x hangers can be used with 10dx1½" nails and a reduced resistance to 0.83 of the table value. Values are based on hanger installations at panel points.

SIMPSON

Strong-Tie

Typical THA422 Top-Flange Installation on a 4x2 Floor Truss

Typical THA Top-Flange Nailing Configuration on a 4x Nailer (except THA29)

^{3.} For the THA2X models, one strap may be installed vertically according to the face mount nailing requirements and the other strap wrapped over the top chord according to the top flange nailing requirements (see drawing above) and achieve full tabulated top-flange installation downloads.

NAILS: 16d = 0.162" dia. x 3½" long, 16dx2½ = 0.162" dia. x 2½" long. 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

THA/THAC Adjustable Truss Hangers

			Di	mensio	ns		Fas	teners			Factored F	Resistance	
				(in)		He	ader	Jois	t	D.F	ir-L	S-I	P-F
Min. Joist	Model	Ga								Uplift	Normal	Uplift	Normal
Size	No.	ua	w	н	С	Top	Face	Straight	Slant	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
0.20			VV	п	U	TUP	гасе	Straight	Statit	lbs	lbs	lbs	lbs
										kN	kN	kN	kN
						FAC	E-MOUN	T INSTALL <i>a</i>	TION				
2x4	THA29	18	15/8	911/16	51/8	_	16-10d		4-10d	1050	3440	750	2455
2.84	IIIAZS	10	178	9 716	J 78		10-100		4-10u	4.67	15.30	3.34	10.92
	THA213	18	15/8	135/16	5½	_	14-10d	_	4-10d	1420	2785	1290	2210
2x6	ITIAZIO	10	178	10716	J /2		14-10u		4-10u	6.32	12.39	5.74	9.83
2.00	THA218	18	15/8	173/16	51/2	_	18-10d	_	4-10d	1420	2785	1290	2210
	THAZIO	10	170	17 / 16	J / 2		10 100		7 100	6.32	12.39	5.74	9.83
	THA218-2	16	31/8	1711/16	8	l	16-16d	_	6-16d	2540	4765	1805	3385
2-2x10			0,0	,					0 .00	11.30	21.20	8.03	15.06
	THA222-2	16	31/8	223/16	8	l —	22-16d	_	6-16d	2540	5550	1805	4150
										11.30	24.69	8.03	18.46
4x6	THA413	18	35/8	135/16	41/2	_	14-10d	_	4-10d	1420	3555	1290	2525
										6.32	15.81	5.74	11.23
4x10	THA418	16	35/8	171/2	71//8	l —	16-16d	_	6-16d	2540 11.30	4765 21.20	1805 8.03	3385 15.06
										2540	5850	1805	4150
40	THA422	16	35/8	22	71/8	—	22-16d	_	6-16d	11.30	26.02	8.03	18.46
4x2 Truss										2540	6295	1805	4545
11433	THA426	14	35/8	26	71//8	—	30-16d	_	6-16d	11.30	28.00	8.03	20.22
										2845	7715	2585	5475
2-4x2	THA422-2	14	71/4	2211/16	9¾	_	30-16d	_	6-16d	12.66	34.32	11.50	24.35
Truss										2845	7715	2585	5475
	THA426-2	14	71/4	261/16	9¾	_	38-16d	_	6-16d	12.66	34.32	11.50	24.35
										.2.00	002		200

Double Shear Nailing Top View

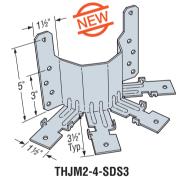
Double
Shear Nailing
Side View
Do not bend
tab back

Dome Double Shear Nailing prevents tabs breaking off (available on some models)

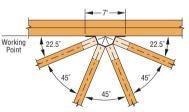
U.S. Patent 5,603,580

See footnotes on page 150.

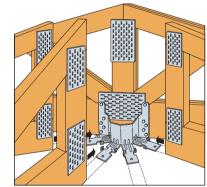
THJM Multiple Truss Hip Jack Hanger

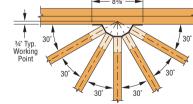

The new THJM is a non-welded hanger designed to carry radial-end jack framing and provide optimal efficiency for those multi-plane, angled bay roofs over breakfast, study and library alcoves. The unique patent pending design of the THJM accommodates 2x6 girder bottom chords and uses our Strong-Drive® SDS screws for easy installation with minimal fasteners.

FEATURES:


- The THJM hangers are designed for installation with SDS ½"x3" screws that are included with the parts.
- The THJM2-4-SDS3 is designed for four incoming jack trusses with the outer jacks being 22½° from the face of the girder and the inner jacks being 45° from each other and the outer jacks.
- The THJM2-5-SDS3 is designed for five jacks coming into the hanger at 30° from the girder and each other.
- Tabs on the seats of the THJM assist in the placement of the jacks.

MATERIAL: 12 gauge FINISH: Galvanized INSTALLATION:


- Use all specified fasteners. See General Notes.
- Each carried jack truss requires one SDS ¼"x3" screw installed into the bottom chord through the bottom of the hanger seat.
- Fill all round and triangular holes.
- SDS screws driven through truss plates must be approved by the Truss Designer. Pre-drilling using a ⁵/₃₂" bit is required.



THJM2-4-SDS3
Top View Installation

Typical THJM Installation

THJM2-5-SDS3
Top View Installation

	Faste	nore		Factored F	Resistance		
	rasic	11012	D.F	ir-L	S-I	P-F	
Model			Uplift	Normal	Uplift	Normal	
No.	Header	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	
	пеацеі	(Total)	lbs	lbs	lbs	lbs	
			kN	kN	kN	kN	
THJM2-4-SDS3	10-SDS 1/4"x3"	4-SDS 1/4"x3"	890	4565	640	3290	
1 1101012-4-3033	10-303 74 83	4-3D3 74 X3	3.96	20.31	2.85	14.64	
THJM2-5-SDS3	10_CDC 1//"v2	5-SDS 1/4"x3"	970	5250	700	3905	
	10-SDS 1/4"x3	J-3D3 74 X3	4.31	23.35	3.11	17.37	

- Factored resistances shown are for all carried members combined. The load on any single member shall not exceed 25% of the tabulated factored resistace for THJM2-4 or 20% for THJM2-5.
- Factored uplift resistances are only applicable to short term load duration. This connector cannot be used to resist uplift due to other load durations (for example: cantilever construction).
- A minimum 2-ply header is required to achieve the factored resistances shown.

THASR/L Adjustable/Skewable Truss Hangers

SIMPSON
Strong-Tie

The THASR/L hangers combine the height adjustability of THA hangers with field skewability, offering maximum flexibility for the installer and eliminating the need for special orders. Shipped at 22½° right or left, the THASR/L hangers can be field skewed from 22½° to 75°.

The new THASR/L29, 29-2 and 422 are replacing the former 218, 218-2 and 418 versions.

FEATURES:

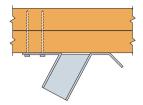
- The new THASR/L single and two-ply versions have straps
 9" tall. The 4x version has 22" straps to fit more parallel-chord truss applications.
- The new versions have only one acute side bend line to ease design and installation.
- Joist fasteners are only required from one side for skews greater than $22\frac{1}{2}$ °.
- Rated for installation with either nails or Simpson Strong-Tie[®] Strong-Drive[®] SD screws.

MATERIAL: 16 gauge FINISH: Galvanized

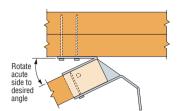
INSTALLATION: • Use all specified fasteners. See General Notes.

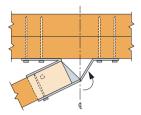
- Product is factory skewed to $22\%^\circ$ and may be field skewed from $22\%^\circ$ to 75°. See Installation Sequence below for skews greater than $22\%^\circ$.
- For 22½° skew installations, fill all triangle holes. Triangle holes do not need to be filled for skews greater than 22½°.
- For all installations, fill the fastener hole(s) in the bottom of the hanger seat (THASR/L29 has one and all other models have two).
- For top-flange installations, the straps must be field-formed over the header a minimum of 2".
- THASR/L29 and THASR/L29-2—For installations where either strap cannot be field-formed over the header, install the strap(s) vertical and fill all holes. Capacities must be reduced as noted in the table footnotes.
- THASR/L422—For face-mount installations, install the carrying member fasteners into the lowest holes.

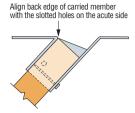
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details. These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.


		Dime	nsions				Fasten	ers		Factored F	Resistance	
		(i	n)			Hea	der		D.F	ir-L	S-I	P-F
Min	Model			Min.	Skew				Uplift	Normal	Uplift	Normal
Carried Member	No.		l	H _{eff} (in)	Angle (degrees)	_	_	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
		W	Н	(111)	(aug. coo)	Тор	Face		lbs	lbs	lbs	lbs
									kN	kN	kN	kN
						TOP-FL	ANGE INST	ALLATION				
									1315	2850	935	2020
					22½	4-10d	8-10d	7-10dx1½	5.85	12.68	4.16	8.99
2x	TUA OD // 00	45/	07/	F1/	00 1- 45	4.40.1	0.40.1	4.40-1-4-7	635	2145	450	1520
Truss	THASR/L29	15/8	97/8	5½	23 to 45	4-10d	8-10d	4-10dx1½	2.82	9.54	2.00	6.76
					40 to 75	4 404	0.404	4.40441/	590	2145	420	1520
					46 to 75	4-10d	8-10d	4-10dx1½	2.62	9.54	1.87	6.76
					22½	4-10d	8-10d	8-10d	1360	2380	965	1690
					2272	4-10u	0-10u	0-10u	6.05	10.59	4.29	7.52
2-2x	THASR/L29-2	31/8	97/8	5½	23 to 45	4-10d	8-10d	5-10d	425	1870	300	1325
Truss	TTIAOTI/LZ3 Z	078	378	372	20 10 40	7 100	0 100	3 10u	1.89	8.32	1.33	5.89
					46 to 75	4-10d	8-10d	5-10d	375	1870	270	1325
					10 10 70	1 100	0 100	0 100	1.67	8.32	1.20	5.89
					22½	4-10d	4-10d	8-10d		1605	_	1140
								0.00		7.14		5.07
4x	THASR/L422	35/8	22	8	23 to 45	4-10d	4-10d	5-10d		1345		955
Truss										5.98	_	4.25
					46 to 75	4-10d	4-10d	5-10d		1080	_	770
						EAGE N	OUNT INOT	ALL ATION		4.80	_	3.43
						FACE-IV	IOUNT INST	ALLATION		4470		000
					22½	_	8-10d	8-10d		1170	_	830
4									_	5.20 1050	_	3.69 745
4x Truss	THASR/L422	35/8	22	51/2	23 to 45	_	8-10d	5-10d	_	4.67		3.31
11 433				372						1050		745
				46 to 75	_	8-10d	5-10d		4.67		3.31	
										4.07		0.01

- Uplift resistances have been increased 15% for wind or earthquake loading with no further increase permitted. Reduce where other load durations govern.
- 2. Minimum carried truss (joist) heel height shall be 41/2"
- Heff is the distance from the top of the hanger bearing seat to the top of the carried member (header).
- 4. For tabulated top-flange capacities, the straps must be wrapped over the
- header a minimum of 2". Factored download resistances for the THASR/L29 and THASR/L29-2 with one or both straps installed vertically (with all holes filled) are 86% of the tabulated values. Factored uplift resistances are 100% of the tabulated values.
- 5. NAILS: 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long See page 24-25 for other nail sizes and information.


THASR/L Adjustable/Skewable Truss Hangers


INSTALLATION SEQUENCE FOR SKEWS > 221/2°

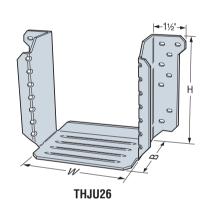

Step 1: Install acute side top and/or face header fasteners

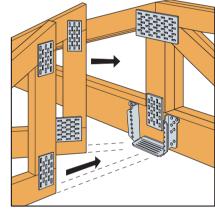
Step 2: Utilizing a piece of scrap fastened to the hanger (on obtuse side only), bend the hanger along the acute side bend line to the desired angle.

Step 3: Bend the obtuse side of the hanger back toward the header until the narrow nailing flange lies flat against the header, and install obtuse side header top and/or face fasteners.

Step 4: Install joist/truss and install the carried member fasteners on the obtuse side and seat only.

For 221/2° skew installations fill all triangle holes.

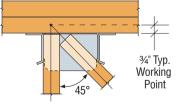

THJU Truss Hip/Jack Hanger

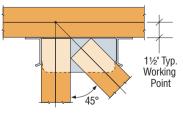

The THJU hip/jack hanger offers the most flexibility and ease of installation without sacrificing performance. The U-shaped hanger works for right and left hand hips and can be ordered to fit a range of hip skews *(up to 65 degrees)* as well as various single and 2-ply hip/jack combinations. Also can be installed before or after the hip and jack.

THJU26 is sized for the standard hip/jack combination with a 45-degree left or right-hand hip. The wide seat of THJU26-W accommodates a 2-ply hip and 2-ply jack combination with a 45 degree maximum hip skew, or a standard single-ply hip/jack configuration with a maximum 65-degree hip skew. Intermediate seat widths are available for other hip/jack or hip/hip combinations.

MATERIAL: 12 gauge FINISH: Galvanized INSTALLATION: • Use all specified fasteners. See General Notes.

OPTIONS: Other seat widths available. See Hanger Options on pages 212 for more information.




Typical THJU26 Installation

		Dir	nensi	ons	_	asteners			Factored F	Resistance	
	Min.		(in)		•	asteller	•	D.F	ir-L	S-I	P-F
Model	Heel							Uplift	Normal	Uplift	Normal
No.	Height	w	н	В	Header	Hip	Jack	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	(in)	vv	"	, D	iicauci	шр	Jack	lbs	lbs	lbs	lbs
								kN	kN	kN	kN
THJU26	21/				16-10d	4-10d	4-10d	1045	2675	745	1915
	3½	51/8	5%	3½	10-100	4-10u	4-10u	4.65	11.90	3.31	8.52
1 113020	5½	51/8	378		16-10d	7-10d	7-10d	1825	3280	1310	2350
	372							8.12	14.59	5.83	10.45
	21/				16 104	4 104	4-10d	990	2550	705	1825
THJU26-W	3½		5 3/ ₂	3½	16-10d	4-10d	4-10u	4.40	11.34	3.14	8.12
1113020-11	5½	77/8	5%	372	16-10d	7-10d	7-10d	1730	2550	1240	1825
					10-100	7-10u	1-10u	7.70	11.34	5.52	8.12

- For full capacity, the jack requires either a min. 2x6 bottom chord or a min. 2x4 end vertical; the hip requires either a min. 2x6 bottom chord or a min. 2x6 end vertical for hip skews up to 60°. For hip skews greater than 60° (THJU26-W only), a min. 2x6 bottom chord or min. 2x8 end vertical is required.
- 2. Tabulated values are the total factored loads of the hip and jack members combined; 65%-85% of the total load shall be distributed to the hip member, and the remaining percentage of total load shall be distributed to the jack. The combined hip and jack load may not exceed the total factored resistances.
- Factored uplift resistances have been increased 15% for wind or earthquake loading with no further increase permitted, reduce where other loads govern.
- For single 2x jacks, 10dx1½" nails may be substituted for the specified 10d commons with no reduction in capacity.
- For single ply 2x headers use 10dx1½" nails into the header and multiply the tabulated factored resistances by 0.77.
- NAILS: 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

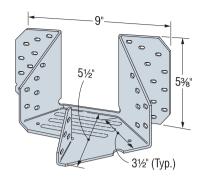
THJU26 Top View Right Hand Hip Installation

THJU26-W Top View 2-Ply Hip/2-Ply Jack Installation

LTHJA26/THJA26 Truss Hip/Jack Hangers

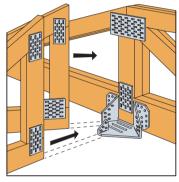
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The LTHJA26 is the lighter capacity version of the THJA26.

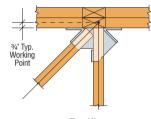

The LTHJA26 is designed for the common 8 foot hip girder setback. Consult with truss engineer or refer to truss engineering for actual demand load information.

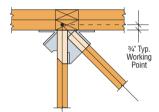
MATERIAL: LTHJA26—18 gauge; THJA26—14 gauge

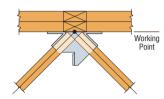
FINISH: Galvanized INSTALLATION:


- Use all specified fasteners. See General Notes.
- All multiple members must be fastened together to act as a single unit.
- 10dx1½" nails must be installed into bottom of hip members through bottom of hanger seat for factored resistances (LTHJA26).

OPTIONS: These hangers can not be modified.




U.S. Patent 5,253,465 and other Patent Pending



Top View Right Hand Hip Installation

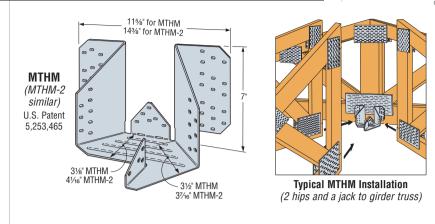
Top View Terminal Hip without Center Common Jack

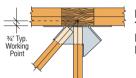
			Fasteners				Factored F	Resistance	
						D.F	ir-L	S-I	P-F
Model	Carried				Carried	Uplift	Normal	Uplift	Normal
No.	Member Combination	Carrying Member	Hip² (each)	Jack	Member	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
		mombo	(00011)			lbs	lbs	lbs	lbs
						kN	kN	kN	kN
					look	120	400	85	285
					Jack	0.53	1.78	0.38	1.27
	Side Hip &	20-10d	7-10dx1½	4-10dx1½	Hip	360	1205	260	860
	Center Jack	20-10u	7-10ux 1 72	4-10UX172	пір	1.60	5.37	1.16	3.83
LTHJA26					Total	480	1605	345	1145
LINJAZO					TOTAL	2.14	7.15	1.54	5.10
	Double (Terminal Hip)		7-10dx1½		Hip (each)	550	1040	395	745
		20-10d		_	TTIP (Gacil)	2.45	4.63	1.76	3.32
		20-10u			Total	1100	2080	790	1490
					Total	4.90	9.27	3.52	6.64
					Hip	1365	3810	960	2890
					Tilp	6.08	16.97	4.28	12.87
	Side Hip &	20-16d	6-10dx11//	4-10dx11/2	Jack	455	1270	320	965
	Center Jack	20-10u	0-10ux172	4-100X172	Jack	2.03	5.66	1.43	4.30
THJA26					Total	1820	5080	1280	3855
IIIJAZU					iotai	8.11	22.63	5.70	17.17
					Hip (each)	910	2540	640	1925
	Double	20-16d	6-10dx1½	_	Trip (Gacil)	4.05	11.31	2.85	8.59
	(Terminal Hip)	20-100	0-10ux172		Total	1820	5080	1280	3850
					iotai	8.11	22.63	5.70	17.17

- Factored uplift resistances have been increased 15% for earthquake or wind loading with no further increase allowed; reduce where other loads govern.
- For LTHJA26, one 10dx1 ½" nail must be installed into bottom of each hip member through bottom of hanger seat.
- 3. With single 2x carrying members, use 10dx1½" nails and use 0.77 of the table value for LTHJA26 and 0.64 for THJA26.
- 4. Tabulated hip and jack allowable loads assume that 75% of the total load is distributed to the hip and 25% to the jack. It is permitted to distribute 65% to 85% of the tabulated total load to the hip, and the remaining percentage of total load to the jack. The combined hip and jack load may not exceed the published Total Load.
- 5. NAILS: 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

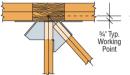
Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

MTHM/MTHM-2 Multiple Truss Hangers

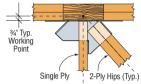

SIMPSON
Strong-Tie


The MTHM hangers are medium to high load capacity hangers designed to carry 2 or 3 trusses. Accommodates right or left hand hips (at 45-degree skews) and can be used for terminal hips with or without the center common jack. The MTHM-2 accommodates 2-ply hips or jacks.

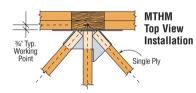
MATERIAL: 12 gauge **FINISH**: Galvanized **INSTALLATION**: • Use all specified fasteners.

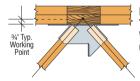

See General Notes.

- All multiple members must be fastened together to act as a single unit.
- With single 2x carrying members, use 10dx1½" nails with 0.64 of the table values.
- For terminal installation, distribute 40% of total load to each hip member and 20% to the jack.
- For left or right hand hip installation, distribute 75% of total load to the hip member and 25% to the jack.

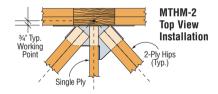


MTHM Top View Left Hand Hip Installation


MTHM Top View Right Hand Hip Installation



MTHM-2 Top View Right Hand Hip Installation


Right or Left Hand Hip Installation (Two-Member Connection)

•		•	•			,													
			Factonore						F	actored F	Resistand	е							
			Fasteners				D.F	ir-L					S-	P-F					
Model	Hooder				Upl	ift (K _D =1	.15)	Dov	vn (K _D =1	.00)	Upl	ift (K _D =1	.15)	Dow	/n (K _D =1	.00)			
No.	Header	Carrying	111:	lask	Hip	Jack	Total	Hip	Jack	Total	Hip	Jack	Total	Hip	Jack	Total			
		Member	Hip	Jack	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs			
					kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN			
2-ply 2x4	22-16d	8-10dx1½	4-10dx1½	1345	450	1795	2685	895	3580	955	320	1275	1910	635	2995				
	2-piy 2x4	22-10u	0-10ux172	4-10ux172	5.98	2.00	7.98	11.94	3.99	15.93	4.25	1.42	5.67	8.49	2.82	13.31			
MTHM	2-ply 2x6	34-16d	34-16d 8-10dx1½	4-10dx1½	1345	450	1795	3470	1155	4625	955	320	1275	2465	820	3285			
IVIIIIIVI	2-piy 2x0	34-10u	0-10ux172	4-10UX172	5.98	2.00	7.98	15.43	5.14	20.57	4.25	1.42	5.67	10.96	3.65	14.61			
	2-nly 2v2	42-16d	42-16d	2-16d 8-10dx1½	4-10dx1½	1345	450	1795	3990	1330	5320	955	320	1275	2830	945	3775		
	2-ply 2x8	42-16d	42-16d	42-16d	42-16d	0-10ux172	4-10ux172	5.98	2.00	7.98	17.75	5.92	23.67	4.25	1.42	5.67	12.59	4.20	16.80
MTHM-2	2-ply 2x6	39-16d	8-10dv11/6	1-10dv11/6	1345	450	1795	3395	1130	4525	955	320	1275	2410	805	3215			
	2-piy 2x0	39-10u	6d 8-10dx1½	4-10dx1½	5.98	2.00	7.98	15.10	5.04	20.13	4.25	1.42	5.67	10.73	3.57	14.30			
	2-ply 2x8	47-16d	8-10dv11/6	4-10dx1½	1345	450	1795	4090	1365	5455	955	320	1275	2905	970	3875			
	2-piy 2x0	41-10u	8-10dx1½	4-100X172	5.98	2.00	7.98	18.20	6.07	24.27	4.25	1.42	5.67	12.93	4.30	17.23			

MTHM Top View Terminal Installation Without Center Common Jack

Terminal Type Installation (Three-Member Connection)

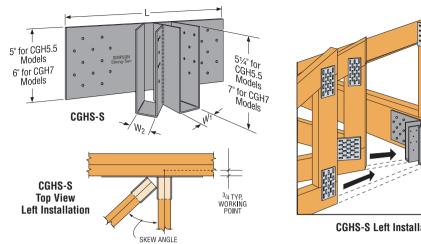
			Footonous						F	actored F	Resistano	е				
			Fasteners				D.F	ir-L					S-I	P-F		
Model	Header				Upl	ift $(K_D = 1)$.15)	Dov	/n (K _D =1	.00)	Upl	ift (K _D =1	.15)	Dov	vn (K _D =1	.00)
No.		Carrying	Hips	Jack	Hip	Jack	Total	Hip	Jack	Total	Hip	Jack	Total	Hip	Jack	Total
		Member	(Total)	Jack	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
					kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
	2-ply 2x4	22-16d	16-10dv11/	6-10dx1½ 4-10dx1½	1345	675	3365	2040	1020	5100	955	480	2390	1755	875	4385
	2-piy 2x4	7 2X4 ZZ-10U	10-10ux172		5.98	3.00	14.97	9.07	4.54	22.69	4.25	2.14	10.63	7.81	3.89	19.50
МТНМ	2-ply 2x6 34-16	6 34-16d 1	16-10dv11/6	4-10dx1½	1345	675	3365	2300	1125	5745	955	480	2390	1755	875	4385
IVITITIVI	Z-piy ZXU	34-10u	10-10ux172		5.98	3.00	14.97	10.23	5.00	25.56	4.25	2.14	10.63	7.81	3.89	19.50
	2-ply 2v8	42-16d	16-10dx1½	4-10dv114	1345	675	3365	2470	1235	6175	955	480	2390	1755	875	4385
	2-ply 2x8 42-1	42-10u	10-10ux172	4-10ux172	5.98	3.00	14.97	10.99	5.49	27.47	4.25	2.14	10.63	7.81	3.89	19.50
	2-ply 2x6	2-nly 2v6 30-16d	30-16d 16-10dv11/6	16-10dx1½ 4-10dx1½	1345	675	3365	2515	1265	6295	955	480	2390	1790	890	4470
MTHM-2	2 pry 2x0	39-16d	6d 16-10dx1½	½ 4-10dx1½	5.98	3.00	14.97	11.19	5.62	28.01	4.25	2.14	10.63	7.96	3.97	19.88
	2-nly 2v8	8 47-16d	1 16-10dx11/ ₂ 4	4-10dx11//	1345	675	3365	3035	1515	7585	955	480	2390	2155	1075	5385
2-ply 2x8	47 10u	I 16-10dx1½	1½ 4-10dx1½	5.98	3.00	14.97	13.50	6.76	33.75	4.25	2.14	10.63	9.58	4.80	23.95	

- 1. Uplift loads include 15% increase with no further increase allowed; reduce where other loads govern.
- 2. Hip resistances are for each hip.
- 3. Other hip/jack load distributions are allowed if the sum of all three carried members does not exceed the total resistance and the hip members are equally loaded.
- 4. Combine hip and jack resistances for total capacity. For terminal hips divide the total factored resistance by 2 to determine the factored resistance for each hip.
- 5. NAILS: 16d = 0.162" dia. x $3\frac{1}{2}$ " long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

CGH Corner Girder Hangers

The CGH is a multi-purpose connector used for connecting hip and lack trusses to bottom chords of girder trusses at a 45° skew.

MATERIAL: Face plate - 3 gauge; Stirrups – 11 gauge


FINISH: Simpson Strong-Tie® gray paint INSTALLATION:

- · Use all specified fasteners.
- · All multiple members must be fastened together to act as a single unit.
- When using single ply hip or jack trusses, fasten the member to the connector with 10dx11/2" nails.

TO ORDER:

• Specify left or right hip skew.

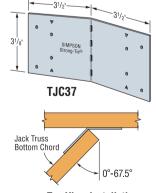
OPTIONS: None

	Dii	mensio	ns		Fasteners			Factored I	Resistance		
		(in)			rasielleis		D.F	ir-L	S-I	P-F	
Model							Uplift	Normal	Uplift	Normal	
No.	14/	147		Header	Uin	Jack	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	
	W ₁	W ₂	L	пеацег	Hip	Jack	lbs	lbs	lbs	lbs	
							kN	kN	kN	kN	
CGH5.5SS	1%	1%	14	24-16d			1180	5205	1035	3695	
CGH5.5SD	1%	31/4	15		4-10dx1½	4-10dx1½	1100	3203	1033	3090	
CGH5.5DS	31/4	1%	16	24-10u	4-100X172	4-10ux 1 72	5.26	23.18	4.61	16.46	
CGH5.5DD	31/4	31/4	17				5.20	23.10	4.01	10.40	
CGH7SS	1%	15/8	14				1765	7820	1555	5550	
CGH7SD	1%	31/4	15	24-16d	6-10dx11//	6-10dx1½	1703	7020	1000	3330	
CGH7DS	31/4	1%	16	24-10U	0-100X172	U-100X172	7.86	34.83	6.93	24.72	
CGH7DD	31/4	31/4	17				7.00	04.00	0.33	24.72	

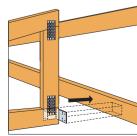
- 1. Factored uplift resistances have been increased 15% for short term loading, and are for each connecting member. Reduce where other loads govern.
- 2. The factored normal resistances are based on the combined load from both connecting members.
- 3. For single ply hips or jacks verify that the 3" bearing length does not govern.
- 4. Factored uplift resistances shown are for each joist.
- 5. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

TJC37 Jack Truss Connector

TJC37 is a versatile connector for jack trusses. Adjustable from 0 to 67.5 degree (shipped with 67.5 degree bend). Nail hole locations allow for easy installation. Minimum nailing option provides faster installation and lower installed cost.


MATERIAL: 16 gauge FINISH: Galvanized

INSTALLATION: • Use all specified fasteners; see General Notes.


- Can be installed filling round holes only, or filling round and triangle holes for maximum values.
- To reduce the potential for splitting, install the TJC37 with a minimum 3/16" edge distance on the chord members (must be centered on 2x4 chords).
- Position the jack truss on the inside of the bend line with the end of the jack truss flush with the bend line.
- Bend the TJC37 to the desired position (one bend cycle only).
- . No bevel cut required.
- Applications involving attachment of TJC37 to the top chord requires minimum 2x6 carrying member for jack truss pitches up to 7:12, and 2x8 or larger for pitches greater than 7:12.

	Faste	eners	Factored Resistance ($K_D = 1.00$)						
		Carried Member		D.Fir-L		S-P-F			
Model No.	Carrying		0°	1°-60°	61°-67.5°	0°	1°-60°	61°-67.5°	
140.	Member		lbs	lbs	lbs	lbs	lbs	lbs	
			kN	kN	kN	kN	kN	kN	
TIC27 (Min)	4-8dx1½	4-8dx1½	495	495	495	350	350	350	
TJC37 (Min)	4-0UX 1 72		2.20	2.20	2.20	1.56	1.56	1.56	
TJC37 (Max)	6-8dx1½	6-8dx1½	950	795	650	675	565	465	
10007 (IVIAX)	U-0UX 1 72		4.23	3.54	2.90	3.00	2.51	2.07	

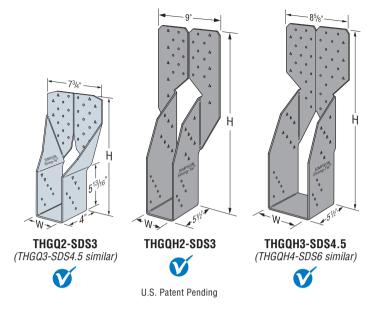
- 1. No load duration increase is permitted for short-term loading $(K_D = 1.15)$.
- 2. Factored resistances are for uplift and downward directions.
- 3. **NAILS:** $8dx1\frac{1}{2} = 0.131$ " dia. $x \cdot 1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Top View Installation

Typical TJC37 Installation

THGQ/THGQH Truss Girder Hangers

SIMPSON Strong-Tie

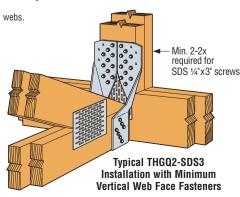

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

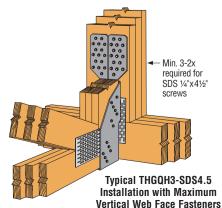
The THGQ and THGQH hangers for multi-ply girder trusses use SDS screws to provide high load capacities and easier installation compared to bolts. Both models offer minimum and maximum fastener quantities to accommodate varying design needs. MATERIAL: THGQ—7 gauge, THGQH—3 gauge

FINISH: THGQ—Galvanized, THGQH—Simpson Strong-Tie® gray paint INSTALLATION: • Use all specified fasteners. See General Notes.

- Can be installed filling round holes only, or filling round and triangle holes for maximum values.
- SDS screws supplied for all round and triangle holes. Installation may not require use of all SDS screws.
- All multiple members must be fastened together to act as a single unit.
- Girders must be adequately laterally braced to prevent excessive displacement due to secondary torsional stresses.
- · SDS screws driven through truss plates must be approved by the truss designer. Pre-drilling using a 5/2" bit is required.
- · Requires attachment to a minimum 2-ply girder.
- Requires attachment to a minimum 2-ply girder.
 The thickness of the supporting girder must be equal to or greater than the screw length. For applications where the length of the supplied screws exceeds the thickness of the supporting girder, 3" or 4½" screws may be substituted for the longer length screws with no load reduction, or a shim block may used as approved by the Designer.

OPTIONS: THGQH hangers may be skewed 45 degrees, see Hanger Options on pages 212.

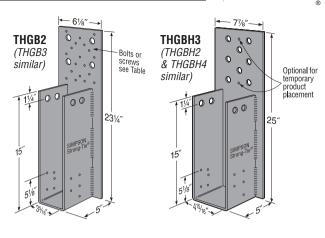



	Dimei	nsions			Englis	Fasteners		Factored I	Resistance	
	(i	n)	Max.	Min.	Газів	ille18	D.F	ir-L	S-	P-F
Model			Girder Truss	Vert			Uplift	Normal	Uplift	Normal
No.	w	н	B.C.	Web	Heeder	laint	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	VV	п	Depth	Size	пеацег	Header Joist		lbs	lbs	lbs
							kN	kN	kN	kN
THGQ2-SDS3 (Min)				2x8	22-SDS 1/4"x3"	10-SDS 1/4"x3"	5205	11655	3750	8395
THOUZ ODGG (WIIII)	35/16	16	2x6	2.00	22 0D0 74 X0	10-000 74 80	23.15	51.85	16.68	37.34
THGQ2-SDS3 (Max)	0710	10	2x0	2x10	28-SDS 1/4"x3"	14-SDS 1/4"x3"	6555	18055	4720	13000
THOUSE ODOG (Max)				ZXIO	20-303 /4 /3	14-000 /4 /0	29.16	80.32	21.00	57.83
THGQH2-SDS3 (Min)			2x10	2x8 18-SDS ½"x	18-SDS 1/4"x3"	14-SDS ½"x3"	5790	12555	4170	9040
THOUSE OBOO (MIIII)	35/16	25			10 000 74 70	11 050 74 70	25.76	55.85	18.55	40.21
THGQH2-SDS3 (Max)	0710			2x10	28-SDS ¼"x3"	26-SDS 1/4"x3"	14190	18455	10215	13285
						20 020 7170	63.12	82.10	45.44	59.10
THGQ3-SDS4.5 (Min)			2x6	2x8	22-SDS ½"x4½"	10-SDS 1/4"x41/2"	5205	11655	3750	8395
Triado obo no (min)	415/16	16		LXO	ZX0 ZZ 0D0 74 X472	10 0B0 74 X172	23.15	51.85	16.68	37.34
THGQ3-SDS4.5 (Max)	1 / 10	10	LXO	2x10	28-SDS 1/4"x41/2"	14-SDS ¼"x4½"	6555	17760	4720	12785
					20 020 / 1 / 1 / 2	050 / : // :	29.16	79.00	21.00	56.87
THGQH3-SDS4.5 (Min)				2x10	32-SDS 1/4"x41/2"	14-SDS 1/4"x41/2"	5790	17860	4170	12860
	415/16	25	2x10		02 020 / 1 X 1 / 2	050 / : // :	25.76	79.45	18.55	57.21
THGQH3-SDS4.5 (Max)				2x12	38-SDS 1/4"x41/2"	26-SDS 1/4"x41/2"	14190	21055	10215	15160
							63.12	93.66	45.44	67.44
THGQH4-SDS6 (Min)				2x10	34-SDS 1/4"x6"	14-SDS 1/4"x6"	5790	17860	4170	12860
	6%16			2.10 04 01		. ,	25.76	79.45	18.55	57.21
THGQH4-SDS6 (Max)			2712	2x12	40-SDS 1/4"x6"	26-SDS 1/4"x6"	14190	24870	10215	17905
						, , , , , ,	63.12	110.63	45.44	79.65

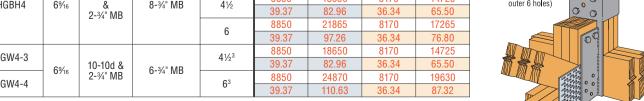
1. Factored resistances have been increased 15% for earthquake or wind load with no further increase allowed; reduce where other loads govern.

- 2. Minimum 2-ply girder required for SDS 1/4"x3" screws.
- 3. Connector must be installed centered on girder vertical webs.
- 4. Minimum bottom chord depth for joist to be 2x6.
- 5. SDS screws that penetrate all plies of the supporting girder (screws must penetrate a minimum of 1" into the last truss ply) may also be used to transfer the load through all the plies of the supporting girder. When SDS screws do not penetrate all plies of the supporting girder truss, supplemental SDS screws at the hanger locations may be required to transfer the load to the truss plies not penetrated by the face fasteners, as determined by the Designer.
- 6. The supporting girder truss must have adequate thickness to accommodate the screw length, so that the screw does not protrude out the back of the girder. 3" or 41/2" long SDS screws may be substituted for the longer SDS screws with no load reduction.

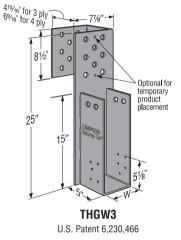
THGB/THGBH/THGW Truss Girder Hangers

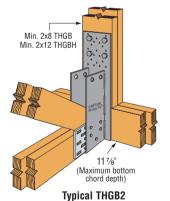

SIMPSON Strong-Tie

High-capacity, welded hangers for multi-ply girder trusses. Two models offer higher design load values and optional installation with the SDS Strong-Drive® screw. MATERIAL: 3 gauge FINISH: Simpson Strong-Tie® gray paint **DESIGN:** • Vertical web on supporting girder truss must be 2x8 (min.) for 4-bolt and 6-bolt applications and 2x12 for 8-bolt applications per 4.3.8.2 CSA 086-09.

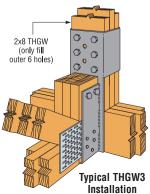

- Designer must ensure that vertical web member supporting hanger is capable of resisting applied loads based on net cross sectional area.
- SDS 1/4"x3" must be attached to a minimum 2-ply header (3").
- Joist bearing assumes φF_{cp} = 812 psi D.Fir-L and 615 psi S-P-F. Truss plates on supported member must be as per 5.5.9 TPIC 2011 to achieve values shown.
- Maximum bottom chord depth on header shall be 11%".
- To achieve the tabulated uplift resistances the maximum bottom chord depth of the joist shall be 71/4

INSTALLATION: • Use all specified fasteners.


· All multiple members must be fastened together to act as a single unit. **OPTIONS:** • See Hanger Options, page 212.



		Fasteners				Factored I	Resistance		
		ras	stellers	Minimum	D.F	ir-L	S-I	P-F	
Model	Width			Header	Uplift	Normal	Uplift	Normal	
No.	(in)	loiet	Heeder	Thickness	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	
		Joist	Header	(in)	lbs	lbs	lbs	lbs	
					kN	kN	kN	kN	
				0	5175	8290	4085	6545	
			4-¾" MB	3	23.02	36.88	18.17	29.11	
				41/2	5175	12435	4085	9815	
THGB2	35/16	10-10d &	4-94 IVID	4 72	23.02	55.32	18.17	43.66	
HIGDZ	3716	2-¾" MB		6	5175	13615	4085	10750	
		2 74 1015		0	23.02	60.56	18.17	47.82	
			19-SDS 1/4"x3"	3	5175	13805	4085	9940	
			19-0D0 /4 X0	3	23.02	61.41	18.17	44.22	
				3	5175	12435	4085	9815	
		10 10 1		J	23.02	55.32	18.17	43.66	
THGBH2	35/16	10-10d &	8-¾" MB	41/2	5175	14385	4085	11355	
IIIGDIIZ	3716	2-¾" MB	O-74 IVID	472	23.02	63.99	18.17	50.51	
				6	5175	14385	4085	11355	
				0	23.02	63.99	18.17	50.51	
				3	7760	8290	6125	6545	
			4-¾" MB		34.52	36.88	27.25	29.11	
		16 & & 2-%4" MB		41/2	7760	12435	6125	9815	
THGB3	415/16			772	34.52	55.32	27.25	43.66	
mabo	7 710			6	7760	13615	6125	10750	
					34.52	60.56	27.25	47.82	
			19-SDS ½"x3	10-SDS 1//"y3"	19-SDS 1/4"x3"	3	7760	13805	6125
			10 000 74 80		34.52	61.41	27.25	44.22	
				3	7760	12435	6125	9815	
		10-10d			34.52	55.32	27.25	43.66	
THGBH3	415/16	8	8-¾" MB	41/2	7760	18390	6125	14520	
		2-¾" MB			34.52	81.81	27.25	64.59	
				6	7760	18605	6125	14690	
					34.52	82.76	27.25	65.35	
THGW3-3				41/23	7760	18650	6125	14725	
	415/16	10-10d &	6-¾" MB		34.52	82.96	27.25	65.50	
THGW3-4		2-¾" MB		6 ³	7760	20830	6125	16065	
					34.52	92.66	27.25	71.46	
				3	8850	12435	8170	9815	
		10-10d			39.37	55.32	36.34	43.66	
THGBH4	6%16	&	8-¾" MB	41/2	8850	18650	8170	14725	
		2-¾" MB			39.37	82.96	36.34	65.50	
				6	8850	21865	8170	17265	
					39.37	97.26	36.34	76.80	
THGW4-3		10 10 1 0		41/23	8850 39.37	18650 82.96	8170 36.34	14725 65.50	
	6%16	10-10d & 2-¾" MB	6-¾" MB		8850	24870	8170	19630	
THGW4-4		∠ /4 IVID		6 ³	39.37	110.63	36.34	87.32	
	1		I		39.37	110.03	30.34	07.32	



- 1. Uplift resistances have been increased 15% for wind or earthquake loading with no further increase allowed.
- 2. When using 10-10d nails only on carried member, uplift resistance is 2945 lbs. (13.10 kN) for D.Fir-L and 2590 lbs (11.52 kN) for S-P-F.
- THGW is sized to fit the header thickness shown.
- 4. NAILS: 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

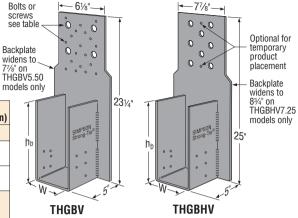
. Installation

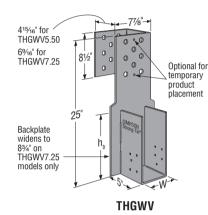
THGBV/THGBHV/THGWV SCL-to-Truss Girder Hangers

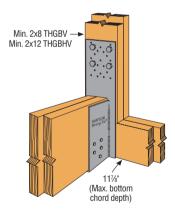
An extension of the THGB/THGBH/THGW series, these high-capacity, welded hangers are designed for attaching multi-ply structural composite lumber (SCL) beams to girder trusses. Two models offer higher design values and optional installation with the Strong-Drive® SDS screws. Two bucket heights are available for each width to accommodate a range of SCL sizes. Options for skewing or dropping the buckets for conditions where the SCL joist is lower than the girder bottom chord provide design flexibility for a variety of SCL-to-truss connections.

MATERIAL: 3 gauge FINISH: Simpson Strong-Tie® gray paint

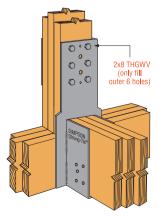
DESIGN: • Vertical web on supporting girder truss must be 2x8 (min.) for 4-bolt and 6-bolt applications and 2x12 for 8-bolt applications per 4.3.8.2 CSA 086-09.


- Designer must ensure that vertical web member supporting hanger is capable of resisting applied loads based on net cross sectional area.
- SDS 1/4"x3" must be attached to a minimum 2-ply header (3").
- Maximum bottom chord depth on header shall be 11%".


INSTALLATION:


- Use all specified fasteners.
- All multiple members must be fastened together to act as a single unit.

OPTIONS: • See Hanger Options, page 212.


	oist sions (in)	Model No.	Har Dimens	iger ions (in)	
Width	Depth		W	hb	
	91/4 - 14	THGBV3.62/9		9	
3½	974 - 14	THGBHV3.62/9	35%	9	
3 7/2	111/4 - 20	THGBV3.62/11	3%	44	
	1174 - 20	THGBHV3.62/11		11	
		THGBV5.50/9			
	91/4 - 14	THGBHV5.50/9		9	
51/4		THGWV5.50/9	5½		
3 7/4	111/4 - 20	THGBV5.50/11	3 1/2		
		THGBHV5.50/11		11	
		THGWV5.50/11			
	91/4 - 14	THGBHV7.25/9		0	
7	974 - 14	THGWV7.25/9	71/4	9	
	111/ 00	THGBHV7.25/11	1 74	-1-1	
	111/4 - 20	THGWV7.25/11		11	

Typical THGBV3.62/9 Installation

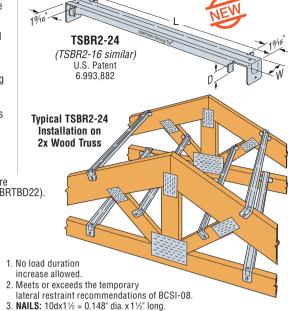
Typical THGWV Installation

		Га	steners			Factored I	Resistance	
		Га	istellers	Minimum	D.F	ir-L	S-I	P-F
Model	Width			Header	Uplift	Normal	Uplift	Normal
No.	(in)	la la l	Haadan	Thickness	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
		Joist	Header	(in)	lbs	lbs	lbs	lbs
					kN	kN	kN	kN
				3	2945	8290	2590	6545
				3	13.10	36.88	11.52	29.11
			4-¾" MB	4½	2945	12435	2590	9815
THGBV3.62/9	3	10-10d	4-94 IVID		13.10	55.32	11.52	43.66
THGBV3.62/11	3	10-10u		6	2945	13615	2590	10750
				O	13.10	60.56	11.52	47.82
			19-SDS 1/4"x3"	3	2945	13805	2590	9940
			13-3D3 74 X3	3	13.10	61.41	11.52	44.22
				3	2945	12435	2590	9815
				3	13.10	55.32	11.52	43.66
THGBHV3.62/9	3	10-104	8-¾" MB	41/2	2945	14385	2590	11355
THGBHV3.62/11	3	10-10d	0-74 IVID	4 1/2	13.10	63.99	11.52	50.51
				6	2945	14385	2590	11355
				U	13.10	63.99	11.52	50.51
		10-10d		3	2945	8290	2590	6545
				0	13.10	36.88	11.52	29.11
			4-¾" MB	41/2	2945	12435	2590	9815
THGBV5.50/9	5			172	13.10	55.32	11.52	43.66
THGBV5.50/11				6	2945	13615	2590	10750
				0	13.10	60.56	11.52	47.82
				3	2945	13805	2590	9940
			10 000 74 70		13.10	61.41	11.52	44.22
				3	2945	12435	2590	9815
					13.10	55.32	11.52	43.66
THGBHV5.50/9	5	10-10d	8-¾" MB	41/2	2945	18390	2590	14520
THGBHV5.50/11				.,,	13.10	81.81	11.52	64.59
				6	2945	18605	2590	14690
					13.10	82.76	11.52	65.35
THGWV5.50/9	5	10-10d	6-¾" MB	41/22	2945	18650	2590	14725
THGWV5.50/11	Ů		0 / 1 11.2	.,,	13.10	82.96	11.52	65.50
				3	2945	12435	2590	9815
					13.10	55.32	11.52	43.66
THGBHV7.25/9	7	10-10d	8-¾" MB	4½	2945	18650	2590	14725
THGBHV7.25/11	'				13.10	82.96	11.52	65.50
				6	2945	21865	2590	17265
				U	13.10	97.26	11.52	76.80
THGWV7.25/9	7	10-10d	6-¾" MB	6 ²	2945	24870	2590	19630
THGWV7.25/11	_ ′	.0 .00	3 /4 1115	Ŭ	13.10	110.63	11.52	87.32

- 1. Uplift resistances have been increased 15% for wind or earthquake loading with no further increase allowed.
- 2. THGWV is sized to fit the header thickness shown.
- 3. **NAILS:** 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

The Simpson Strong-Tie® TSBR truss spacer-restraint is a time-saving lateral-restraint product for wood and CFS framing that improves quality and safety while helping to meet the prescriptive recommendations of the BCSI-08. Easier to install than wood bracing, the TSBR firmly grips the trusses, capturing on-center spacing and keeping them vertical and plumb after placement, resulting in a better truss installation. The unique design eliminates additional time spent measuring truss spacing and laying out temporary lateral bracing. And once installed, the TSBR can remain in place to be sheathed over, thereby eliminating the need to remove temporary bracing and creating a safer, more stable work platform.

FEATURES: • Enables the quick and accurate spacing of trusses without measuring or adjusting


- Helps meet prescriptive temporary bracing recommendations of the BCSI-08
 Easily "grabs" onto the truss may be put in place with one hand
- Stays in place during sheathing, saving time and making the roof more stable for workers
- Installs in less time and requires less total bracing material than prescriptive wood bracing methods - reducing labor costs
- The TSBR is a direct replacement for the TSB Truss Spacer Bracer. **TRIAL: 22 gauge FINISH: Galvanized

MATERIAL: 22 gauge

INSTALLATION: • Use all specified fasteners; see General Notes.

- TSBR lateral restraint locations are as recommended in Table B2-1 of BCSI-08. For more
 information see the Simpson Strong-Tie Wood Truss Bracing and Restraint Guide (F-TSBRTBD22)
- · Fill all round and triangular holes.

		Dimensions (in)			Factored Resistance (K _D =1.15) D.Fir-L S-P-F				
	Model No.		(,		Fasteners	Compression	Tension	Compression	Tension
	NU.	L	W	D		lbs	lbs	lbs	lbs
						kN	kN	kN	kN
愈	TSBR2-16	171/	11/.	11/4	4-10dx1½	885	740	630	525
NEW	13Bh2-10	11 72	1 74	1 74	4-10ux 1 72	3.94	3.29	2.80	2.34
<u>a</u>	TSBR2-24	25½	13/4	1	4-10dx1½	685	625	485	445
寧	13BKZ-24	2372	194			3.05	2.78	2.16	1.98

See page 24-25 for other nail sizes and information.

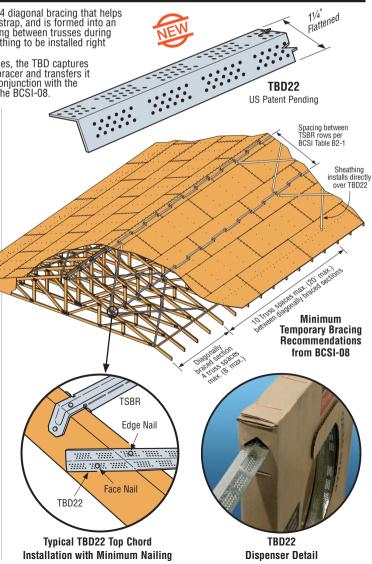
TBD22 Diagonal Brace

The TBD22 diagonal truss brace offers a time-saving subsitute for 2x4 diagonal bracing that helps meet the recommendations of BCSI-08. The TBD travels in a box like a flat strap, and is formed into an A-shape as it is pulled from the carton to provide rigidity and prevent sagging between trusses during installation. As it is fastened to the trusses the brace flattens, allowing sheathing to be installed right over it and saving the time typically needed to remove 2x4 bracing.

When installed on the top and bottom chords as well as the web planes, the TBD captures the lateral construction and wind forces delivered by the TSB truss spacer/bracer and transfers it diagonally in tension to the edge of the braced-truss system. When used in conjunction with the TSBR, the TBD22 meets or exceeds the the recommendations set forth by the BCSI-08.

FEATURES: • Helps meet prescriptive temporary bracing recommendations of the BCSI-08.

- Rigid A-shape design virtually eliminates sagging between trusses spaced 16"-24" on center.
- Can be sheathed over after installation, no need to remove bracing.
 Dimpled nailing grid allows installation with standard
- pneumatic fasteners.
- 160' of bracing in an easy-to-handle carton.


MATERIAL: 22 gauge FINISH: Galvanized

INSTALLATION: • Use all specified fasteners; see General Notes.

- Strap does not have holes for fasteners. Nails shall be installed in the dimpled areas and placed to maintain a minimum of ½" strap edge distance and a minimum of ½" center to center distance. Nails should be installed in the center of the lumber narrow face and with a minimum edge distance of 1" on the lumber wide face.
- TBD22 straps span diagonally at approximately 45°.
- Strap shall not be slack, but tight and ready to engage in tension.
 To resist construction forces, diagonal X-bracing is required at each end and every 10 truss spaces (20' max). Refer to BCSI-08 for additional information.
- At the end of the TBD braces trusses shall be laterally braced to resist out of plane forces.
 Bracing locations shown in the drawing are recommendations for temporary bracing only. Installation of TBD braces for permanent lateral bracing shall be per the Building Designer.

	Madal	Fastener	Factored Tensile Resistance (K _D =1.15)			
	Model No.	Strap Ends	Intermediate	D.Fir-L lbs	S-P-F lbs	
		onup znuo	Trusses	kN	kN	
	TBD22	1-10dx1½ in face and	1-10dx1½	680	615	
۲	(Min)	1-10dx1½ in edge	1-10ux 172	3.02	2.74	
, I	TBD22	2-10dx1½ in face and	1-10dx1½	895	820	
-	(Max)	1-10dx1½ in edge	1-10UX 172	3.98	3.65	

- Factored resistances have been increased for construction and wind loading with no further increase allowed.
 Minimum nailing meets or exceeds the temporary bracing
- recommendations of BCSI-08.
- 3. **NAILS:** $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Plated Truss Connectors

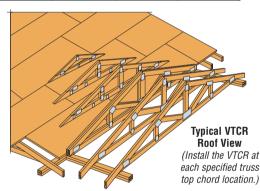
VTCR Single-Sided Valley Truss Clip

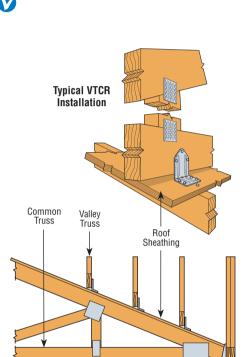
ぴ/〟

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

The new VTCR is single-sided valley truss clip that provides a positive connection between the valley truss and the supporting framing below. Installed on top of the roof sheathing, it eliminates the need to add a support wedge under the valley truss or to bevel the bottom chord to match the roof pitch.

- Single-sided for new construction or retrofit applications can be installed after the valley truss is set in place
- Accommodates pitches from 0/12 to 12/12
- · Can be installed with either beveled or non-beveled bottom chords
- Installs with nails or Simpson Strong-Tie[®] Strong-Drive[®] SD structural-connector


MATERIAL: 18 gauge FINISH: Galvanized INSTALLATION:


- The dome holes assist in installing the fasteners into the supporting framing at approximately 45°.
- Install VTCR at all valley truss/common truss intersections.
- VTCR must be installed directly over roof sheathing between 1/16" and 5/8" thick.

	Fast	eners	Factored Resistance					
			D.F	ir-L	S-P-F			
Model	0	W-II	Uplift	Normal	Uplift	Normal		
No.	Supporting Framing	Valley Truss	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$		
	Training	11033	lbs	lbs	lbs	lbs		
			kN	kN	kN	kN		
	4-10d	3-10dx1½	220	595	160	595		
VTCR	4-10u	3-10ux 1 /2	0.98	2.65	0.71	2.65		
VION	4-SD#9x2½	3-SD#9x1½	575	595	405	595		
	4-3D#9XZ72	3-3D#9X172	2.56	2.65	1.80	2.65		

- Factored uplift resistances have been increased 15% for wind loads. No further increase is permitted.
- Factored normal resistance assume continuous bearing of the valley truss bottom chord along the roof sheathing.
 For applications where the supporting framing is less than 24" o/c, the tabulated normal resistances shall be linearly reduced
- linearly reduced.

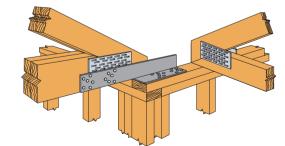
 3. NAILS: 10d = 0.148" dia. x 3" long, 10dx1½= 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.
- 4. **SCREWS:** SD #9x1½" (model SD9112) = 0.131" dia. x 1½" long, SD #9x2½" (model SD9212) = 0.131" dia. x 2½" long.

VTCR

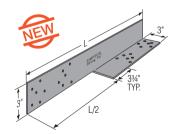
U.S. Patent 6,840,020

Typical VTCR Side View

DSC Drag Strut Connector


The DSC Drag Strut Connector transfers diaphragm shear forces to the shearwalls. The DSC2 is a smaller, lighter version that installs with fewer screws.

MATERIAL: DSC2—7 gauge, DSC5—3 gauge FINISH: DSC2—Galvanized


DSC5—Simpson Strong-Tie® gray paint

INSTALLATION:

- Use all specified fasteners; see General Notes.
- Strong-Drive® SDS crews are provided.

DSC5R/L-SDS3

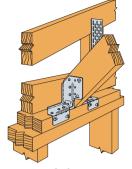
(DSC2 similar) (Right hand DSC shown; specify right or left hand when ordering) U.S. Patent 6.655.096

- 1. Factored resistances have been increased 15% for earthquake and wind loading with no further increase allowed.
- 2. Lag screws will not generate the tabulated factored resistances.
- 3. SDS screws minimum penetration is 2¾", minimum end distance is 2½" and minimum edge distance is ¾" for full load values.
- 4. Installation of Strong Drive screws through truss plates must be approved by the truss engineer. Pre-drilling is required.

				Factored Resistance (K _D =1.15)					
	88-4-1			D.Fii	'-L	S-P-F			
	Model No.	(in)	Fasteners	Compression	Tension	Compression	Tension		
	110.	(111)		lbs	lbs	lbs	lbs		
				kN	kN	kN	kN		
	DSC2R/L-SDS3	16	20-SDS 1/4"x3"	3740	6530	2695	4700		
	D905K/F-9D93	10	20-3D3 74 X3	16.66	29.09	12.00	20.94		
	DSC5R/L-SDS3	21	24-SDS 1/4"x3"	6495	10630	4675	7655		
+	DOCON/L-SDOO	21	24-3D3 '/4 X3	28.93	47.35	20.82	34.10		

GBC Gable Brace Connector

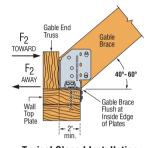
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.


The GBC provides improved anchorage of gable bracing to the exterior wall. Installation flexibility for brace angle. GBC has tension and compression capacities.

MATERIAL: 16 gauge FINISH: Galvanized

INSTALLATION:

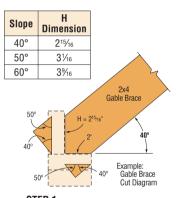
- Use all specified fasteners. See General Notes.
- The GBC must be installed in pairs to achieve full load capacity.


	0 0
GBC	
US Patent	SIMPSON Strong-Tree
Pending	0 0 37/8"
3"	37/6"

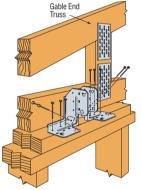
SIMPSON

Strong-Tie

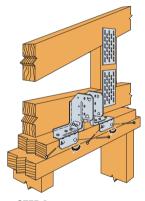
Typical GBC Installation

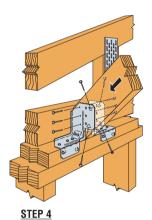


Typical Sloped Installation


		Fasteners per Connector		Perpendicular to Endwall (F_2) Factored Resistance($K_D = 1.15$)									
					D.F	ir-L		S-P-F					
				Toward Anchors		Away from Anchors		Toward Anchors		Away from Anchors			
	Model Qty No. Rea'd			Gable Bra	ace Angle	Gable Brace Angle		Gable Brace Angle		Gable Brace Angle			
140	. Inoq u	Gable	Top Plates	40°-45°	46°-60°	40°-45°	46°-60°	40°-45°	46°-60°	40°-45°	46°-60°		
				lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs		
				kN	kN	kN	kN	kN	kN	kN	kN		
GP	C 2	5-8dx1½	E 0dv41/	7-94	945	830	695	610	665	580	490	425	
GD	GBC 2		5-8dx1½ 7-8d	4.21	3.70	3.10	2.72	2.96	2.58	2.18	1.89		

- 1. For 1% x 3% (or larger) LVL gable brace, the factored resistance at 40° to 45° is 945 lbs (4.21 kN) towards the anchors and 970 lbs (4.32 kN) away from the anchors.
- 2. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed. Reduce where other loads govern.
- 3. Use a minimum 2x4 gable brace.
- 4. **NAILS:** 8d = 0.131" dia. x $2\frac{1}{2}$ " long, 8dx1½ = 0.131" dia. x 1½" long. See page 24-25 for other nail sizes and information.

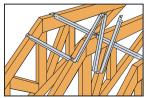

GBC INSTALLATION SEQUENCE


STEP 1 Double angle cut the gable brace to sit flat on the wall double top plate and flush against the gable end truss for 2x4 top plate. The double angle cuts should form a 90° angle on the end of the gable brace.

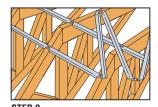
Set each GBC on top of the double top plate so that the bend line slots are flush with the inside edge of the double top plate. Install fasteners into the top of the double top plate.

STEP 3 Bend GBC legs (one time only) over the inside of the double top plate and install fasteners.

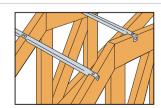
Install fasteners into the gable brace. NOTE: Attach the other end of the gable brace to blocking at the roof diaphragm as directed by the Designer.


TSF Truss Spacer

The TSF is a fast and accurate method for spacing trusses that eliminates layout marking of top plates and can be left in place under the sheathing. Accuracy is improved, spacing errors are minimized, and it is easy to use.


MATERIAL: 24 gauge FINISH: Galvanized INSTALLATION:

- · See Installation Sequence below.
- TSF Truss Spacers do not provide bracing of any kind and are not structural members. The TSF is for spacing only. Refer to instructions from architect, engineer, truss manufacturer or other for bracing and installation information.


Model		Dimensio	ns
No.	W	O.C. Spacing	Total Length
TSF2-16	1½	16	8'
TSF2-24	1½	24	10'

Nail starting notch to first member.

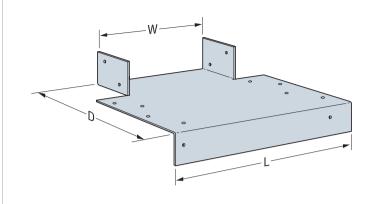
STEP 2 As each successive member is positioned, unfold TSF to next notch. The notch teeth grip member and align it for nailing.

TSF

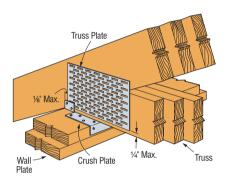
STEP 3 If spacer does not align with end truss, break spacer off at notch. Then, hammer spacer flat, fold it under and nail.

SIMPSON Strong-Tie

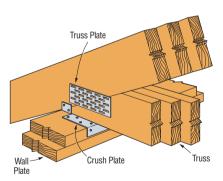
The CP transfers load from the truss or girder to plates for bearing limited conditions. Replaces nail-on scabs or in some cases, an additional ply when needed for bearing.


MATERIAL: See table FINISH: Galvanized

DESIGN:


• Factored resistances are in accordance with CSA 086-09 assuming ϕ F_{CP} of 812 psi for D.Fir-L and 615 psi for S-P-F. See sections 4.4.4(2) and 5.5.9 TPIC 2011 when compression loads are applied to both sides of truss chord members at bearing locations.

INSTALLATION: • Use all specified fasteners.


• For Case 1, truss plates must be located a maximum of $\frac{1}{4}$ " from the underside of the truss chord and a maximum of $\frac{1}{4}$ " from the edge of the wall plates in accordance with the reinforcing requirements of 5.5.9 TPIC 2011.

			Dime	nsion	s (in)	Fas	teners		Factored F	Resistance	
								D.F	ir-L	S-I	P-F
Model	Ga	Wall						Uplift	Bearing	Uplift	Bearing
No.	ua	Plate	W	D	L	Wall Plate	Truss	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
						1 1410		lbs	lbs	lbs	lbs
								kN	kN	kN	kN
					CASE .	1 (Truss	Plate Reinfo	rcement)			
25.4								225	5965	225	4515
CP1-4	20		1%	3½	41/2	6-10d	4-10dx1½	1.00	26.57	1.00	20.11
000.4	16		01/	01/	5¾	C 104	4 40 441/	225	11390	225	9030
CP2-4	16	2x4	31/4	3½	5%4	6-10d	4-10dx1½	1.00	53.14	1.00	40.22
CP3-4	16	2X4	43/4	3½	71/2	6-10d	4.404.41/	225	17895	225	13545
GP3-4	10		4%	372	1 72	6-10u	4-10dx1½	1.00	79.71	1.00	60.33
CP4-4	12		6½	3½	91/2	6-10d	4 404-447	225	23860	225	18065
GP4-4	12		0 1/2	3 1/2	9 1/2	6-10u	4-10dx1½	1.00	106.28	1.00	80.47
CP1-6	20		1%	5½	41/2	10-10d	4-10dx1½	225	9370	225	7095
UP 1-0	20		178	3 7/2	4 72	10-100	4-100X172	1.00	41.47	1.00	31.60
CP2-6	16		31/4	5½	53/4	10-10d	4-10dx1½	225	18740	225	14190
UF 2-0	10	2x6	374	J 72	J74	10-100	4-10ux 172	1.00	83.47	1.00	63.21
CP3-6	16	2.00	43/4	5½	71/2	10-10d	4-10dx1½	225	28110	225	21285
01 5-0	10		7 /4	J / 2	1 /2	10-10u	4-10ux172	1.00	125.21	1.00	94.81
CP4-6	12		6½	5½	9½	10-10d	10d 4-10dx1½	225	37495	225	28390
01 4 0	12		072	072	372	10 100	4 100X172	1.00	167.02	1.00	126.46
					C/	ASE 2 (No	Reinforcer	nent)			
CP1-4	20		15/8	3½	4½	6-10d	4-10dx1½	225	4685	225	3550
01 1-4	20		1 78	J / 2	4/2	0-10u	4-10ux172	1.00	20.87	1.00	15.81
CP2-4	16		31/4	3½	5¾	6-10d	4-10dx1½	225	9370	225	7100
012 4	10	2x4	074	072	J / 4	0 100	4 10ux172	1.00	41.74	1.00	31.63
CP3-4	16	2,4	43/4	3½	71/2	6-10d	4-10dx1½	225	14055	225	10650
010 4	10		774	072	1 /2	0 100	4 100X172	1.00	62.61	1.00	47.44
CP4-4	12		6½	3½	9½	6-10d	4-10dx1½	225	18750	225	14195
01 1 1			0,2	072	072	0 100	1 100/172	1.00	83.52	1.00	63.23
CP1-6	20		1%	5½	41/2	10-10d	4-10dx1½	225	7365	225	5575
01 1 0			170		172	10 100	1 100/172	1.00	32.81	1.00	24.83
CP2-6	16		31/4	5½	53/4	10-10d	4-10dx1½	225	14730	225	11150
0.20		2x6					1 100/11/2	1.00	65.61	1.00	49.67
CP3-6	16	0	43/4	5½	71/2	10-10d	4-10dx1½	225	22095	225	16725
								1.00	98.42	1.00	74.50
CP4-6	12		6½	5½	9½	10-10d	d 4-10dx1½	225	29460	225	22305
								1.00	131.22	1.00	99.35

Case 1

Case 2

Plated Truss Connectors

Factored bearing resistances assume wall plate and truss are the same species.
 For a mixed species system use S-P-F values.

^{2.} NAILS: 10d = 0.148° dia. x 3° long, 10dx1% = 0.148° dia. x 1%° long. See page 24-25 for other nail sizes and information.

TBE Truss Bearing Enhancers

One size works with any number of girder plys. The TBE transfers load from the truss or girder to plates for bearing-limited conditions, and provides exceptional uplift capacity. Replaces nail-on scabs that provide lower load transfer, or in some cases, an additional ply when needed for bearing.

The table lists factored resistances for TBE4 used on 2x4 and TBE6 used on 2x6 top plates. The tables give the different resistances calculated for TBE with and without wood bearing. See page 165 for Alternate Installation.

MATERIAL: 18 gauge

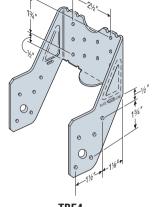
FINISH: Galvanized. See Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

- TBE must be installed in pairs.
- Top plate size is 2x4 for TBE4, 2x6 for TBE6. Use alternate installation for TBE4 and TBE6 on larger plates or pre-sheathed walls.
- Do not use TBEs in end-grain-bearing applications.

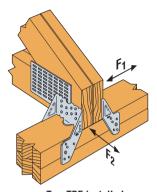
These products are available with additional corrosion protection.

Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.


TBE FASTENER SCHEDULE

	Model	Truss Plys	Fasteners per each TBE				
	No.	iruss Piys	Rafter	Plate			
ſ	TBE4	1	10-10dx1½	10-10dx1½			
	IDE4	2 or more	10-10d	10-10d			
	TBE6	1	10-10dx1½	10-10dx1½			
	IDEO	2 or more	10-10d	10-10d			

Fasteners


NAILS: 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

TBE Only Factored Resistance

TBE4 (TBE6 similar) U.S. Patent 5.109.646 Canada Patent 2,044,440

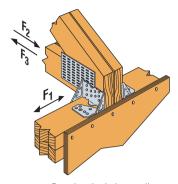
Combined TRE and

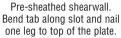
Strong-Tie

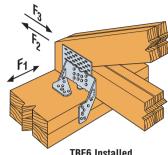
Two TBE installed with two ply girder truss

		гази	ellers	10	E Unity Facio	ieu nesisiaii	ice	Combined	TBE and
	No.of			Uplift	Normal		eral 1.15)	Wood B Factored R	
Model No.	Truss Plies	Truss	Plate	(K _D =1.15)	(K _D =1.00)	F1	F2	Normal (K _D =1.00)	TBL ⁶
				lbs	lbs	lbs	lbs	lbs	
				kN	kN	kN	kN	kN	in
					.Fir-L				
				1605	3540	655	1415	7800	
	1	20-10dx1½	20-10dx1½	7.14	15.75	2.91	6.29	34.70	6.41
				1605	3660	655	1415	12180	
	2	20-10d	20-10d	7.14	16.28	2.91	6.29	54.18	5.00
TBE4				1605	3660	655	1415	16445	
	3	20-10d	20-10d	7.14	16.28	2.91	6.29	73.15	4.50
				1605	3660	655	1415	20705	
	4	20-10d	20-10d	7.14	16.28	2.91	6.29	92.10	4.25
				1760	3540	490	1745	10235	
	1	20-10dx1½	20-10dx1½	7.83	15.75	2.18	7.76	45.53	8.41
				1760	3860	490	1745	17250	
	2	20-10d	20-10d	7.83	17.17	2.18	7.76	76.73	7.09
TBE6				1760	3860	490	1745	23945	
	3	20-10d	20-10d	7.83	17.17	2.18	7.76	106.52	6.56
	4	00 101	00 104	1760	3860	490	1745	30640	6.00
	4	20-10d	20-10d	7.83	17.17	2.18	7.76	136.30	6.29
					S-P-F				
				1605	3220	615	1415	6445	
	1	20-10dx1½	20-10dx1½	7.14	14.32	2.74	6.29	28.67	6.99
				1605	3440	615	1415	9890	
	2	20-10d	20-10d	7.14	15.30	2.74	6.29	43.99	5.37
TBE4				1605	3440	615	1415	13120	
	3	20-10d	20-10d	7.14	15.30	2.74	6.29	58.36	4.74
				1605	3440	615	1415	16345	
	4	20-10d	20-10d	7.14	15.30	2.74	6.29	72.71	4.43
				1760	3220	490	1585	8290	
	1	20-10dx1½	20-10dx1½	7.83	14.32	2.18	7.05	36.88	8.99
				1760	3540	490	1585	13680	
	2	20-10d	20-10d	7.83	15.75	2.18	7.05	60.85	7.42
TBE6				1760	3540	490	1585	18750	
	3	20-10d	20-10d	7.83	15.75	2.18	7.05	83.41	6.78
				1760	3540	490	1585	23820	
	4	20-10d	20-10d	7.83	15.75	2.18	7.05	105.96	6.46

- 1. Factored resistances are for two TBE's only. Wood factored bearing resistance may be added as shown in the table.
- 2. Factored bearing resistances shown assume $\phi F_{CP} = 812$ psi (5.60 MPa) for D.Fir-L and 614 psi (4.24 MPa) for S-P-F. See section 4.4.4 TPIC 2011 for required bearing reinforcement when compression loads are applied to both sides of truss member.
- 3. Factored uplift resistances have been increased 15% for short term load duration with no further increase allowed; reduce resistances by 15% for standard term load duration.
- 4. Factored resistances are determined by nail shear calculations or tests of the metal connectors. The attached wood members must must be designed to withstand the loads imposed by the nails.
- 5. Use lower of top plate or wood truss species.
- 6. Total bearing length, TBL, equals the plate width plus simulated bearing length provided by the TBE. TBE4 = 31/2" plate width; TBE6 = 51/2" plate width.


TBE <u>Truss</u> Bearing Enhancers


ALTERNATE INSTALLATION (See illustrations at right)


These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

		Alteri	nate Inst	tallation	Factore	ed Resis	tance	
Model			ir-L 1.15)		S-P-F (K _D =1.15)			
No.	Uplift	F ₁	F ₂	F ₃	Uplift	F ₁	F ₂	F ₃
	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
	kN	kN	kN	kN	kN	kN	kN	kN
TBE4	1605	490	1415	490	1280	370	1005	350
I DL4	7.14	2.18	6.29	2.18	5.69	1.65	4.47	1.56
TBE6	1760	490	1415	490	1280	370	1005	350
IDEO	7.83	2.18	6.29	2.18	5.69	1.65	4.47	1.56

- 1. Alternate Installation Factored Normal Resistances are 0.60 of the TBE only tabulated resistances on page 162.
- 2. TBL values do not apply to Alternate Installation.
 3. See table footnotes on opposite page.

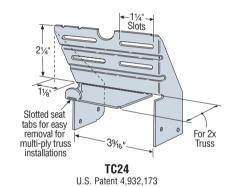
TBE6 Installed on Double 2x8 Top Plate

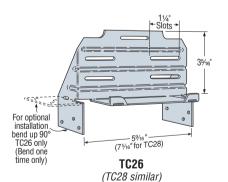
TC Truss Connectors

The TC truss connector is an ideal connector for scissor trusses and can allow horizontal movement up to 11/4". The TC also attaches plated trusses to top plates or sill plates to resist uplift forces. Typically used on one or both ends of truss as determined by the Designer.

MATERIAL: 16 gauge FINISH: Galvanized INSTALLATION: • Use all specified fasteners. See General Notes.

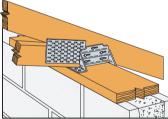
- . Drive 10d nails into the truss at the inside end of the slotted holes (inside end is towards the centre of the truss and clinch on back side). Do not seat these nails into the truss-allow room under the nail head for movement of the truss with respect to the wall.
- After installation of roofing materials, nails may be required to be fully seated into the truss. (As required by the Designer or Truss Designer).

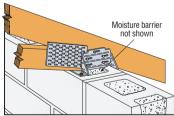

Optional TC Installation


· Bend one flange up 90°. Drive specified nails into the top and face of the top plates or install Titen® screws into the top and face of masonry wall. See optional load tables and installation details.

	Faste	eners	Factored Uplift Resistance (K _D =1.15)			
Model		Wall	D.Fir-L	S-P-F		
	Truss	Plates	lbs	lbs		
		1 lutos	kN	kN		
TC24	4-10d	4-10d	605	430		
1024	4-10u	4-10u	2.69	1.91		
TC26	5-10d	6-10d	1015	720		
1020	3-10u	0-10u	4.51	3.20		
TC28	5-10d	6-10d	1015	720		
1020	J-100	0-100	4.51	3.20		

OPTIONAL TC INSTALLATION TABLE


	Faste	eners	Factored Uplift Resistance (K _D =1.15)		
Model	M-11		D.Fir-L	S-P-F	
	Truss	Wall Plates	lbs	lbs	
		1 10163	kN	kN	
	5-10dx1½	6-10dx1½	810	660	
TC26	3-100X172	0-1UUX 1 72	3.60	2.94	
1020	5-10d	6-10d	930	660	
	3-100	0-100	4.14	2.94	



Typical TC24 Installation

Optional TC26 Installation for Grouted Concrete Block using a Wood Nailer (8", 10", 12" Wall Installation similar)

Optional TC26 Installation for Grouted Concrete Block using Titen Screws

- 1. Factored resistances have been increased 15% for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- 2. Grout strength is 15 MPa minimum.
- 3. Nail values based on single 2x truss. 10d joist nails must be clinched.
- 4. Optional TC26 installation with 10d nails requires minimum 3" top plate thickness.
- 5. TC26 fastened to grouted concrete block with 6 3/16" x 21/4" Titen screws has a factored uplift resistance of 275 lbs (1.22 kN)
- 6. **NAILS:** 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

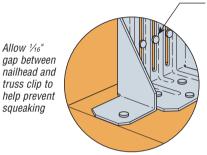
Plated Truss Connectors

Plated Truss Connectors

HTC Heavy Truss Clips

For alignment control between a roof truss and nonbearing walls; the $2\frac{1}{2}$ slot permits vertical truss chord movement when loads are applied.


MATERIAL: 18 gauge FINISH: Galvanized


INSTALLATION: • Use all specified fasteners; see General Notes.

- The HTC has a $2\frac{1}{2}$ " slot to accommodate truss movement
- . This connector has high lateral capacity.
- The S/HTC is available for steel truss applications.

	Dimensions	Faste	eners	Factor	ed Resist	ance (K	=1.15)			
D				Withou	ut Gap²	With 11/4" Gap3				
Model No.	Top Plate	Base	Slot	F ₁	F ₂	F ₁	F ₂			
NO.	TUP Flate	Dase		lbs	lbs	lbs	lbs			
				kN	kN	kN	kN			
D.Fir-L										
	2x4 Plate	6-10d	3-10d	735	445	145	470			
HTC4		0-10u	3-10u	3.27	1.98	0.65	2.09			
11104	2x6 Plate	6-10d	3-10d	910	465	265	460			
	2.01 1016	0-10u	3-10u	4.05	2.07	1.18	2.05			
			S-F	P-F						
	2x4 Plate	6-10d	3-10d	530	315	105	340			
HTC4	ZX4 Flate	0-10u	3-10u	2.36	1.40	0.47	1.51			
11104	2x6 Plate	6-10d	3-10d	650	330	190	330			
	ZAUFIALE	0-10u	3-10u	2.90	1.47	0.85	1.47			

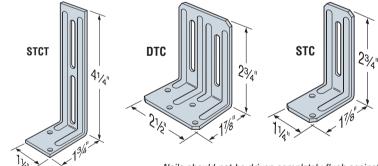
- Factored resistances have been increased 15% for wind or earthquake loading with no further increase allowed. Reduce where other load durations govern.
- Truss or rafter must be bearing on top plate to achieve factored resistances under "Without Gap."
- Installed with maximum 1¼" space between rafter or truss and top plate, use values under "With 1¼" Gap." Where resistances are not required, space is not limited to 1¼".
- 4. NAILS: 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information

Nails should not be driven completely flush against the connector, to allow vertical truss movement.

SIMPSON

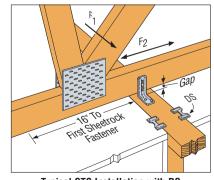
Typical HTC4 Installation on a 2x6 Plate

STC/STCT/DTC Roof Truss Clips


For alignment control between a roof truss and nonbearing walls; the $1\frac{1}{2}$ " slot permits vertical truss chord movement when loads are applied.

MATERIAL: 18 gauge. FINISH: Galvanized

INSTALLATION: • Use all specified fasteners;


see General Notes.

- Use STC or DTC depending on required resistances. STC, installed with Drywall Stop (DS), helps prevent fasteners tearing through the ceiling sheetrock (see illustration).
- Use STCT where truss or rafter is separated from the top plate of the nonbearing wall.
- Install slot nails in the middle of the slot.

Nails should not be driven completely flush against the connector, to allow vertical truss movement.

	Dime	nsions	Faste	nore	Factored Resistance (K _D = 1.15)								
	(i	n)	1 431011013			D.Fir-L				S-P-F			
Model		Vertical Leg		01-4	Withou	ıt Gap²	1⁄4" Ma	x Gap	Withou	Without Gap ² 1/4" Max Ga		x Gap	
No.	Plate		Base		F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	F ₁	F ₂	
	Base			Slot	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	
					kN	kN	kN	kN	kN	kN	kN	kN	
STC	1½ x 1%	1½ x 2¾	2-8d	1-8d	155	85	70	60	110	60	50	45	
310	174 X 178	174 X Z74	2-ou	1-ou	0.69	0.38	0.31	0.27	0.49	0.27	0.22	0.20	
STCT	11/4 x 13/4	11/4 x 41/4	2-8d	3d 1-8d	_	_	_	_	_	_	_	_	
3101	174 X 174	1 74 X 4 74	2-ou		_	_	_	_	_	_	_	_	
DTC	914 v 174	2½ x 2¾	4-8d	2-8d	240	395	155	250	170	280	110	175	
טוט	2½ x 1%				1.07	1.76	0.69	1.11	0.76	1.25	0.49	0.78	

Typical STC Installation with DS Allow 1/16" gap between nailhead and truss clip to help prevent squeaking

- 1. Factored resistances may not be increased for short-term loading.
- Truss or rafter must be bearing on top plate to achieve the factored resistances under "Without Gap."
- 3. Installed with maximum ¼" space between rafter or truss and top plate under "With ¼ Gap." Where resistances are not required, space is not limited to ¼".
- 4. **NAILS:** 8d = 0.131" dia. $\times 2\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

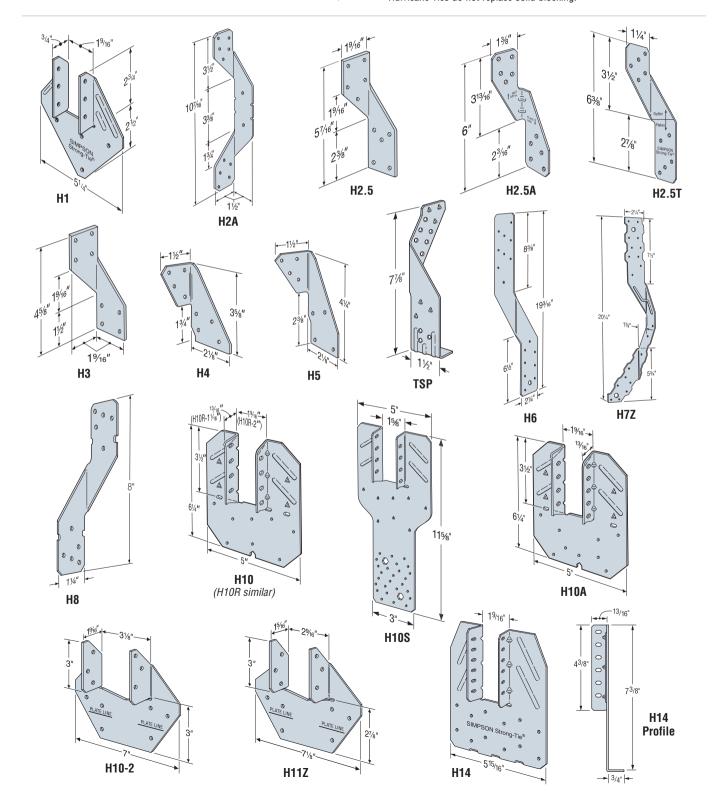
H/TSP Seismic & Hurricane Ties

The Hurricane Tie series features various configurations of wind and seismic ties for trusses and rafters.

The TSP stud plate tie has now been tested in top-plate-to-rafter

The H2A features an improved design and higher uplift capacity to replace the H2. The H10A has a similar design as the H10 but offers higher uplift capacity.

The H10S provides a high capacity connection from truss/rafter to stud. A flexible nailing pattern allows installation where the stud is offset from the rafter up to 1". Suitable for wood-to-wood and wood-to-CMU/concrete applications.

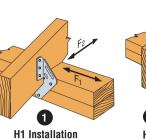

The H2.5T's truncated design was developed to accommodate trusses with 2x4 bottom chords. The easy to install, five nail pattern is stronger and gets better uplift values than our popular H2.5 hurricane tie.

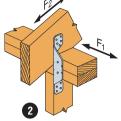
MATERIAL: See table.

FINISH: Galvanized. H7Z and H11Z—ZMAX® coating. Some models available in stainless steel or ZMAX; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

- H1 can be installed with flanges facing inwards (reverse of H1 drawing number 1).
- H2.5, H2.5T, H3, H4, H5 and H6 ties are only shipped in equal quantities of rights and lefts. (Rights shown.)
- · Hurricane Ties do not replace solid blocking.

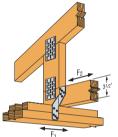

SIMPSON


H/TSP Seismic & Hurricane Ties

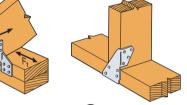
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

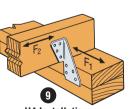
		F				Factore	d Resist	ance (K	D = 1.15)	
		Fi	asteners			D.Fir-L			S-P-F		
Model	0-				11-1161	Late	eral		Lat	eral	
No.	Ga	To	To	To	Uplift	F ₁	F ₂	Uplift	F ₁	F ₂	
		Rafters/ Truss	Plates	Studs	lbs	lbs	lbs	lbs	lbs	lbs	
		11455			kN	kN	kN	kN	kN	kN	
114	10	0.04.41/	4.04		740	685	300	680	485	215	
H1	18	6-8dx1½	4-8d	_	3.29	3.05	1.33	3.02	2.16	0.96	
110 4	40	E 04.41/	0.04.41/	E 0441/	830	220	75	590	155	55	
H2A	18	5-8dx1½	2-8dx1½	5-8dx1½	3.69	0.98	0.33	2.62	0.69	0.24	
H2.5	18	E 04	E 04		590	225	220	520	160	155	
п2.5	10	5-8d	5-8d		2.62	1.00	0.98	2.31	0.71	0.69	
UO EA	18	E 04	E 04		805	160	160	755	160	160	
H2.5A	10	5-8d	5-8d	_	3.58	0.71	0.71	3.36	0.71	0.71	
H2.5T	18	5-8d	5-8d		835	175	210	740	160	210	
п2.31	10	5-6u	5-ou	_	3.71	0.78	0.93	3.29	0.71	0.93	
НЗ	18	4-8d	4-8d		740	180	265	615	125	190	
по	10	4-ou	4-ou	_	3.29	0.80	1.18	2.74	0.56	0.85	
H4	20	4-8d	4-8d		510	180	235	440	130	165	
П4	20	4-ou	4-ou	_	2.27	0.80	1.05	1.96	0.58	0.73	
H5	18	4-8d	4-8d		685	180	305	500	130	215	
по	10	4-ou	4-ou	_	3.05	0.80	1.36	2.22	0.58	0.96	
Н6	16		8-8d	8-8d	1585	1085	_	1125	770	_	
по	10		0-0u	o-ou	7.05	4.83	_	5.00	3.43	_	
H7Z	16	4-8d	2-84	8-8d	1390	670	_	990	475	_	
117 2	10	4-0u	2-8d	2-0U	0-0u	6.18	2.98	_	4.40	2.11	_
H8 ³	18	5-10dx1½	5-10dx1½		1120	_		1025	_		
110	10	J-100X172	J-10ux172		4.98			4.56		_	
H10	18	8-8dx1½	8-8dx1½	_	1465	900	360	1040	640	255	
1110	10	0 00X172	O OUX172		6.52	4.00	1.60	4.63	2.85	1.13	
H10A	18	9-10dx1½	9-10dx1½		1735	795	410	1505	565	290	
IIIUA	10	9-100X172	3-10ux172		7.72	3.54	1.82	6.69	2.51	1.29	
H10S ^{7,8}	18	8-8dx1½	8-8dx1½	8-8d	1465	795	315	1040	565	225	
11100	10	0 00X172	0 00X172	0 00	6.52	3.54	1.40	4.63	2.51	1.00	
H10-2	18	6-10d	6-10d	_	1070	760	555	760	540	395	
1110 2	10	0 100	0 100		4.76	3.38	2.47	3.38	2.40	1.76	
H11Z	18	6-16dx2½	6-16dx2½	_	1095	920	545	780	655	390	
11112	10	O TOUXE72	O TOUNE 72		4.87	4.09	2.42	3.47	2.91	1.73	
		1 12-8dx1½	13-8d	_	2390	855	320	1805	610	230	
H14	18	12 GGX172	10 00		10.63	3.80	1.42	8.03	2.71	1.02	
1114	10	2 12-8dx1½	15-8d	_	2390	855	320	1805	610	230	
		E 12 GGX172	15-8d		10.63	3.80	1.42	8.03	2.71	1.02	
		9-10dx1½	6-10dx11/6	_	1295	440	_	920	310	_	
TSP	16	0 . 0 d/(1/2	6-10dx1½		5.76	1.96	_	4.09	1.38	_	
		6-10d	_	1560	440	_	1105	310	_		
9-10dx1½	6-100	_	6.94	1.96	_	4.92	1.38	_			

- 1. Factored resistances have been increased 15% for short term loading. No further increase is allowed.
- Factored resistances are for one anchor. A minimum rafter thickness of 2½" must be used when
 framing anchors are installed on the same side of the plate (exception: H2.5A).
- H8 factored uplift resistances for stud-to-bottom plate installations are 595 lbs. (2.65 kN) for D.Fir-L and 390 lbs. (1.74 kN) for S-P-F.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 5. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable (see General Instuctions for the Installer notes on pages 22-23). For a continuous load path, connections at the top and bottom of the wall must be on the same side of the wall (see technical bulletin T-HTIECONPATH).
- 6. Factored resistances in the F1 direction are not intended to replace diaphragm boundary members or prevent cross grain bending of the truss or rafter members. Additional shear transfer elements shall be considered where there may be effects of cross grain bending or tension.
- H10S can have the stud offset a maximum of 1" from the rafter (centre to centre) for a reduced uplift of 1435 lbs (6.38 kN) D.Fir-L and 1015 lbs (4.51 kN) S-P-F.
- 8. H10S nails to plates are optional for uplift but required for lateral loads.
- 9. NAILS: $16dx2\frac{1}{2} = 0.162^{\circ}$ dia. $x 2\frac{1}{2}$ long, $10d = 0.148^{\circ}$ dia. $x 3^{\circ}$ long, $10dx1\frac{1}{2} = 0.148^{\circ}$ dia. $x 1\frac{1}{2}$ long, $8d = 0.131^{\circ}$ dia. $x 2\frac{1}{2}$ long, $8dx1\frac{1}{2} = 0.131^{\circ}$ dia. $x 1\frac{1}{2}$ long. See page 24-25 for other nail sizes and information.

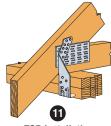

H2.5 Installation
(Nails into both top plates)

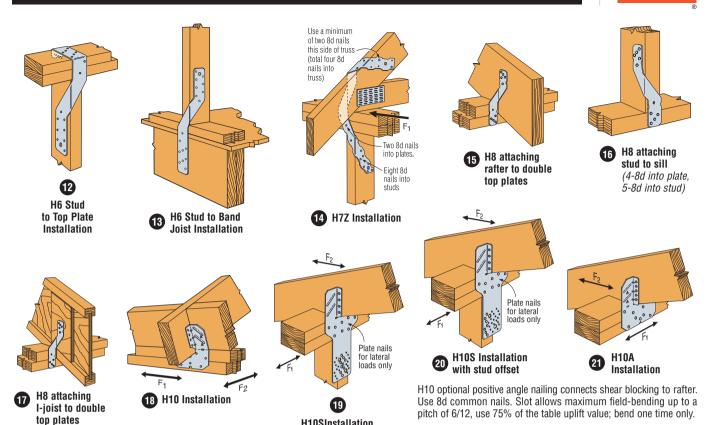
H2.5A Installation (Nails into both top plates)


H2.5T Installation (Nails into both top plates)

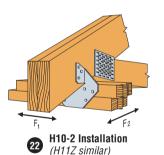

6 H2.5T Installation

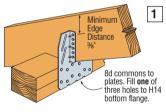
H3 Installation (Nails into upper top plate)

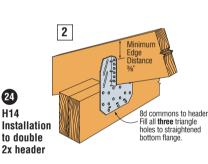

8 H4 Installation

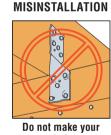

H4 Installation (Nails into upper top plate)

H5 Installation (Nails into both top plates)




TSP Installation


H10SInstallation


H14

AVOID A

own holes or overdrive nails!

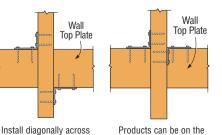
Considerations for Hurricane Tie Selection

1. What is the uplift load?

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

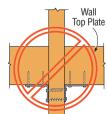
- What is the parallel-to-plate load?
- What is the perpendicular-to-plate load?
- What is the species of wood used for the rafter and the top plates? (Select the load table based on the lowest performing species of wood.)
- Will the hurricane tie be nailed into both top plates or the upper top plate only?
- What load or loads will the hurricane tie be taking?

Factored resistances for more than one direction for a single connection cannot be added together. A design load which can be divided into components in the directions given must be evaluated as follows:


Factored Uplift / Uplift Resistance + Factored Parallel to Plate / Parallel to Plate Resistance + Factored Perpendicular to Plate / Perpendicular to Plate Resistance < 1.0.

The three terms in the unity equation are due to possible directions that exist to generate force on a hurricane tie. The actual number of terms used in the equation for each condition is dependant on designer's method of calculating wind forces and the utilization of the tie in the structural system.

7. Select hurricane tie based on performance, application, installed cost and ease of installation.


Hurricane Tie Installations to Achieve Twice the Capacity (Top View)

Both connectors shall be same model.

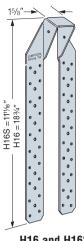
from each other for minimum 2x truss.

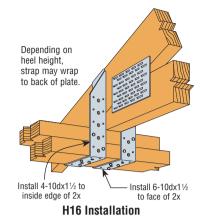
same side of the wall provided they are configured as shown.

Nailing into both sides of a single ply 2x truss may cause the wood to split.

height up to a maximum of 131/2" (H16 series). Minimum heel height for H16 series is 4".

The H16-2 series has a presloped seat of 5:12, for double trusses.

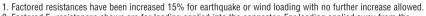

The HGA10 attaches to gable trusses and provides good lateral wind resistance. The HS24 attaches the bottom chord of a truss or rafter at pitches from 0:12 to 4:12 to double 2x4 top plates. Double shear nailing allows for higher lateral resistance.


MATERIAL: See table

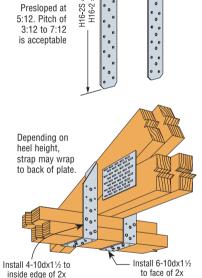
FINISH: Galvanized. Some models available in stainless steel or ZMAX®; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

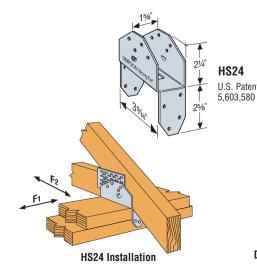
- HS24 requires slant nailing only when bottom chord of truss or rafter has no slope.
- · Hurricane Ties do not replace solid blocking.
- . HGA10KT comes with SDS screws provided.

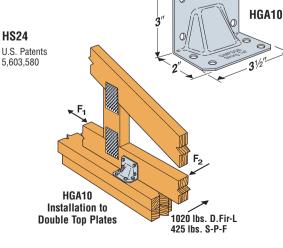


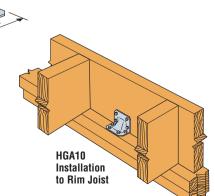
H16 and H16S


Presloped at 5:12. Truss/rafter pitch of 3:12 to 7:12 is acceptable

		Faster	ners	Factored Resistance (K _D = 1.15)						
					D.Fir-L		S-P-F			
Model	Ga	To	т.	Uplift	Lateral		111:44	Lateral		
No.	ua	Rafters/	To Plates	Opini	F ₁	F ₂	Uplift	F ₁	F ₂	
		Truss		lbs	lbs	lbs	lbs	lbs	lbs	
				kN	kN	kN	kN	kN	kN	
HGA10KT ²	14	4-SDS 1/4"x11/2"	4-SDS 1/4"x3"	750	1604	1615	660	1410	1420	
HUATUKT	14	4-0D0 /4 X1 /2	4-303 /4 83	3.34	7.14	7.19	2.94	6.28	6.32	
HS24 ⁴	18	8-8dx1½	8-8d	1145	1210	1600	805	860	1135	
11024	10	& 2-8d slant	0-00	5.10	5.38	7.12	3.59	3.83	5.05	
H16	18	2-10dx1½	10-10dx1½	1870	_	_	1330	_	_	
1110	10	Z-100X172	10-100X172	8.32	_	_	5.92	_	_	
H16S	18	2-10dx1½	10-10dx1½	1870	_	_	1330	_	_	
11103	10	Z-100X172	10-100X172	8.32	_	_	5.92	_	_	
H16-2	18	2-10dx1½	10-10dv11/	1870	_	_	1330	_		
1110-2	10	Z-10UX 1 72	10-10dx1½	8.32	_	_	5.92	_	_	
H16-2S	18	2-10dx1½	10-10dx1½	1870	_	_	1330	_	_	
1110-23	10	Z-10UX172	10-10UX172	8.32	_	_	5.92	_	_	


Factored F₂ resistances shown are for loading applied into the connector. For loading applied away from the connector the factored resistances are 1020 lbs (4.54 kN) for D.Fir-L and 425 lbs (1.89 kN) for S-P-F.


5. **NAILS:** $10dx1\frac{1}{2} = 0.148$ " dia. $x \frac{1}{2}$ " long, 8d = 0.131" dia. $x \frac{2}{2}$ " long, $8dx1\frac{1}{2} = 0.131$ " dia. $x \frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.



H16-2 and H16-2S

H16-2 Installation

^{3.} When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.

^{4.} HS24 factored resistances without slant nailing are 885 lbs (3.94 kN) D.Fir-L and 630 lbs (2.80 kN) S-P-F for uplift, 985 lbs (4.38 kN) D.Fir-L 700 lbs (3.11 kN) S-P-F for F₁, 930 lbs (4.14 kN) D.Fir-L and 655 lbs (2.91 kN) S-P-F for F₂.

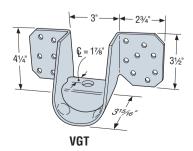
SIMPSON Strong-Tie

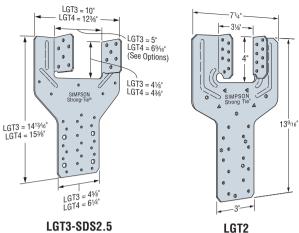
The LGT, MGT and VGT are girder tiedowns for moderate to high load applications. The LGT and VGT are also suitable for retrofit applications.

LGT connectors provide a low profile connection to the studs for easy installation of drywall. Simple to install and can be installed on the inside or outside of the wall.

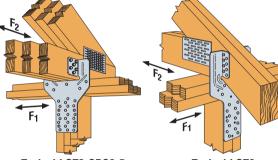
The Variable Girder Tiedown (VGT) is a higher capacity alternative to the LGT and MGT for girder trusses. It attaches with SDS screws to the side of truss and features a predeflected crescent washer that allows it to accommodate top chord pitches up to 8:12. The VGT is also available with one flange concealed for attachment to trusses with no overhang.

MATERIAL: VGT-7 gauge, LGT2-14 gauge, MGT, LGT3, LGT4-12 gauge FINISH: Galvanized

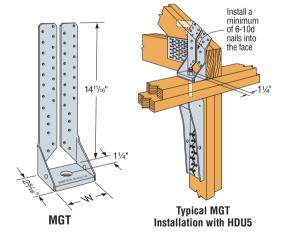

INSTALLATION: • Before installing fasteners, ensure LGT3-SDS2.5 makes complete contact with bottom of truss.

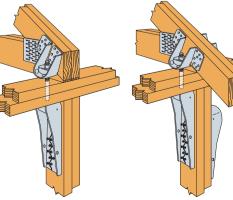

- · SDS screws included.
- · SDS screws driven through truss plates must be approved by the Truss Designer. Pre-drilling using a 5/32" bit is required.
- VGT—Screw holes are configured to allow for double installation on a two-ply (minimum) truss.
- VGT—The product can be installed in a single application or in pairs to achieve a higher uplift capacity.
- VGT—When installed on trusses with no overhangs, specify VGTR/L.
- VGT—Install washer component (provided) so that top of washer is horizontal as well as parallel with top of wall top plate.
- LGT3-SDS2.5 and LGT4-SDS3—The four large hexagon holes are intended for CMU and concrete applications.
- See page 190 for masonry applications.

OPTIONS: LGT3 and LGT4 are available with reduced widths of $W = 4^{13}/16^{11}$ and W = 6%" — order as LGT3N-SDS2.5 and LGT4N-SDS3.


			Fa	steners	Factored Resistance (K _D = 1.15)		
Model No.	Qty.	No. of Plies			D.Fir-L	S-P-F	
NU.		FIIES	Studs or Anchor	Girder Truss	lbs	lbs	
			Allelioi	11433	kN	kN	
LGT2	1	2 ply	14-10d	16-10d	3670	2605	
LG12	'	2 ply	14-10u	10-100	16.33	11.59	
LGT3-SDS2.5	1	2 nlv	3 ply 26-10d 12-SDS 1/4"x21/2" -		6415	4930	
LG13-3D32.3	'	3 piy	20-10u	12-303 /4 X2/2	28.54	21.93	
LGT4-SDS3	1	4 ply	30-10d	16-SDS 1/4"x3"	6030	3980	
LG14-SDS3	'	4 piy	30-10u	10-3D3 74 X3	26.82	17.70	
MGT	1	2 ply min.	1-%" Dia.	22-10d	5610	3985	
IVIGT	'	Z piy iiiii.	1-78 Dia.	22-10u	24.96	17.73	
	1	2 ply min.	1-%" Dia.	16-SDS 1/4"x3"	8600	6195	
VGT	'	Z piy iiiii.	1-78 Dia.	10-3D3 /4 X3	38.26	27.56	
Vai	2	2 ply min.	2-%" Dia.	32-SDS 1/4"x3"	11690	8420	
		Z pry min.	2-78 Dia.	32-3D3 /4 X3	52.00	37.46	
	1	2 ply min.	1-%" Dia.	16-SDS 1/4"x3"	3475	2505	
VGTR/L		∠ μιχ IIIIII.	1-78 Dia.	10-3D3 /4 X3	15.46	11.14	
	2	2 plv min. 2-5%" Dia.		32-SDS 1/4"x3"	6950	5010	
	2	2 ply min.	2-78 Dia.	02-0D0 74 X0	30.92	22.29	

- 1. Attached members must be designed to resist the factored loads.
- 2. Factored resistances have been increased 15% for uplift with no further increase allowed. Reduce where other loads govern.
- Additional anchorage products to be designed by others.
 MGT can be installed with straps vertical for full table load provided 26-10d nails are installed to either a solid header or minimum double 2x6 web.
- 5. LGT3-SDS2.5—F₁ factored resistances are 335 lbs (5.94 kN) for D.Fir-L and 945 lbs (4.20 kN) for S-P-F. F2 factored resistances are 670 lbs (2.98 kN) for D.Fir-L and 475 lbs (2.11 kN) for S-P-F.
- 6. LGT2-F₁ factored resistances are 1170 lbs (5.20 kN) for D.Fir-L and 830 lbs (3.69 kN) for S-P-F. F₂ factored resistances are 285 lbs (1.27 kN) for D.Fir-L and 200 lbs (0.89 kN) for S-P-F.
- 7. **NAILS:** 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.



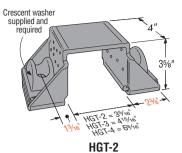

LGT3-SDS2.5 (LGT4-SDS3 similar)

Typical LGT3-SDS2.5 Installation

Typical LGT2 Ínstallation

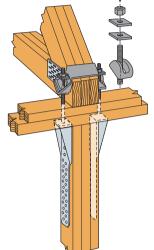
Typical VGTR Single Installation with HDU4

Typical VGT Double Installation with HDU5s


The HGT - Heavy Girder Tie-Down offers the highest uplift capacity for girders and can be installed on trusses and beams with top chord slopes from 3:12 to 8:12.

MATERIAL: 7 gauge

FINISH: Simpson Strong-Tie® gray paint


INSTALLATION:

- Install two LBP5% washers on top of each crescent washer. LBP% washers are not included with HGT and must be ordered separately. Crescent washers come with the HGT.
- Anchorage from HGT to holdown below shall be with 5/8" diameter ASTM A307 Grade A bolts or threaded rod.
- See page 191 for masonry or concrete installations.

(HGT-3. HGT-4 similar)

Install two LBP5/8" washers on top of each crescent washer (total four 5% washers) for wood installation. All washers and crescent washers are required. Crescent washers are supplied.

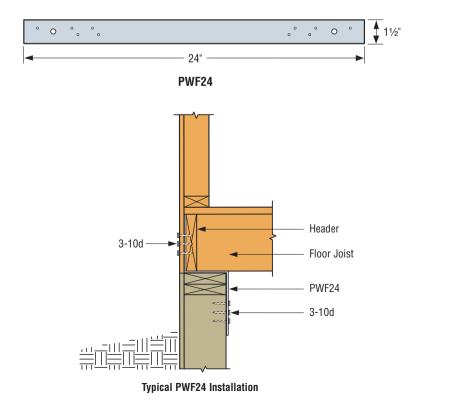
Typical HGT-3 Installation with HTT5's

			O.C. Dimension	Faste	eners		ift Resistance : 1.15)
Model No.	Qty.	No. of Plies	Between			D.Fir-L	S-P-F
NU.		1 1163	Anchors (in)	Anchor Bolts	Girder Truss	lbs	lbs
			(111)	20110	11400	kN	kN
HGT-2	1	2 ply	511/16	0.5/# 4	16-10d	12140	9280
1101-2	'	Z pry	J /16	2-⅓" φ	10-100	54.00	41.28
HGT-3	1	2 ply	75/16	0.5/11.1	16-10d	12140	9280
пит-з	'	3 ply	7 716	2-5/8" φ	10-100	54.00	41.28
HGT-4	1	4 ply	9	0.5/ 1	16-10d	12140	9280
ПС 1-4	'	4 ply	9	2-⅓" φ	10-100	54.00	41.28

- 1. Factored resistances have been increased 15% for earthquake or wind load. Reduce where other load durations govern.
- 2. Attached members must be designed to resist the applied loads.
- 3. Anchorage must be designed by others.
- 4. NAILS: 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

PWF24 Strap Tie

The PWF24 is a galvanized metal strap manufactured specifically for connecting preservative-treated wood foundation walls to the floor system. This strap exceeds the prescriptive requirements of 9.4.3 CAN/ CSA S406 "Construction of Preserved Wood Foundations.


MATERIAL: 20 gauge FINISH: Galvanized

INSTALLATION: • All fasteners shall be hot dipped galvanized.

- · See CAN/CSA S406.
- · For installations in interior-dry applications with CCA-treated lumber only.

Model	Dimens	Total	
No.	W	L	Total Fasteners
PWF24	1½	24	6-10d

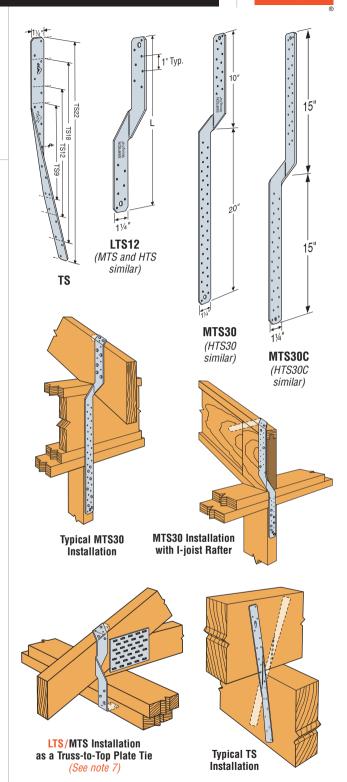
- 1. Install 3 nails into the stud and 3 nails into the rim board.
- 2. **NAILS:** 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

SIMPSON

Strong-Tie

TS/LTS/MTS/HTS Twist Straps


Twist straps provide a tension connection between two wood members. They resist uplift at the heel of a truss economically. The 3" bend section eliminates interference at the transition points between wood members. TS twist straps come with an equal number of left and right hand units in each carton.

MATERIAL: LTS-18 gauge; MTS-16 gauge; HTS-14 gauge; TS-16 gauge FINISH: Galvanized. Some products available in stainless steel and ZMAX®; see Corrosion Information, page 18-19.

INSTALLATION: Use all specified fasteners. See General Notes.

- TS should be installed in pairs to reduce eccentricity.
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

			Factored I (K _D =	Resistance 1.15)
Model	L (in)	Fasteners	D.Fir-L	S-P-F
No.	(in)	(Total)	lbs	lbs
			kN	kN
T00	0	0.40.1	1125	1040
TS9	9	8-16d	5.00	4.63
TS12	11%	10-16d	1410	1300
1312	1178	10-100	6.27	5.78
TS18	17¾	14-16d	1970	1820
1010	17.74	14 100	8.76	8.10
TS22	21%	18-16d	2125	2125
			9.45	9.45
LTS12	12	12-10dx1½	1015	720
			4.52	3.20
LTS16	16	12-10dx1½	1015	720
			4.52	3.20
LTS18	18	12-10dx1½	1015 4.52	720 3.20
			1015	720
LTS20	20	12-10dx1½	4.52	3.20
			1570	1180
MTS12	12	14-10dx1½	6.98	5.25
			1570	1180
MTS16	16	14-10dx1½	6.98	5.25
MTS18	18	14-10dx1½	1570	1180
INITOTO	10	14-100X172	6.98	5.25
MTS20	20	14-10dx1½	1570	1180
1011020		11 100/172	6.98	5.25
MTS30	30	14-10dx1½	1570	1180
			6.98	5.25
MTS24C	24	14-10dx1½	1570	1180 5.25
			6.98 1570	1180
MTS30C	30	14-10dx1½	6.98	5.25
			2050	1455
HTS16	16	16-10dx1½	9.12	6.47
LITOOO	00	04.40-44/	2050	1455
HTS20	20	24-10dx1½	9.12	6.47
HTS24	24	24-10dx1½	2050	1455
111024	44	24-10UX172	9.12	6.47
HTS28	28	24-10dx1½	2050	1455
			9.12	6.47
HTS30	30	24-10dx1½	2050	1455
			9.12	6.47
HTS30C	30	24-10dx1½	2050	1455
			9.12	6.47

- 1. LTS12 thru LTS20, MTS16 through MTS30, HTS24 through HTS30C (except HTS30) have additional nail holes.
- 2. Install half of the fasteners on each end of strap to achieve maximum factored resistance.
- 3. Factored resistances have been increased 15% for earthquake or wind loading; no further increase allowed; reduce where other loads govern.

 4. All straps except the MTS30 and HTS30 have the twist in the centre of the strap.
- 5. Twist straps do not have to be wrapped over the truss to achieve the load.
- 6. Optional nail holes are provided on some straps.
- 7. When used as a truss-to-top plate tie multiply the tabulated values by 0.95 for LTS and 0.74 for MTS. HTS cannot be used in this application.

 8. NAILS: 16d = 0.162" dia. x 3½" long, 10dx1½ = 0.148" dia. x 1½" long.
- See page 24-25 for other nail sizes and information.

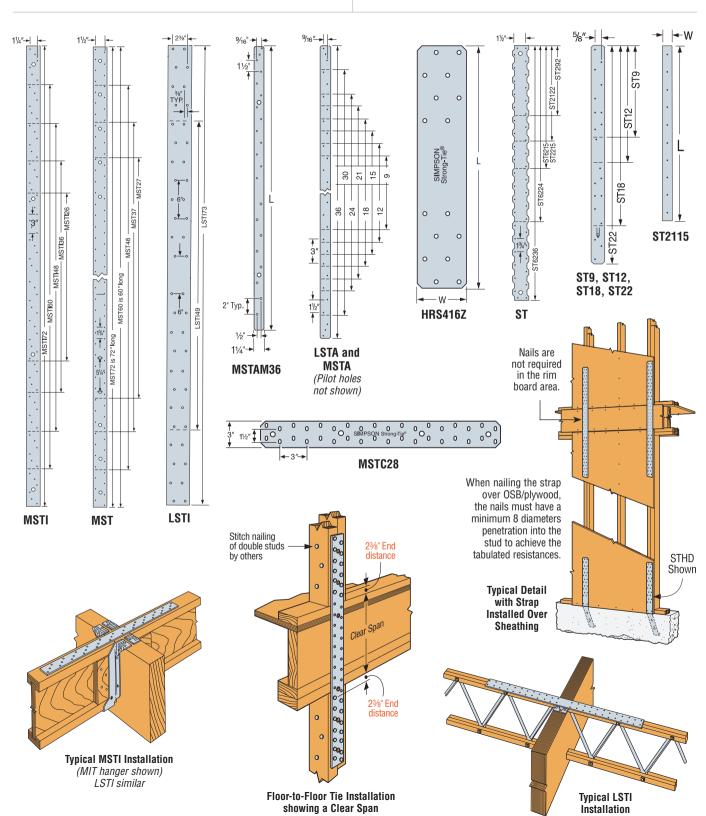
Straps & Ties

HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties

HRS, a heavy 12 gauge strap tie, provides greater support in construction and repair of home projects. Straight lines and chamfered edges for better appearance. The MSTC series has countersunk nail slots for a lower nailing profile. Coined edges ensure safer handling.

Install strap ties where wall plates are cut, at wall intersections, and as ridge ties. LSTA and MSTA straps are engineered for use on 1½" members. The 3" centre-to-centre nail spacing reduces the possibility of splitting. The LSTI light strap ties are suitable where gun-nailing is necessary through

diaphragm decking and wood chord open web trusses.

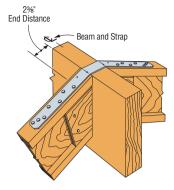

FINISH: HST—Simpson Strong-Tie® gray paint; PS—HDG;

all others—galvanized. Some products are available in stainless steel or ZMAX® coating; see Corrosion Information, page 18-19.

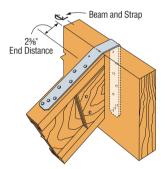
INSTALLATION: Use all specified fasteners. See General Notes.

OPTIONS: Special sizes can be made to order.

Contact Simpson Strong-Tie for longer lengths.



HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties

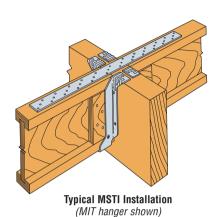


- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

			ensions				ile Resistance	
Model	Co		(in)	Fasteners		ir-L (V- 115)		P-F
No.	Ga	w	L	(Total)	(K _D = 1.00)	(K _D = 1.15)	(K _D = 1.00)	(K _D = 1.15)
		VV			kN	kN	kN	kN
					600	690	555	635
LSTA9		11/4	9	6-10d	2.67	3.07	2.47	2.82
LSTA12		11/4	12	8-10d	800	920	735	845
LOTAIZ		1 /4	12	0-10u	3.56	4.09	3.27	3.76
LSTA15		11/4	15	10-10d	1000	1150	920	1060
	-				4.45 1200	5.12 1380	4.09 1105	4.72 1270
LSTA18		11/4	18	12-10d	5.34	6.14	4.92	5.65
LOTAGA	1	447	0.1	11101	1400	1610	1290	1485
LSTA21	20	11/4	21	14-10d	6.23	7.16	5.74	6.61
LSTA24	20	11/4	24	16-10d	1600	1840	1475	1695
2017121	-	174		10 100	7.12	8.19	6.56	7.54
ST292		21/16	95/16	8-8d	585 2.60	675 3.00	535 2.38	615 2.74
	-				940	1085	865	995
ST2122		21/16	1213/16	12-8d	4.18	4.83	3.85	4.43
CT0115		3/	105/	0.04	670	770	615	710
ST2115		3/4	165/16	8-8d	2.98	3.43	2.74	3.16
ST2215		21/16	165/16	16-8d	1335	1540	1235	1420
			10111		5.94	6.85	5.49	6.32
LSTA30		11/4	30	20-10d	2235 9.94	2465 10.97	2075 9.23	2385
	-				2465	2465	2465	2465
LSTA36		11/4	36	24-10d	10.97	10.97	10.97	10.97
LSTI49		3¾	49	32-10dx1½	3115	3580	2852	3280
L31149		394	49	32-10ux 1 72	13.86	15.93	12.69	14.59
LSTI73		3¾	73	48-10dx1½	4670	5370	4280	4920
	-				20.77 670	23.89 770	19.04 625	21.89 715
MSTA9		11/4	9	6-10d	2.98	3.43	2.78	3.18
1407140	18	447	40	0.40.1	895	1030	830	955
MSTA12		11/4	12	8-10d	3.98	4.58	3.69	4.25
MSTA15		11/4	15	10-10d	1120	1285	1040	1195
10017110	-	174	10	10 100	4.98	5.72	4.63	5.32
MSTA18		11/4	18	12-10d	1340 5.96	1545 6.87	1245 5.54	1430 6.36
	-				1565	1800	1455	1670
MSTA21		11/4	21	14-10d	6.96	8.01	6.47	7.43
MSTA24		11/4	24	16-10d	1790	2060	1660	1910
IVIO IAZ4		1 /4	24	10-100	7.96	9.16	7.38	8.50
MSTA30		11/4	30	20-10d	2470	2840	2260	2595
	-				10.99 2965	12.63 3070	10.05 2710	11.54 3070
MSTA36		11/4	36	24-10d	13.19	13.66	12.06	13.66
MCTA 40	1	41/	40	00.04	2725	2725	2545	2725
MSTA49		11/4	49	28-8d	12.12	12.12	11.32	12.12
ST6215		21/16	165/16	16-8d	1405	1615	1300	1500
2.02.10	4				6.25	7.18	5.78	6.67
ST6224	16	21/16	235/16	24-8d	2305 10.25	2650 11.79	2155 9.59	2475 11.01
OTC	1	4		0.01	525	605	490	560
ST9		11/4	9	6-8d	2.34	2.69	2.18	2.49
ST12		11/4	11%	8-8d	700	805	650	750
0112	-	1/4	11/0	0 00	3.11	3.58	2.89	3.34
ST18		11/4	17¾	12-8d	1050	1210	975	1125
	-				4.67 1580	5.38 1790	4.34 1465	5.00 1685
ST22		11/4	21%	18-8d	7.03	7.96	6.52	7.50

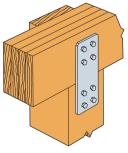
Typical LSTA Installation (hanger not shown) Bend strap one time only

Typical LSTA Installation (hanger not shown) Bend strap one time only

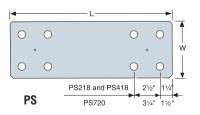

- 1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- 2. Use half of the nails in each member being connected to achieve the listed resistances.
- 3. For overlap splice details, refer to T-CMST. 4. NAILS: 10d = 0.148" dia. x 3" long,
- NAILS: 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See page 24-25 for other nail sizes and information.

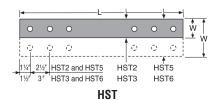
HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties

- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.


[Dimo	nolono		F	actored Tens	ile Resistano	20
				nsions n)			ir-L		P-F
	Model	Ga		<u>, </u>	Fasteners	$(K_D = 1.00)$		(K _D = 1.00)	(K _D = 1.15)
	No.	- Gu	w	L	(Total)	lbs	lbs	lbs	lbs
				_		kN	kN	kN	kN
			_			3955	4545	3615	4155
	MSTC28		3	281/4	32-10d	17.59	20.22	16.08	18.48
	1407040			4047	40.40.1	5930	6820	5420	6235
	MSTC40	16	3	401/4	48-10d	26.38	30.34	24.11	27.74
	MCTOFO		3	F01/	E4 10 d	6670	6940	6100	6940
	MSTC52		3	521/4	54-10d	29.67	30.87	27.14	30.87
	MSTC66		3	65¾	66-10d	8515	8565	7455	8565
	IVISTUOD		3	0394	00-100	37.88	38.10	33.16	38.10
	MSTC78	14	3	77¾	66-10d	8515	8565	7455	8565
	IVISTU70	14	3	1174	00-100	37.88	38.10	33.16	38.10
	ST6236		21/16	3313/16	36-8d	3735	4295	3270	3760
	010200		2/16	00 716	30-0u	16.61	19.11	14.55	16.73
	MSTI26		21/16	26	22-10dx1½	2825	3250	2475	2850
	10101120		2/16	20	22-100X172	12.57	14.46	11.01	12.68
	MSTI36		21/16	36	32-10dx1½	4110	4725	3600	4140
	IVIOTIOO		2/16	30	32-100X172	18.28	21.02	16.01	18.42
	MSTI48		21/16	48	44-10dx1½	5650	6500	4955	5695
	WOTITO		2710	40	44 TOUX172	25.13	28.91	22.04	25.33
	MSTI60		21/16	60	56-10dx1½	7195	7360	6305	7250
	WOTTOO		2710	00	00 100X172	32.01	32.74	28.05	32.25
	MSTI72	12	21/16	72	68-10dx1½	7360	7360	7240	7360
					00 100/172	32.74	32.74	32.21	32.74
	MST27		21/16	27	26-8d	2685	3090	2355	2710
						11.94	13.75	10.48	12.06
,	MST37		21/16	37½	38-8d	3930	4515	3440	3960
				-		17.48	20.08	15.30	17.62
,	MST48		21/16	48	50-8d	5170	5945	4530	5210
						23.00	26.45	20.15	23.18
,	HRS416Z		31/4	16	16-SDS 1/4"x11/2"	2400	2760	2120	2440
	_					10.68	12.28	9.43	10.85
•	MST60		21/16	60	64-8d	6620	7610	5800	6670
		10				29.45	33.85	25.80	29.67
	MST72		21/16	72	78-8d	8065	9135	7065	8125
						35.88	40.64	31.43	36.14

LSTI similar

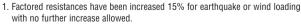

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- 2. Use half of the nails in each member being connected to achieve the listed resistances.
- 3. For overlap splice details, refer to T-CMST.
- 4. NAILS: 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See page 24-25 for other nail sizes and information.

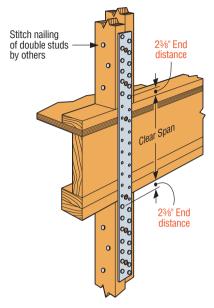

NA1 - 1		Dimensi	ions (in)	Fastanana	T _r ¹	
Model No.	Ga	w	L	Fasteners (Total)	lbs	
		VV	_	(10141)	kN	
PS218		2	18	4-¾" MB	8315	
F 32 10			10	4-74 IVID	36.99	
PS418		4	18	4-¾" MB	21325	
F 3410	3 4 10 4-94 IVID	4 10 4-74 IVID	7 10	4-74 IVID	94.86	
PS720	7	63/4	20	8-1⁄2" MB	35985	
F3720	,	074	20	0-72 IVID	160.08	
HST2			21/2	211/4	6-5%" MB	12670
11012		Z /2	Z 1 /4	0-78 IVID	56.36	
HST5		5	211/4	12-5/8" MB	25375	
11010	010 0	Z 1 /4	12-78 IVID	112.88		
HST3		3	251/4	6-¾" MB	20520	
11010	3	-	23/4	U- /4 IVID	91.28	
HST6	3	3 6	251/4	12-¾" MB	41035	
11010		6 251/4		12-74 IVID	182.54	

Typical PS720 Installation

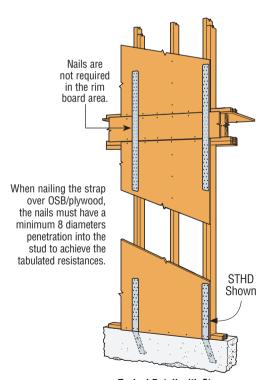
1. T_r is the factored tensile resistance of the strap in accordance with CSA S136-07. The capacity of the strap, used in a connection, must be verified by the Designer using the lower of the strap capacity or the fastener capacity per the applicable CSA standard.

176


HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties


These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

Floor-to-Floor Clear Span Table


				Factored Tens	ile Resistance		
	Clear		D.F	ir-L	S-I	P-F	
Model No.	Span	Fasteners (Total)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	
No.	(in)	(Total)	lbs	lbs	lbs	lbs	
			kN	kN	kN	kN	
			2725	2725	2725	2725	
	16	38-8d	12.12	12.12	12.12	12.12	
MSTA49			2725	2725	2725	2725	
	18	36-8d	12.12	12.12	12.12	12.12	
	40	10.10.1	1480	1705	1355	1560	
	16	12-10d	6.58	7.58	6.03	6.94	
MSTC28	40	0.40.1	990	1135	905	1040	
	18	8-10d	4.40	5.05	4.03	4.63	
	40	00.40.1	3460	3980	3160	3635	
MOTO 40	16	28-10d	15.39	17.70	14.06	16.17	
MSTC40	10	04.404	2965	3410	2710	3115	
	18	24-10d	13.19	15.17	12.06	13.86	
	40	44.40.1	5435	6250	4970	5715	
1407050	16	44-10d	24.18	27.80	22.11	25.42	
MSTC52		40.40.1	4940	5685	4515	5195	
	18	18	40-10d	21.98	25.29	20.08	23.11
16	00.40.1	7740	8565	6775	7790		
MOTOGO	16	60-10d	34.43	38.10	30.14	34.65	
MSTC66		00.40.1	7740	8565	6775	7790	
	18	60-10d	34.43	38.10	30.14	34.65	
	40	00.40.1	8515	8565	7455	8565	
1407070	16	66-10d	37.88	38.10	33.16	38.10	
MSTC78	40	00.40.4	8515	8565	7455	8565	
	18	66-10d	37.88	38.10	33.16	38.10	
	10	00.04	2065	2375	1810	2085	
MCTOZ	16	20-8d	9.19	10.56	8.05	9.27	
MST37	10	40.04	1860	2140	1630	1875	
	18	18-8d	8.27	9.52	7.25	8.34	
	10	00.04	3310	3805	2900	3335	
MCT40	16	32-8d	14.72	16.93	12.90	14.84	
MST48	40	00.04	3100	3570	2720	3125	
	18	30-8d	13.79	15.88	12.10	13.90	
	10	16 04	4755	5470	4170	4795	
MCTEO	16	46-8d	21.15	24.33	18.55	21.33	
MST60	10	44.04	4550	5235	3985	4585	
	18	44-8d	20.24	23.29	17.73	20.40	
	10	60.04	6205	6520	5435	6250	
MCTZO	16	60-8d	27.60	29.00	24.18	27.80	
MST72	10	E0 04	6000	6520	5255	6045	
	18	58-8d	26.69	29.00	23.38	26.89	

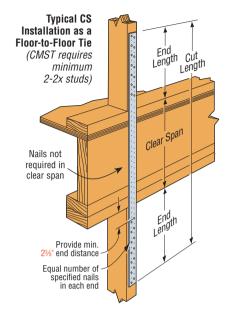
^{2.} Use half of the required nails in each member being connected to achieve the listed resistances.

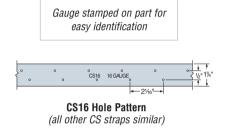
Floor-to-Floor Tie Installation showing a Clear Span

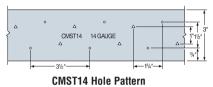
Typical Detail with Strap Installed Over Sheathing

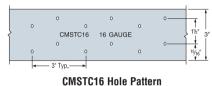
^{3.} NAILS: 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

CS/CMST/CMSTC Coiled Straps




CMSTC provides nail slots for easy installation and coined edges for safe handling. CS are continuous utility straps which can be cut to length on the job site. Packaged in lightweight (about 40 pounds) cartons.


FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.


INSTALLATION:

- Use all specified fasteners. See General Notes.
- Wood shrinkage after strap installation across horizontal wood members may cause strap to buckle outward.
- Refer to the applicable code for minimum nail penetration and minimum wood edge and end distances.
- The table shows the maximum factored resistances and the nails required to obtain them. Fewer nails may be used; reduce the factored resistance as shown in footnotes.
- CMST only—Use every other triangle hole if the wood tends to split.
 Use round and triangle holes for comparable MST loads, providing wood does not tend to split.
- For lap slice and alternate nailing information, request to technical bulletin T-CMST.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

(CMST12 similar)

			Dimensio				Factored Tens	ile Resistance			
			Dillielisio	JIIS	- .	D.F	ir-L	S-P-F			
Model No.	Ga	Total Coil	End	Cut Length	Fasteners (Total)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$		
		Length	Length		(Total)	lbs	lbs	lbs	lbs		
		(ft)	(in)	(in)		kN	kN	kN	kN		
CS22	22	300	10	clear span + 20	16-8d	1140	1140	1075	1140		
0022	22	300	10	·	10-0u	5.07	5.07	4.78	5.07		
CS20	20	250	12	clear span + 24	18-8d	1390	1390	1295	1390		
0320	20	230	12	clear spail + 24	10-ou	6.18	6.18	5.76	6.18		
CS18	18	200	12	clear span + 24	clear chan + 24	clear snan ± 24	20-8d	1745	1850	1620	1850
0310	10	200	12		20 00	7.76	8.23	7.21	8.23		
CS16		150	14		clear span + 28	24-8d	2305	2305	2155	2305	
0010	16	130	1	Cicai Spail + 20	11 Spail + 20 24-0u	10.25	10.25	9.59	10.25		
CMSTC16	10	54	20	clear span + 40	46-10d	5685	5845	5195	5845		
OIVIOTOTO		34	20	Cical Spail + 40	40-10d	25.29	26.00	23.11	26.00		
CS14		100	22	clear span + 44	34-8d	3360	3360	3090	3360		
0314	14	100	22	Cieai Spail + 44	34-0u	14.95	14.95	13.75	14.95		
CMST14	'4	52½	31	clear span + 62	66-10d	8430	8430	7455	8430		
OIVIOT 14		JL /2	01	ciear span + 62	00-10u	37.50	37.50	33.16	37.50		
CMST12	12	40	43	clear span + 86	94-10d	11995	11995	10615	11995		
OIVIOTIZ	12	40	70	oleal spall + 00	34-10u	53.36	53.36	47.22	53.36		

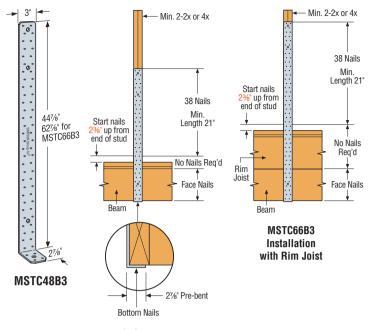
- 1. Factored resistances shown are the lesser of the steel tensile strength (Tr) or the lateral nail value (Nr).
- 2. Use half of the required nails in each member being connected to achieve the listed resistances.
- 3. Calculate the connector value for a reduced number of nails as follows: Factored Resistance = No. of Nails Used No. of Nails in Table Value

Example: CS14 on D.Fir-L with 30 nails total. (Half of the nails in each member being connected)

Factored Resistance = $\frac{30 \text{ Nails (Used)}}{34 \text{ Nails (Table)}} \times 3360 \text{ lbs} = 2965 \text{ lbs}$

4. **NAILS:** 10d = 0.148" dia. x 3" long, 8d = 0.131" dia. x 2½" long. See page 24-25 for other nail sizes and information.

MSTC48B3/MSTC66B3 Pre-Bent Straps


SIMPSON
Strong-Tie

The MSTC48B3 and MSTC66B3 are pre-bent straps designed to transfer tension load from an upper story shearwall to a beam on the story below.

MATERIAL: 14 gauge FINISH: Galvanized

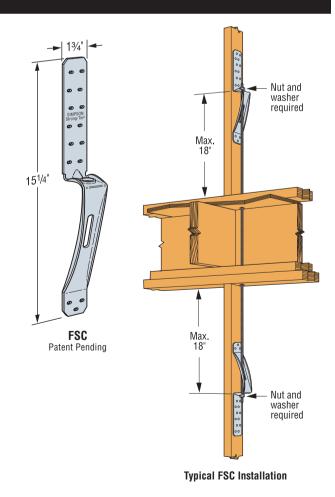
Model	Minimum Beam Size (in)		F	astene	rs	Fact Tensile R (K _D =	
No.			Ве	am		D.Fir-L	S-P-F
	Width	Depth	Face	Bottom	Studs/ Post	lbs	lbs
			гасе	DULLUIII		kN	kN
MSTC48B3	3	91/4	12-10d	4-10d	38-10d	5440	3860
WIS1040D3	3	374	12-10u	4-10u	30-10u	24.20	17.17
MSTC66B3	3½	111/4	14-10d	1-10d	38-10d	5230	3715
IVIOIODO	372	1174	14-10u	4-10d 4-10d		23.27	16.53

- Factored resistances have been increased 15% for earthquake or wind loading. No further increase is permitted. Reduce where other load durations govern.
- 2. Nails in studs/post shall be installed symmetrically. Nails may be installed over the entire length of the strap.
- 3. The 3" wide beam may be double 2x members.
- 4. Straps installed over sheathing up to $\frac{1}{2}$ " thick can achieve 85% of the tabulated values.
- 5. NAILS: 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

MSTC48B3 Installation with no Rim Joist

FSC Floor Span Connector

As an alternative to coil strap, our new FSC-Floor Span Connector, connects upper floors to lower floors from the inside of the wall. The convenient obround holes make installation in narrow wall cavities easy. Installs with a %" all thread rod, nut and washer (not included).

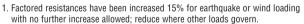

MATERIAL: See table FINISH: Galvanized

INSTALLATION:

- Can be used on a single 2x stud.
- . Threaded rod, washers and nuts are not supplied with the FSC.
- \bullet Use %" threaded rod grade A307 or better, with matching nuts and cut washers.
- FSC may be installed a maximum of 18" from the sill or top plates.
- Drill $\frac{1}{2}$ " to $\frac{3}{4}$ " diameter hole through the plates for threaded rod access, hole should be located approximately $1\frac{1}{2}$ " away from the face of stud used for FSC attachment.
- Nails can be installed up to 30 degree angle with no reduction in capacity.

BA - J - I		Fasten	ers	Factored Tensile Resistance (K _D = 1.15)		
Model No.	Ga			D.Fir-L	S-P-F	
140.		Stud	Anchor	lbs	lbs	
				kN	kN	
FSC	10	15 10dv11/	%" ATR	2520	1790	
F30	12 15-10dx1½		78 AID	11.22	7.96	

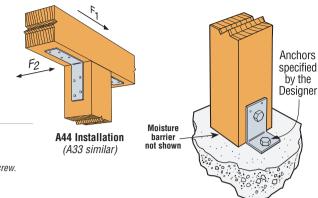
- 1. The factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed; reduce where other loads govern.
- 2. Resistances are based on a minimum lumber thickness of $1\frac{1}{2}$ ".
- 3. Standard cut washer is required with the $\%\mbox{"}$ all thread rod.
- 4. FSC's shall be offset no more than 3" horizontally from each other.
- 5. NAILS: $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

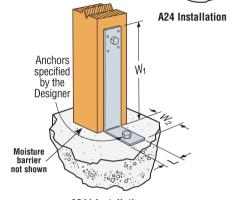

MATERIAL: Z clips—see table. A21 and A23—18 ga.; all other A angles—12 ga.

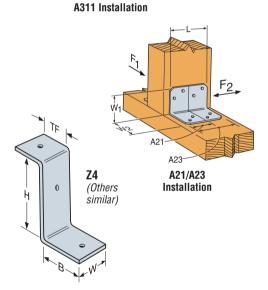
FINISH: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, page 18-19.

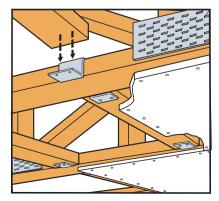
INSTALLATION: • Use all specified fasteners. See General Notes.

- · Z clips do not provide lateral stability. Do not walk on stiffeners or apply load until diaphragm is installed and nailed to stiffeners.
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.


	Din	nensi	ons		F1-			Factore	ed Resist	ance (K	= 1.15)
		(in)		Fasteners				D.Fir-L S-P-F			
Model No.				Base		Post		F ₁	F ₂	F ₁	F ₂
	W_1	W ₂	L	Bolts	Nails	Bolts	Nails	lbs	lbs	lbs	lbs
				Duits	Nans	Duits	Nans	kN	kN	kN	kN
A21	2	1½	1%		2-10dx1½		2-10dx1½	405	260	335	185
721	۷	1 /2	1 /8		Z-100X172		Z-100X172	1.80	1.16	1.49	0.82
A23	2	11/2	23/4		4-10dx1½		4-10dx1½	815	715	725	510
AZU		1 /2	274		4-10ux172		4-10UX172	3.63	3.18	3.23	2.27
A33	3	3	1½		4-10d		4-10d	1175	570	930	405
ASS	5	J	1 72		4-10u		4-10u	5.23	2.54	4.14	1.80
A44	4%16	43/8	1½		4-10d		4-10d	1175	485	930	345
744	4716	478	1 /2		4-10u		4-10u	5.23	2.16	4.14	1.53
A66	57/8	5%	1½	2-3/8"	3-10d	2-3/8"	3-10d	_	_	_	
AUU	J78	J78	1 72	MB	3-10u	MB	3-10u		_	_	
A88	8	8	2	3-3/8"	4-10d	3-3/8"	4-10d	_	_	_	_
700	0	0		MB	4-10u	MB	4-10u	_	_	_	_
A24	37/8	2	2½	1-1/2"		1-1/2"	2-10d	_	_	_	
A24	378		2 72	MB		MB 2	Z-10u	_	_	_	
A311	11	35%	2	1-1/2"		1-½" 4-10d	_	_	_		
MOTI	11	J 78	2	MB	_	MB	4-10u	_	_	_	_




^{2.} **NAILS:** $10dx1\frac{1}{2} = 0.148$ " dia. $x 1\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.


				nsions n)				Resistance 1.00)
Model No.	Ga					Fasteners ¹ Total	D.Fir-L	S-P-F
140.		W ₁	Н	В	TF	Total	lbs	lbs
							kN	kN
Z2	20	25/16	11/2	13/8	1%	4-10dx1½	740	525
	20	Z716	1 72	178	178	4-10ux172	3.29	2.34
Z4	12	1½	31/2	21/8	13/4	2-16d	765	545
24	12	1 /2	3 /2	2/8	174	2-10u	3.40	2.42
Z6	12	11/2	5%	2	13/8	2-16d	790	560
20	12	1 /2	J78		1 78	Z-10u	3.51	2.49
Z28	28	25/16	1½	13/8	1%	10dx1½	_	_
220	20	Z 716	1 /2	178	1 78	10UX 1 /2	_	_
Z38	28	25/16	2½	13/8	13/8	10dx1½	_	_
200	20	∠ /1b	L /2	178	1 78	10uX172	_	_
Z44	12	21/2	31/2	2	1%	4-16d	1420	1010
244	12	L /2	J /2		1 78	4-10u	6.32	4.49

- 1. Z28 and Z38 do not have nail holes. Fastener quantity and type shall be per Designer.
- 2. Z4 and Z6 resistances apply with a nail into the top and a nail into the seat.
- 3. Factored resistances for Z clips cannot be increased for short term loading.
- 4. **NAILS:** 16d = 0.162" dia. $\times 3\frac{1}{2}$ " long, $10d\times1\frac{1}{2} = 0.148$ " dia. $\times 1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Typical Z2 Installation

LTP4/LTP5/A34/A35 Framing Angles & Plates

SIMPSON Strong-Tie

The larger LTP5 spans subfloor at the top of the blocking or rim joist. The embossments enhance performance and the min/max nailing option allows for design flexibility.

The LTP4 Lateral Tie Plate transfers shear forces for top plate-to-rim joist or blocking connections. Nail holes are spaced to prevent wood splitting for single and double top plate applications. May be installed over plywood sheathing.

The A35 anchor's exclusive bending slot allows instant, accurate field bends for all two- and three-way ties. Balanced, completely reversible design permits the A35 to secure a great variety of connections.

MATERIAL: LTP4/LTP5—20 gauge; all others—18 gauge FINISH: Galvanized. Some products available in stainless steel or ZMAX®; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

See page 29 for the correct substitution and SD screw size.

Fasteners

Total

8-8dx1½

9-8dx1½

12-8dx11/2

12-8dx11/2

12-8dx11/2

12-8dx1½

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details. These products are approved for installation with the Strong-Drive SD Structural-Connector screw.

Direction

of Load

 F_1

 F_2

A₁. E

 C_1

 A_2

 C_2

D

F₁

 F_2

G

Н

G

Factored Resistance

 $(K_D = 1.00) | (K_D = 1.15) | (K_D = 1.00) | (K_D = 1.15)$

lhs

kN

455

430

375

1.67

225

1.00

675

650

2.89

620

615

lhs

kN

640

2.85

545

545

2 42

365

1.62

920

4.09

815

875

S-P-F

lhs

kN

455

440

1.96

430

1.91

1.16

675

650

2 89

580

620

2.76

D.Fir-L

lbs

kN

475

475

315

1.40

920

4.09

815

3.71 875

3.89

A35-Bend one time only.

Type of

Connection

1

2

3

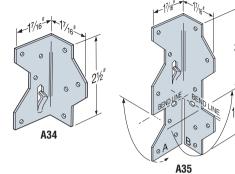
4

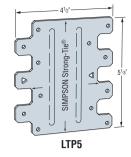
5

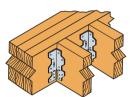
6

Model

No.

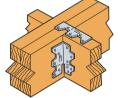

A34


A35

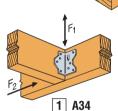

LTP4

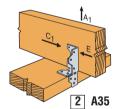
LTP5

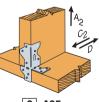
Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

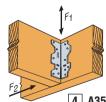


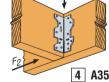
Ceiling Joists to Beam



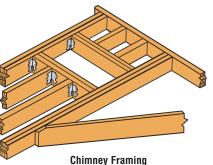


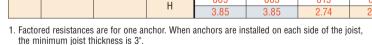

Joists to Beams











LTP4 attaching Top Plates to LTP4 Installed Rim Joist 5 over Plywood

Sheathing

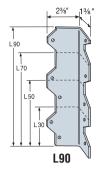
LTP5 Installed over **Plywood Sheathing**

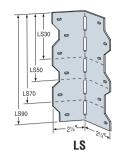
2. Some illustrations show connections that could cause cross-grain tension or bending of the wood during loading if not reinforced sufficiently. In this case, mechanical reinforcement should be considered.

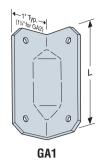
3. LTP4 can be installed over ½" plywood sheathing with no reduction in capacity.
4. LTP5 can be installed over ½" plywood sheathing and achieve 0.89 of the tabulated values for loads in the H direction. For load in the G direction, full tabulated values can be achieved

5. **NAILS:** $8dx1\frac{1}{2} = 0.131$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

L-Staggered nail pattern reduces the possibility for splitting. LS-Field-adjustable 0° to 135° angles.

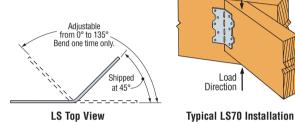

The GA Gusset Angles' embossed bend section provides added strength.

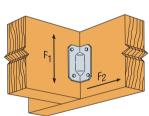

MATERIAL: L-16 gauge; GA and LS-18 gauge


FINISH: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, page 18-19.

INSTALLATION:

- · Use all specified fasteners; see General Notes.
- · LS-field skewable; bend one time only.
- Joist must be constrained against rotation (for example. with solid blocking) when using a single LS per connection.
- Nail the L angle's wider leg into the joist to ensure table values and allow correct nailing.




Load Direction

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

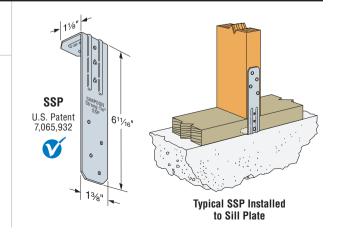
				Factored Resistance					
			D.F	ir-L	S-I	P-F			
Model No.	L (in)	Fasteners Total	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$			
140.	()	Total	lbs	lbs	lbs	lbs			
			kN	kN	kN	kN			
GA1	23/4	4-10dx11/2	305	350	215	245			
GAI	2 74	4-10ux172	1.36	1.56	0.96	1.09			
GA2	31/4	6-10dx1½	530	610	485	555			
GAZ	3 /4	0-10ux172	2.36	2.71	2.16	2.47			
L30	3	4-10d	395	395	280	280			
LSU	3	4-10u	1.76	1.76	1.25	1.25			
L50	5	6-10d	625	720	580	670			
LJU	7	0-10u	2.78	3.20	2.58	2.98			
L70	7	8-10d	835	960	775	890			
LIU	'	0-10u	3.71	4.27	3.45	3.96			
L90	9	10-10d	1045	1200	970	1115			
L90	ס	10-100	4.65	5.34	4.31	4.96			
LS30	33/8	6-10d	540	555	385	395			
LSSU	378	0-10u	2.40	2.47	1.71	1.76			
LS50	47/8	8-10d	770	890	670	670			
L330	478	8-100	3.43	3.96	2.98	2.98			
LS70	63%	10-10d	965	1090	775	775			
L3/U	U78	10-100	4.29	4.85	3.45	3.45			
LS90	77/8	12-10d	1160	1330	1010	1010			
LOSU	178	12-100	5.16	5.92	4.49	4.49			

- 1. GA resistances are for F₁ or F₂; LS angles-resistances are for condition F₁ only.
- 2. Factored resistances shown are for one part only.
- 3. Use a minimum lumber thickness
- 4. **NAILS:** 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information

Typical GA Installation

DSP/SSP/SP/SPH/RSP4/TSP Stud Plate Ties

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.


The Stud Plate Tie series offers various solutions for connecting the stud to the top and bottom plates. All models can be used to make a connection to either the top or bottom plate, and several are suitable for double top plates

MATERIAL: DSP/SSP/SPH—18 gauge; TSP—16 gauge; all others—20 gauge FINISH: Galvanized. Some products available in ZMAX® coating;

see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners; see General Notes.

- TSP/DSP/SSP—sill plate installation-fill all round holes.
- TSP/DSP/SSP—top plate installation-fill all round and triangle holes
- SP1/SP2-one of the 10d common stud nails is driven at a 45° angle through the stud into the plate.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

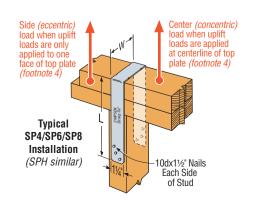
DSP/SSP/SP/SPH/RSP4/TSP Stud Plate Ties

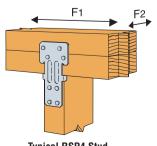
SIMPSON Strong-Tie

> **DSP** U.S. Patent 7,065,932

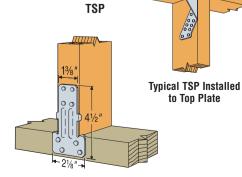
> > Typical DSP Installed to Top Plate

SP1 Nailing Profile


Typical SP2 Installation


- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

		Stud		Dimensions (in)			Fasteners		Factored Resistance (K _D = 1.15)			
						rastellers			D.Fir-L		S-P-F	
	Model No.		Plate Width	w	L	Studs	Double Top Plate	Single Sill Plate	Double Top Plate	Single Sill Plate	Double Top Plate	Single Sill Plate
				VV					lbs	lbs	lbs	lbs
									kN	kN	kN	kN
							Connector	Туре				
	RSP4	2x	_	21/8	4½	4-8dx1½	4-8dx1½	4-8dx1½	670	595	600	535
									2.98	2.65	2.67	2.38
	SSP	2x	_	1%		4-10dx1½	3-10dx1½	1-10dx1½	570	535	570	535
					611/16				2.54	2.38	2.54	2.38
						4-10d 3-10d	3-10d	1-10d	710	690	710	690
							0 100		3.16	3.07	3.16	3.07
	SP1	2x	_	3½	5½16 65%	6-10d 6-10d	— 6-10d	4-10d —		810		740
										3.60	_	3.29
	SP2	2x							1220		1110	_
	DSP	2-2x	_	23/4			6-10dx1½	2-10dx1½	5.43	_	4.94	_
						8-10dx1½			1270	890	1270	890
					611/16				5.65	3.96	5.65	3.96
						8-10d	6-10d	2-10d	1550	985	1550	985
	TSP	_	_	1½					6.90 4.38 — 765	6.90	4.38 685	
						6-10dx1½	$6-10dx1\frac{1}{2}$ — $3-10dx1\frac{1}{2}$ — 3.40		_	3.05		
					77/8	9-10dx1½	6-10dx1½	_	1325	J.40 —	940	J.00
									5.89	_	4.18	_
						9-10dx1½ 6-10d	_	1455	_	1030	_	
								6.47	_	4.58	_	
							Strap Ty	pe				
	004		,	00/	747	0.401.4:4	,		1135	_	915	_
	SP4	2x	4x	3%16	71/4	6-10dx1½	_	_	5.05	_	4.07	_
	CDUA	0	4	09/	03/	40 40441/			2450	2010	1815	1430
	SPH4	2x	4x	3%16	8¾	12-10dx1½	_	_	10.90	8.94	8.07	6.36
	SP6	2x	6x	5%16	73/4	6-10dx1½	_	_	1135	_	915	_
	370	ZX	UX	3 716	174	0-10UX172			5.05	_	4.07	_
	SPH6	2x	6x	5%16	91/4	12-10dx1½	_	_	2450	2010	1815	1430
	31 110		- O.A.	3710	0,4	100/1/2			10.90	8.94	8.07	6.36
	SP8	2x	8x	75/16	85/16	6-10dx1½		_	1135		915	_
_						- 2			5.05	-	4.07	
	SPH8	2x	8x	75/16	83/8	12-10dx1½	_	_	2450	2010	1815	1430
_				-					10.90	8.94	8.07	6.36


- 1. Factored resistances have been increased 15% for short term loading; no further increase is allowed.
- Reduce values by 15% for standard term loading.

 2. RSP4 factored lateral resistance is 345 bs (1.53 kN) D-Fir-L and 245 lbs (1.09 kN) S-P-F for F₁ direction. The factored resistance in the F₂ direction is 175 lbs (0.78 kN) D.Fir-L and 125 lbs (0.51 kN) S-P-F. These values apply to both single and double plate applications.
- 3. When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- Tabulated values for SP4, SPH4, SP6, SPH6, SP8 and SPH8 assume loads are applied through the centre of the stud or plates (concentric loading). For applications where the load is applied to the connector through one side of the stud or plates (eccentric loading) multiply the tabulated values by 0.50.
- 5. **NAILS:** 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long, $8dx1\frac{1}{2} = 0.131$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

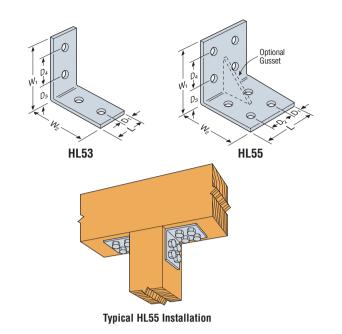
Typical RSP4 Stud to Double Top Plate (See footnote 2)

O

SP1 (SP2 similar)

Typical RSP4 Stud to Single Bottom Plate U.S. Patent 5,697,725

۵


Versatile angle gussets and heavy angles promote standardization and construction economy, and are compatible with Strong-Tie structural hardware.

FINISH: HL33, 35, 53, 55—Galvanized; others Simpson Strong-Tie® gray paint (including all parts with gussets).

OPTIONS: Gussets may be added to HL models when $L \ge 5$ " (specify G after model number, as in HL46G).

Model	Ga		Bolts (Total)						
No.		W ₁ & W ₂	L	D ₁	D ₂	D ₃	D ₄	Qty.	Dia.
HL33	7	31/4	2½	11/4	_	2	_	2	1/2
HL35	7	31/4	5	11/4	21/2	2	_	4	1/2
HL53	7	5¾	21/2	11/4	_	2	21/2	4	1/2
HL55	7	5¾	5	11/4	21/2	2	21/2	8	1/2
HL43	3	41/4	3	11/2	_	2¾	_	2	3/4
HL46	3	41/4	6	1½	3	23/4	_	4	3/4
HL73	3	71/4	3	11/2	_	23/4	3	4	3/4
HL76	3	71/4	6	1½	3	2¾	3	8	3/4

^{1.} Connectors are not load rated.

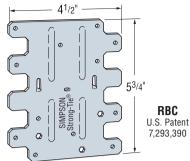
T and L Strap Ties

FINISH: Galvanized. See Corrosion Information, page 18-19.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

	Ga	Dime	nsion	s (in)	Fasteners			
Model No.		L	Н	W	Nails	Bolts		
140.		L			Naiis	Qty.	Dia.	
55L	16	43/4	43/4	11/4	5-10d	_	_	
66L	14	6	6	1½	10-16d	3	3/8	
88L	14	8	8	2	12-16d	3	1/2	
1212L	14	12	12	2	14-16d	3	1/2	
1212HL	7	12	12	2½	_	4	5/8	
1616HL	7	16	16	2½	_	4	5/8	
66T	14	6	5	1½	8-16d	3	3/8	
128T	14	12	8	2	12-16d	3	1/2	
1212T	14	12	12	2	12-16d	3	1/2	
1212HT	7	12	12	2½	_	6	5/8	
1616HT	7	16	16	21/2	_	6	5/8	

- 1. Connectors are not load-rated.
- 2. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.


RBC Roof Boundary Clip

SIMPSON
Strong-Tie

The RBC Roof Boundary Clip is designed to aid installation and transfer shear loads between the roof diaphragm and wall. The locator tabs make proper location of the clip easy. The RBC can be used on wood or masonry walls and will handle roof pitches from 0/12 to 12/12.

MATERIAL: 20 gauge FINISH: Galvanized INSTALLATION:

- Use all specified fasteners. See General Notes.
- Field bend to desired angle one time only.
- See flier F-RBC for more information on installation

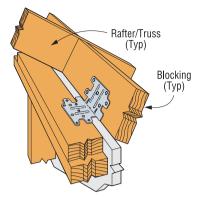
1.82

2.56

instalia	tion.					
	_	Bending	Fasto	eners		Resistance :1.15)
	Model Type of Connection				D.Fir-L	S-P-F
NO.			To Wall	To Blocking	lbs	lbs
					kN	kN
	[1]	45° to 90°	6-10dx1½	6-10dx1½	660	465
		45 10 90	0-10ux 1 72	0-10ux172	2.94	2.07
		< 30°	6-10dx1½	6-10dx1½	645	460
DDC	RBC 2		0-10ux 1 /2	0-10ux172	2.87	2.05
ndU	کا	200 to 450	6.10dv11/	6 10dv11/	685	485
		30° to 45°	6-10dx1½	6-10dx1½	3.05	2.16
					575	410

3-1/4x21/4 Titen

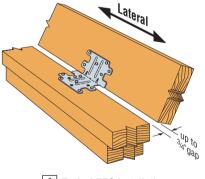
6-10dx1½

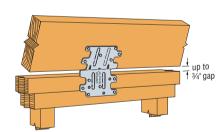

- 1. Factored resistances are for one anchor attached to blocking minimum 1½" thick.
- 2. RBC can be installed with up to 3/4" gap and achieve 100% of the listed value.

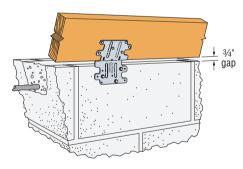
0° to 45°

- Factored resistances have been increased 15% for wind or earthquake loading with no further increase allowed. Reduce where other loads govern.
- 4. When attaching to concrete use 3-1/4x13/4" Titen® screws.

3


- RBC installed over 1" foamboard has a factored resistance of 650 lbs. (2.89 kN) in a parallel to wall load direction for D.Fir-L. For S-P-F, the value is 460 lbs (2.05 kN).
- 6. RBC may be installed over $\frac{1}{2}$ " structural sheathing using $10dx1\frac{1}{2}$ nails with no reduction in capacity.
- 7. NAILS: $10dx1\frac{1}{2} = 0.148$ " dia. $x 1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.


Typical RBC Installation Over 1" Foamboard⁵


The RBC is available with prongs into one side (RBCP) for pre-attachment of the part to a block at the truss plant. Refer to technical bulletin T-RBCP for more information.

2 Typical RBC Installation

3 Typical RBC Installation to CMU Block

TITEN® Screws

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

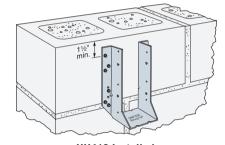
Titen screws are ¾6" and ¼" diameter masonry screws for attaching various components to concrete and masonry. Available in hex and phillips head and both carbon and stainless steel (see the Simpson Strong-Tie® Anchoring and Fastening Systems for Concrete and Masonry catalog for information on stainless steel versions). Use with appropriately sized Titen drill bits included with each box.

WARNING: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, use this product in dry and noncorrosive environments only or provide a moisture barrier.

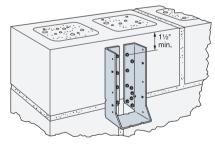
See the Simpson Strong-Tie® *Anchoring and Fastening Systems for Concrete and Masonry* catalogue *(form C-SAS)* for complete information on the Titen screws.

Titen Hex Head

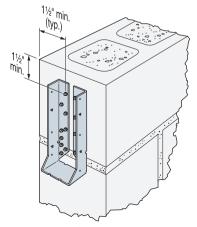

MATERIAL: 14 gauge FINISH: Galvanized; stainless steel available


INSTALLATION: • These hangers are attached to the concrete or grout-filled CMU walls using ¼" hex head Titen® screws. Titen screws (Model No. TTN25234H) are not provided with the hangers.

- Drill the 3/16" diameter hole to the specified embedment depth plus 1/2".
- Alternatively, drill the 3/6" diameter hole to the specified embedment depth and blow it clean using compressed air.
- Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with the base material and will reduce the anchor's load capacity.
- Titen Installation Tool Kits are available which includes a %6" drill bit and hex head driver bit (Model No. TTNT01-RC), or a %6" x 4½" drill bit is available (Model No. MDB18412).
- The hangers should be installed such that a minimum end and edge distance of $1\frac{1}{2}$ is maintained.
- Stainless steel HU/HUC hangers and Titen screws are available for exterior applications.


OPTIONS: • The HUC is a concealed flange version of the HU. Concealed flange hangers have the face flanges turned in.

- HU is available with A flanges concealed, provided the W dimension is $25 \% \epsilon"$ or greater, at 100% of the table value.
- HU is available with one flange concealed when the W dimension is less than $2\% \rm e^u$ at 100% of the table value.
- · Skewed HU/HUC hangers attached to masonry have not been evaluated.



HU410 Installed on Masonry Block Sidewall

HUC410 Installed on Masonry Block Sidewall

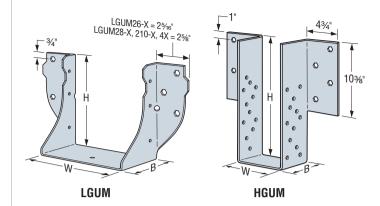
HUC410 Installed on Masonry Block End Wall

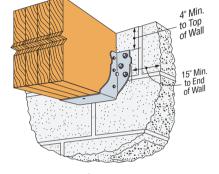
		Dimer	sions			Ecotonoro		Factored F	Resistance
		(i	n)			Fasteners		Uplift	Normal
Model No.								$(K_D = 1.15)$	$(K_D = 1.00)$
	W	Н	В	de	СМИ	Concrete	Joist	lbs	lbs
								kN	kN
HU26	1 %16	31/16	21/4	211/16	4-1/4x23/4 Titen	4-1/4x13/4 Titen	2-10dx1½	490	2265
11020	1710	0710	2/4	2 710	4 74X274 TITOII	7 74/174 111011	Z TOUXT72	2.18	10.08
HU28	1 %16	51/4	21/4	47/8	6-1/4x23/4 Titen	6-¼x1¾ Titen	4-10dx1½	975	3590
11020	1710	074	L/4	470	0 74X274 Titoli	0 748174 111011	4 100X172	4.34	15.97
HU210	1 %16	71/8	21/4	63/4	8-1/4x23/4 Titen	8-1/4x13/4 Titen	4-10dx1½	975	3590
110210	1710	178	2/4	074	O 74XE74 TITOII	0 74/174 111011	4 100X172	4.34	15.97
HU212	1 %16	9	21/4	85/8	10-1/x23/ Titen	10-1/4x13/4 Titen	6-10dx11/	1465	4015
110212	1710	Ů	2/4	078	10 74X274 THOI	10 74/174 111011	0 100X172	6.52	17.86
HU26-2	31/8	53%	2½	5	12-1/4x23/4 Titen	12-1/4x13/4 Titen	6-10d	1575	5430
11020 2	070	070	L /2		74XE74 TROIT	12 74X174 111011	0 100	7.01	24.15
HU28-2	31/8	7	2½	65%	14-1/x23// Titen	14-¼x1¾ Titen	6-10d	1575	5780
11020 2	070	,	L /2	0,0	71774XE74 TROIT	74,7174 116011	0 100	7.01	25.71
HU210-2	31/8	813/16	2½	87/16	18-1/4x23/4 Titen	18-¼x1¾ Titen	10-10d	2620	5780
	0,0	0 7.0		07.10	10 7 M271 HIGH		10 100	11.65	25.71
HU212-2	31/8	10%	21/2	103/16	22-1/4x23/4 Titen	22-1/4x13/4 Titen	10-10d	2620	5780
								11.65	25.71
HU46	3%16	53/16	2½	413/16	12-1/4x23/4 Titen	12-1/4x13/4 Titen	6-10d	1575	5430
								7.01	24.15
HU48	3%16	613/16	2½	67/16	14-1/4x23/4 Titen	14-½x1¾ Titen	6-10d	1575	5780
								7.01	25.71
HU410	3%16	85/8	2½	81/4	18-1/4x23/4 Titen	18-¼x1¾ Titen	10-10d	2620	5780
								11.65	25.71
HU412	3%16	105/16	2½	915/16	22-1/4x23/4 Titen	22-1/4x13/4 Titen	10-10d	2620	5780
								11.65	25.71

- 1. Factored uplift resistances have been increased 15% for wind or earthquake loading with no further increase allowed. The values shown assume a D.Fir-L joist in the hanger and are based on nail values only. The Designer must ensure the joist can generate the resistances shown based on the effective shear depth de. For S-P-F joist multiply uplift value by 0.71.
- 2. Minimum concrete and grout strength shall be 2500 psi (17.25 MPa).
- 3. The Designer must ensure the joist can generate the factored normal resistances shown.
- 4. de is the dimension from the bearing seat to the top joist nail.
- NAILS: 10d = 0.148" dia. x 3" long, 10dx1½ = 0.148" dia. x 1½" long. See page 24-25 for other nail sizes and information.

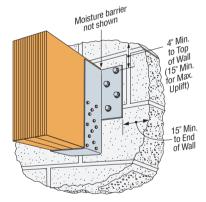
LGUM/HGUM High Capacity Beam/Girder Hangers for Concrete/Masonry

High-capacity girder hangers for masonry applications. Installation is made easier using Strong-Drive® screws into the wood member and Titen HD® anchors into the masonry.


MATERIAL: See table FINISH: Galvanized


INSTALLATION: Use all specified fasteners (included).

- Drill holes using drill bits equal in diameter to the specified Titen HD anchor.
- Holes shall be drilled 1/2" deeper than the specified Titen HD anchor length (i.e. 4½" for a 4" long Titen HD anchor).
- Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with the base material and will reduce the anchor's load capacity.


OPTIONS:

- For HGUM only Other seat widths available. Order as "X" version.
- . HGUM available with one flange concealed.
- LGUM/HGUM available with skews up to 45°. See hanger options, page 212.

Typical LGUM Installation

Typical HGUM Installation

- 1. Factored uplift values have been increased 15% for wind or earthquake loading with no further increase allowed. Reduce where other load durations govern.
 - 2. Factored uplift values assume D.Fir-L joist (SG=0.49). For S-P-F joist, multiply the tabulated uplift values by 0.72
 - 3. Factored resistances assume Type S mortar with $f_m' = 1087$ psi (7.5 MPa) for 15 MPa concrete block masonry as per Table 4 CSA S304.1-04. For values of f_m < 1085 psi (7.5 MPa) multiply the tabulated values by $(f'_m / 1085)^{0.5}$.
 - 4. Factored resistances assume a 28 day concrete compressive strength of f'c = 2500 psi (17.25 MPa). For values of f'c < 2500 psi (17.25 MPa) multiply the tabulated values by (f'c / 2500)0.5
 - 5. Factored resistances for concrete block masonry assumes minimum 8" (190 mm) block grouted solid as per CSA A179-04 Designer to design block wall reinforcing as per CSA S304.1-04 to carry the applied load.
 - 6. Factored resistances for concrete assumes minimum 8" (203 mm) concrete wall. Designer to design concrete wall reinforcing as per CSA A23.3-04 to carry the applied load.
 - 7. Factored normal resistances assume D.Fir-L joist. For other joist materials, the Designer must ensure that the bearing capacity of the joist does not govern.
 - HGUM tabulated factored uplift resistance require a minimum loaded edge distance of 15". For loaded edge distances less than 15" to a minimum of 4", the factored uplift resistance is 5030 lbs (22.38 kN).

35.84

68.20

100.73

WM/WMI/WMU Hangers

SIMPSON Strong-Tie

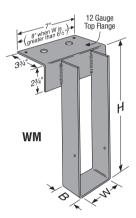
See pages 94-107 for sizes, fasteners and load information. WMs are designed for use on standard 8" grouted masonry block wall construction.

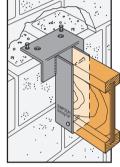
MATERIAL: See tables on pages 122-136; WM, WMI, WMU—12 ga. top flange and stirrup

FINISH: Simpson Strong-Tie® gray paint;

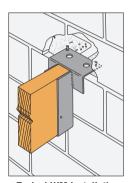
hot-dip galvanized available: specify HDG.

FACTORED RESISTANCES: For hanger heights exceeding the joist height, the factored resistance is 0.50 of the table load.

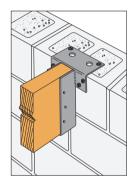

INSTALLATION: • Use all specified fasteners.


- Mid-Wall—two 16d duplex nails must be installed into the top flange and embedded into the grouted wall. Embed WM into block with a minimum of one course above and one course below the top flange with one 15M vertical rebar minimum 24" long in each cell. Minimum grout strength is 2000 psi (13.8 MPa).
- · When installed on top of masonry wall, use 2-Titen® 1/4x13/4" masonry screws after pre-drilling into minimum 2000 psi (13.8 MPa) grout.

OPTIONS: • See Hanger Options, page 213 for hanger modifications and associated load reductions.


	Joist S	ize (in)		Fastener	S	Factored F	Resistance
Madal						Uplift	Normal
Model No.	Width	Unight	Ton	Face	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$
140.	wiutii	Height	Тор	гасе	30121	lbs	lbs
						kN	kN
			Mid-Wa	II Installat	ion		
WM/WMI	1½ to 7½	21/4 to 20	2-16d		2-10dx1½	_	6060
VV IVI/ VV IVII	1 72 10 7 72	372 10 30	duplex		Z-100X172	_	26.96
WMU	1½ to 7½	9 to 28	2-16d	4-1/4x13/4	6-10dx1½	860	6060
VVIVIO	1 72 10 7 72	9 10 20	duplex	Titen	0-10ux172	3.83	26.96
			Top-of-W	ali instalia	ation		
WM/WMI	1½ to 7½	21/4 to 20	2-1/4x13/4		2-10dx1½	_	5300
VV IVI/ VV IVII	1 72 10 7 72	372 10 30	Titen		Z-10UX172	_	23.58
WMU	1½ to 7½	9 to 28	2-1/4x13/4	4-1/4x13/4	6-10dx1½	745	5300
VVIVIU	1 72 10 7 72	5 10 20	Titen	Titen	U-10UX172	3.31	23.58

- 1. Factored uplift resistances shown are for D.Fir-L joist. Multiply table value x 0.71 for S-P-F values.
- 2. WM/WMI/WMU hangers are limited based on joist bearing capacity for the specific wood species, up to the maximum test value of 6060 lbs (26.99 kN). All headers are grouted masonry block.
- Titen 1/4x13/4" installed on top of wall after grout has cured.
- 4. Products shall be installed such that Titen® screws are not exposed to weather.
- 5. **NAILS:** 16d duplex = 0.162" dia. $\times 3\frac{1}{2}$ " long, $10d\times 1\frac{1}{2} = 0.148$ " dia. $\times 1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.



Typical WM Installation with Alternate Nailing Pattern (ANP)

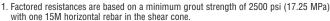
Typical WM Installation at Mid-Wall

Typical WMU Installation at Top-of-Wall

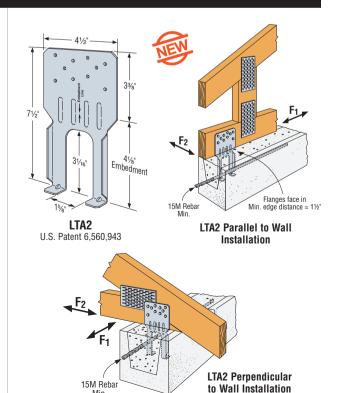
Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC

LTA2 Lateral Truss Anchor

The new LTA2 is an embedded truss anchor for grouted CMU and concrete walls that develops high loads with shallow embedment. Designed for 2x4 minimum truss chords, the LTA2 resists uplift and lateral loads parallel and perpendicular to the wall with a minimum heel height requirement.


FEATURES: • Simplified design of the embedded portion allows for easy positioning close to rebar

- Ideal for anchoring trusses running perpendicular or parallel to the wall
- Embedment line stamped on part simplifies installation and helps avoid installation errors


MATERIAL: 18 gauge FINISH: Galvanized; see Corrosion Information, page 18-19. INSTALLATION: • Use all specified fasteners. See General Notes.

- Whether in grouted CMU or concrete, the LTA2 must be embedded to the depth of the embedment line stamped on the part.
- A minimum of one horizontal 15M rebar is required at top of concrete or in the top course of arouted CMU.
- For parallel-to-wall applications, install the LTA2 with flanges facing the center of the wall. Minimum edge distance of 11/2" required.

				Factored Resistance ($K_D = 1.15$)								
	Madal					S-P-F						
	Model No.	Fasteners	Installation	Uplift	F ₁	F ₂	Uplift	F ₁	F ₂			
	140.			lbs	lbs	lbs	lbs	lbs	lbs			
				kN	kN	kN	kN	kN	kN			
			Perpendicular	1845	495	1330	1310	350	945			
à	LTA2	10-10dx1½	to Wall	8.21	2.20	5.92	5.83	1.56	4.20			
チ	LIAZ	10-10ux 1 72	Parallel	1825	1305	370	1295	930	265			
			to Wall	8.12	5.81	1.65	5.76	4.14	1.18			

- 2. Factored uplift resistances have been increased 15% for wind loading with no further increase allowed
- 3. **NAILS:** $10dx1\frac{1}{2} = 0.148$ " dia. $x1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

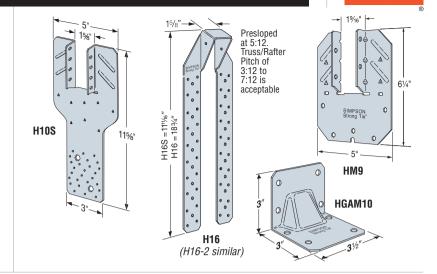
SIMPSON

Strong-Tie

Seismic & Hurricane Ties

The H10S provides a high capacity connection from truss or rafter to stud. A flexible nailing pattern allows installation where the stud is offset from the rafter up to 1". Suitable for wood-to-wood and wood-to-CMU/concrete application.

The presloped 5:12 seat of the H16 provides for a tight fit and reduced deflection. The strap length provides for various truss height up to a maximum of 131/2". Minimum heel height for H16 series is 4".

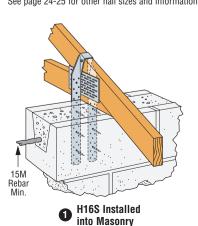

MATERIAL: See table

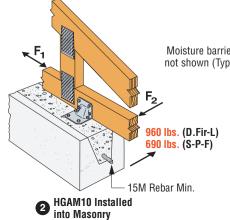
FINISH: Galvanized; other models available in stainless steel or ZMAX®; see Corrosion Information, page 18-19.

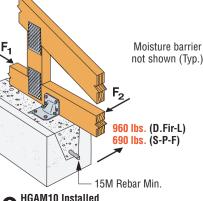
INSTALLATION: • Use all specified fasteners.

See General Notes.

- . HGAM10 can be installed into grouted concrete block. Screws are provided.
- · Hurricane Ties do not replace solid blocking.
- Attach to grouted concrete block with a minimum one 15M rebar horizontal in the top lintel block.




		Dime	nsions		Fasteners			Fact	ored Resist	ance (K _D = '	1.15)	
		(i	n)		rastellers		D.Fir-L			S-P-F		
Model	Ga						Uplift	Lat	eral	Uplift	Lateral	
No.	ua	w	L	Rafters/	сми с	Concrete	Opini	F ₁	F ₂	Opini	F ₁	F ₂
		VV	-	Truss	GIVIO	Concrete	lbs	lbs	lbs	lbs	lbs	lbs
							kN	kN	kN	kN	kN	kN
HM9KT	18	1%	61/4	4-SDS 1/4"x11/2"	5-1/4x21/4 Titen	5-1/4x13/4 Titen	815	580	285	585	580	285
пивкі	10	I 7/16	074	4-3D3 74 X172	J-74XZ74 IIIEII	3-74X 174 TILEII	3.63	2.58	1.27	2.60	2.58	1.27
HGAM10KT	14	_	_	4-SDS 1/4"x11/2"	4-1/4x23/4 Titen	4-1/4x13/4 Titen	1470	1305	1495	1060	940	1310
HUANTUKT	14	_		4-3D3 74 X172	4-748274	4-74X174 IILEII	6.54	5.81	6.66	4.72	4.18	5.83
H10S	18	15/8	11%	8-10dx1½	2-3/x4 Titen HD®	2-%x4 Titen HD	1655	_	_	1175	_	_
11103	10	178	1178	0-10ux172	2-98X4 TILEII IID°	2-7884 1116111110	7.36	_	_	5.23	_	_
H16	18	15/8	18¾	2-10dx1½	6-1/4x21/4 Titen	6-1/4x13/4 Titen	2075	_	_	1470	_	_
пю	10	178	1094	Z-100X172	0-74XZ74 TILEII	0-74X 174 TILEII	9.23	_	_	6.54	_	_
H16S	18	15/8	11 11/16	2-10dx1½	6-1/4x21/4 Titen	6-1/4x13/4 Titen	2075	_	_	1470	_	_
піоз	10	178	II 716	Z-100X172	0-74XZ74 TILEII	0-74X174 IILEII	9.23	_	_	6.54	_	_
H16-2	18	31/4	18¾	2-10dx1½	6-1/y21/ Titon	6-1/4x13/4 Titen	2075	_	_	1470	_	_
1110-2	10	374	1074	Z-100X172	6-1/4x21/4 Titen	U-74X174 IILGII	9.23	_	_	6.54	_	_
H16-2S	18	31/4	11 11/16	2-10dx1½	6-1/4x21/4 Titen 6-1/4x13/4 Titen	2075	_	_	1470	_	_	
1110-23	10	J /4	11 /16	Z-100X172	U-74AZ74 IIIGII	U-74X174 IILGII	9.23	_	_	6.54	_	_


- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- Factored resistances are for one anchor. A minimum rafter thickness of 2½" must be used when framing anchors are installed on each side of the joist and on the same side of the plate.
- The HM9KT and the HGAM10KTA are sold with SDS and Titen® screws.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- HGAM10KTA factored F₂ resistances shown are for loading applied into the connector. For loading applied away from the connector, the factored resistances are 960 lbs (4.27 kN) for D.Fir-L and 690 lbs (3.07 kN) for S-P-F.
- Minimum edge distance for Titen screws is 1½"

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

- Factored resistances for CMU assume Type S mortar with f'm = 1087 psi (7.5 MPa) for 15 MPa concrete block as per Table 4, CSA S304.1-04.
- CMU must be grouted solid with a minimum grout strength of 2500 psi (17.25 MPa)
- Factored resistances for concrete assume a 28 day concrete compressive strength of f'c = 2500 psi (17.25 MPa).
- 10. Designer to design wall reinforcing to carry the applied loads.
- NAILS: $10dx1\frac{1}{2} = 0.148$ " dia. $x1\frac{1}{2}$ " long, $8dx1\frac{1}{2} = 0.131$ " dia. $x1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

51/8

Min.

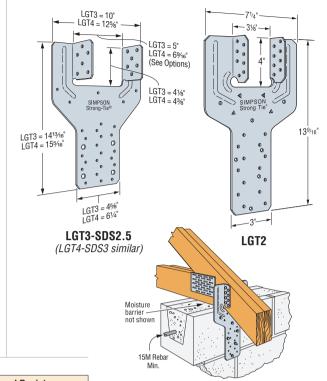
Typical H10S Installation

LGT/MGT/VGT Heavy Girder Tiedowns

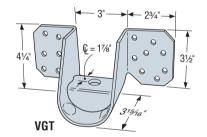
SIMPSON
Strong-Tie

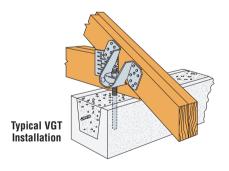
The LGT and VGT products are moderate to high load capacity girder tie-downs for new or retrofit applications.

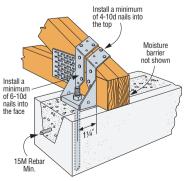
LGT connectors provide a low profile connection to the wall for easy installation of drywall. Simple to install and can be installed on the inside or outside of the wall.


The Variable Girder Tiedown (VGT) is a higher capacity alternative to the LGT and MGT for girder trusses. It attaches with SDS screws to the side of truss and features a predeflected crescent washer that allows it to accommodate top chord pitches up to 8:12. The VGT is also available with one flange concealed for attachment to trusses with no overhang.

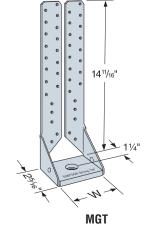
MATERIAL: VGT—7 gauge; LGT2—14 gauge; MGT, LGT3—12 gauge FINISH: Galvanized


INSTALLATION: • Use all specified fasteners. See General Notes.


- Minimum grout or concrete strength f'_C = 2500 psi (17.25 MPa).
- To achieve the values listed in the table below, the product shall be attached
 to a grouted and reinforced block wall or a reinforced concrete wall designed
 by others to transfer the high concentrated uplift forces to the foundation.
- SDS screws included with LGT3, LGT4 and VGT series.
- VGT—Screw holes are configured to allow for double installation on a two-ply (minimum) truss.
- VGT—Can be installed on roof pitches up to 8:12 or on a bottom chord designed to transfer the loads.
- VGT—When installed on trusses with no overhangs, specify VGTR/L.
- VGT—Install washer component (provided) so that top of washer is horizontal as well as parallel with top of wall top plates.


OPTIONS: LGT3 is available with reduced widths of W = $4^{1}\%_{6}$ " — order as LGT3N-SDS2.5.

Typical LGT2 Installation into Masonry (LGT3 and LGT4 similar)



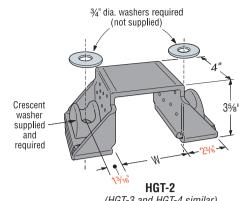
Typical MGT Installation

Model ou No. of		Faste	eners		Resistance 1.15)	
Model No.	Qty.	No. of Plies			D.Fir-L	S-P-F
NU.		LIIES	Wall Anchorage	Girder Truss	lbs	lbs
			Anonorago	11400	kN	kN
LGT2	1	2 ply	7-1/4x21/4 Titen	16-10d	2620	2205
LGTZ	'	Z piy	7-74XZ74 IIIGII	10-100	11.65	9.81
LGT3-SDS2.5	1	3 ply	4-%x5 Titen HD®	12-SDS ¼"x2½"	5220	3770
LG13-3D32.3	'	o piy	4-98X3 HIGH HD	12-303 74 X272	23.22	16.77
LGT4-SDS3	1	4 ply	4-%x5 Titen HD	16-SDS 1/4"x3"	5220	3770
LG14-5D55	'	4 ply	4-78X3 HIGH HD	10-5D5 74 X5	23.22	16.77
MGT	1	2 ply min.	1-%" Dia.	22-10d	5610	3985
IVIGI	'	Z piy iiiii.	1-78 Dia.	22-100	24.96	17.73
	1	2 ply min.	1-%" Dia.	16-SDS 1/4"x3"	8600	6195
VGT	'	Z piy iiiii.	1-78 Dia.	10-303 /4 X3	38.26	27.56
VGI	2	2 ply min.	2-54" Dia	22_CDC 1/,"v2"	11690	8420
		Z piy iiiii.	2-78 Dia.	2-%" Dia. 32-SDS ¼"x3"		37.46
	1	2 ply min.	1-%" Dia.	16-SDS 1/4"x3"	3475	2505
VGTR/L	'	∠ μιγ ιιιίίι.	1-98 Did. 10-3D3 74 X3		15.46	11.14
VUIN/L	2 2 ply min. 2-%" Dia. 32-SDS ¼"x3"	6950	5010			
		Z piy IIIII.	2-78 Dia.	32-3D3 74 X3	30.92	22.28

- Factored resistances have been increased 15% for earthquake or wind load. Reduce where other load durations govern.
- 2. Attached members must be designed to resist the factored loads.
- The MGT can be installed with straps vertical for full capacity provided 26-10d nails are installed to either a solid header or minimum double 2x6 web.
- 4. Products shall be installed such that the Titen screws and Titen HD anchors are not exposed to the weather.
- 5. For concrete wall applications use 1/4x13/4 Titen screws.
- NAILS: 10d = 0.148 dia. x 3 long. See page 24-25 for other nail sizes and information.

Masonry Connectors

HGT Heavy Girder Tiedowns

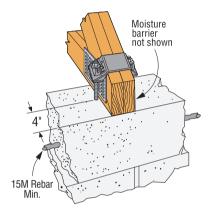

The HGT - Heavy Girder Tie-Down offers the highest uplift capacity for girders and can be installed on trusses and beams with top chord slopes from 3:12 to 8:12. The HGT is available in sizes for 2, 3 and 4-ply widths.

MATERIAL: 7 gauge

FINISH: Simpson Strong-Tie® gray paint

INSTALLATION: • Use all specified fasteners. See General Notes.

- Minimum grout or concrete strength f'_C = 2500 psi (17.25 MPa).
- To achieve the values listed in the table below, the product shall be attached to a grouted and reinforced block wall or a reinforced concrete wall designed by others to transfer the high concentrated uplift forces to the foundation.
- Anchorage from HGT to wall below shall be with ¾" diameter ASTM A307 Grade A bolts or threaded rod.
- See page 172 for wood applications.


				_		
(HG	T-3	and	HG	T-4	simila	r)

	O.C. Dimension		eners	Factored Uplift Resistance (K _D = 1.15)			
Model No.	Qty.	No. of Plies	Between	Anchor	Girder	D.Fir-L	S-P-F
			Anchors (in)	Bolts	Truss	lbs	lbs
			()			kN	kN
HGT-2	1	2 ply	5 ¹¹ / ₁₆	0.3/" 1	16-10d	12140	9280
1101-2	'	Z piy	J 716	2-¾" ф	10-100	54.00	41.28
HGT-3	1	2 ply	75/16	0.2/11.1	16-10d	12140	9280
пит-з	'	3 ply	7 716	2-¾" ф	10-100	54.00	41.28
HGT-4	4	4 ply	9	0.2/11.1	16-10d	12140	9280
пи 1-4	'	4 ply	9	2-¾" ф	16-100	54.00	41.28

- 1. Factored resistances have been increased 15% for earthquake or wind load. Reduce where other load durations govern.
- 2. Attached members must be designed to resist the applied loads.
- 3. Anchorage must be designed by others.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

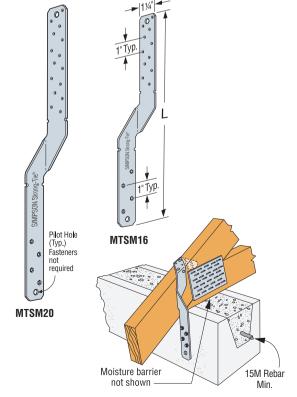
4. NAILS: 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

Typical HGT-2 Installation into Concrete

MTSM/HTSM Straps Ties

The MTSM and HTSM offer high strength truss to masonry connections.

MATERIAL: MTSM-16 gauge: HTSM-14 gauge


FINISH: Galvanized. Some products available in stainless steel or ZMAX®; see Corrosion Information, page 18-19.

INSTALLATION: • Use all specified fasteners. See General Notes.

- Attach to either side of grouted concrete block with a minimum one 15M rebar horizontal in the lintel block.
- Minimum f'_C = 2500 psi (17.25 MPa) maximum aggregate %".

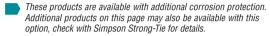
Model	Fasteners		3		Resistance 1.15)	
No.	(in)				D.Fir-L	S-P-F
	` ′	Truss	CMU	Concrete	lbs	lbs
					kN	kN
MTSM16	16	7-10d	4-1/4x21/4 Titen	4-1/4x13/4 Titen	1240	880
IVITSIVITO	10	/-10u	4-748274 111611	4-74X174 IIIEII	5.52	3.91
MTSM20	20	7-10d	4-1/4x21/4 Titen	4-1/4x13/4 Titen	1240	880
IVITOIVIZU	20	/-10u	4-748274 111611	4-74X174 IIIUII	5.52	3.91
HTSM16	16	8-10d	4-1/4x21/4 Titen	4-1/4x13/4 Titen	1495	1180
птышт	10	0-10u	4-748274 111611	4-74X174 IIIEII	6.65	5.25
HTSM20	20	10-10d	4-1/4x21/4 Titen	4-1/4x13/4 Titen	1495	1200
ПТЭМИ	20	10-100	4-74X274 IIIEII	4-74X194 IIIEII	6.65	5.34

- 1. Factored resistances have been increased 15% for wind or earthquake loading, no further increase is allowed. Reduce table values where other loads govern as per code.
- 2. Twist straps do not have to be wrapped over the truss to achieve resistances shown.
- 3. Minimum edge distance for Titen® screws is 1½".
- Products shall be installed such that the Titen screws are not exposed to the weather.
- 5. NAILS: 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

Typical MTSM20 Installation

Masonry Connectors

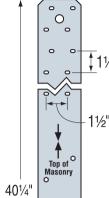
MSTAM/MSTCM Straps Ties

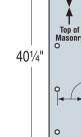

MSTAM and MSTCM models are designed for wood to masonry applications.

The MSTC series has countersunk nail slots for a lower nailing profile. Coined edges ensure safer handling.

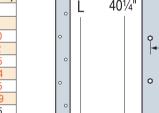
FINISH: Galvanized. Some products are available in stainless steel or ZMAX® coating; see Corrosion Information, page 18-19.

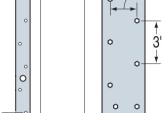
INSTALLATION:


- Use all specified fasteners. See General Notes.
- · Attaches to grouted concrete block or solid concrete.



Typical MSTAM36 Installation 2¾" end distance Clear Span




0

17%"

2" Typ. 0 0 0 0 --3"→

> MSTCM40 MSTAM36 (Other MSTCM

> > similar)

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

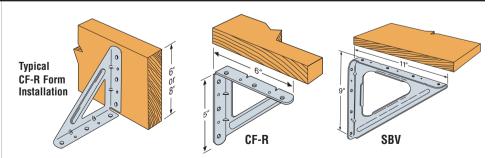
Masonry Application

		Dimer	nsions		Fasteners	1	Fa	ctored Tens	ile Resistar	ice		
Madal		(i	n)		(Total)		(Total)			ir-L	S-I	P-F
Model No.	Ga								$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$
140.		W	L	Nails	Nails CI	CMU	Concrete	lbs	lbs	lbs	lbs	
							kN	kN	kN	kN		
MSTAM24	18	11/4	24	8-10d	5-1/4x21/4	5-1/4x13/4	1790	1870	1660	1870		
IVIO IAIVIZ4	10	1 74	24	0-10u	Titen	Titen	7.96	8.32	7.38	8.32		
MSTAM36		11/4	36	12-10d	8-1/4x21/4	8-1/4x13/4	2685	2685	2685	2685		
WISTAWISO		1 /4	30	12-10u	Titen	Titen	11.94	11.94	11.94	11.94		
MSTCM40	16	3	401/4	26-10d	14-1/4x21/4	14-1/4x13/4	5235	5235	5235	5235		
101011010140	10	3	4074	20-10u	Titen	Titen	23.29	23.29	23.29	23.29		
MSTCM60		3	591/2	26-10d	14-1/4x21/4	14-1/4x13/4	5235	5235	5235	5235		
IVISTOIVIOO		3	3372	20-10u	Titen	Titen	23.29	23.29	23.29	23.29		

- 1. Minimum edge distance 1½" using Titen® screws.
- 2. **NAILS:** 10d = 0.148" dia. x 3" long. See page 24-25 for other nail sizes and information.

Floor-to-Floor Clear Span Table

Fasteners			;	Factored Tensile Resistance					
Madal	Clear		(Total)		D.F	ir-L	S-P-F		
Model No.	Span				$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	
140.	(in)	Nails	CMU	Concrete	lbs	lbs	lbs	lbs	
					kN	kN	kN	kN	
MSTAM36	16 or 18	6-10d	4-1/4x21/4	4-1/4x13/4	1480	1495	1355	1495	
IVISTAIVISU	10 01 10	0-10u	Titen	Titen	6.58	6.65	6.03	6.65	
MSTCM60	221/4	26-10d	14-1/4x21/4	14-1/4x13/4	5235	5235	5235	5235	
IVIOTOIVIOU	2274	20-10u	Titen	Titen	23.29	23.29	23.29	23.29	


SBV/CF-R Shelf Brackets/Concrete Form Angles

Use the SBV for shelving, counter brackets, window ledge supports, at a very competitive price.

The CF-R is used where a moderate size shelf bracket and reinforcing angle is needed. When used for tilt-up perimeter forming, the nail hole placement ensures substantial re-use.

MATERIAL: 16 gauge FINISH: Galvanized INSTALLATION:

- · Use all specified fasteners. See General Notes.
- SBV—Reversible for nominal 10" or 12" shelves of any thickness.
- CF-R (Retail Pack)—Recommended spacing is 36" for 2x's and 18" for 1x's. Use the 5" leg for 6" lumber and the 6" leg for 8" lumber. Holes are sized for 1/4" fasteners or 10d commons.

	Fasteners	Factored Resist	ance $(K_D = 0.65)$
Model	D.Fir-L Stud lbs		S-P-F
No.			lbs
		kN	kN
CF-R	3-SDS 1/4"x2"	140	130
GF-N	3-3D3 74 XZ	0.62	0.58
SBV	4-SDS 1/4"x2"	150	140
SDV	4-3D3 74 XZ	0.67	0.62

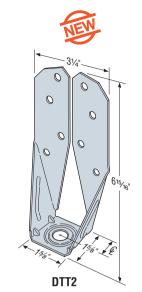
1. Factored resistances have been decreased for permanent loading. Values can be increased for other load durations as per code.

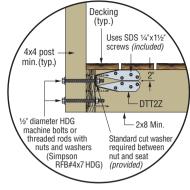
DTT2 Deck Post Connectors

SIMPSON
Strong-Tie

The DTT2 is a safe, cost-effective way to attach deck-railing posts to the deck framing. Because the post is tied back into the deck joists, rather than to the rim joist alone, the connection is stronger than typical through-bolt installations. The DTT2 can be used for laterally tying the deck to the house. Additionally, the versatile DTT2 is load rated as a holdown for light-duty shearwalls and braced wall panel applications. The DTT2 fastens easily to a single 2x joist or stud using Simpson Strong-Tie® Strong-Drive® SDS screws (included) and accepts a ½" machine bolt or anchor bolt.

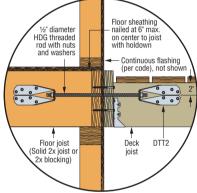
The DTT2SS is made from stainless steel for applications in higher-exposure environments. Whether it's a deck guardrail post application or the lateral-load connection from the deck to the adjacent structure, the stainless-steel DTT2 is the best choice for seaside applications or those calling for more corrosive preservative-treated lumber formulations. It fastens to the framing members with stainless-steel Simpson Strong-Tie Strong-Drive SDS wood screws (included).


The DTT2Z-SDS2.5 is our standard DTT2Z packaged with $2\frac{1}{2}$ " Simpson Strong-Tie Strong-Drive SDS wood screws instead of the standard $1\frac{1}{2}$ " fasteners. These longer screws allow the DTT2Z to achieve a higher capacity when used as a holdown on double S-P-F studs in a shearwall application. The DTT2Z-SDS2.5 is also suitable in deck applications when double 2x members are used for deck joists or blocking.


MATERIAL: DTT2Z/DTT2SS-14 gauge

FINISH: DTT2Z—ZMAX® coating; DTT2SS—Stainless steel; see Corrosion Information, page 18-19.

INSTALLATION: Use all specified fasteners. See General Notes.


- A standard cut washer (refer to General Notes) must be installed between the nut and the seat.
 - Simpson Strong-Tie SDS screws install best with a low speed high torque drill with a %" hex head driver.

DTT2 installed as a lateral connector for a deck guardrail post.

For more information on guardrail post connections, see technical bulletin T-GRDRLPST.

Typical Deck-to-House Lateral Load Connection

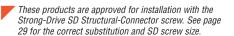
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

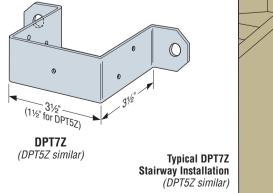
	Model		F	asteners	Minimum Wood		ile Resistance 1.15)	Deflection ^{3,4} at Factored			
	No.	(in)	Anchor		Thickness	D.Fir-L	S-P-F	Resistance			
		(111)	Bolt Dia.	Fasteners	(in)	lbs	lbs	in mm 0.250 6.35 0.250			
			(in)		,	kN	kN	mm			
	DTT2	13/16	1/2	8-SDS 1/4"x11/2"	I	2805	2520	0.250			
į.						12.48	11.21	6.35			
7	טווע					3060	2565	0.250			
					3		11.41	6.35			
	DTT2Z-SDS2.5	13/16	1/2	8-SDS 1/4"x21/2"	3	3060	2950	0.250			
	D112Z-SDSZ.5	716	/2		3	13.61	13.12	6.35			

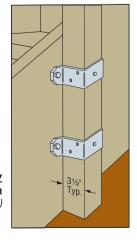
- 1. Factored resistances have been increased 15% for short term load duration. Reduce where other load durations govern.
- 2. Tension values are valid for holdowns flush or raised off of the sill plate.
- Installations shown are for post to joist connections, however these products can be used as a holdown or tension tie for other applications. If used as a holdown or tension tie, the following apply:
 - The designer must specify anchor bolt type, length and embedment to ensure adequate anchorage to concrete.

 When with the second and - b. When using structural composite lumber columns, screws must be applied to the wide face of the column.
- c. Post design shall be by the Designer. Tabulated values are based on
- a minimum wood member thickness in the direction of the fastener penetration. Post may consist of multiple 2x members provided they are designed to act as one unit independently of the holdown fasteners.
- d. Holdowns shall be installed centred along the width of the attached post.
- e. Deflection at Factored Resistance includes fastener slip, holdown elongation and anchor bolt elongation (L = 6"). Additional elongation of anchor bolts shall be accounted for by the Designer when the length of the anchor bolt above the top of the concrete to the attachment at the holdown is longer than 6". Similar consideration for floor to floor connections must be addressed by the Designer.
- Deflection values may be reduced linearly for lesser loads including specified wind loads at h/500.

DPTZ Deck Post Tie

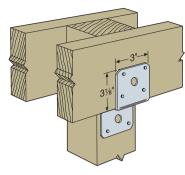

The DPTZ Deck Post Tie products are used to attach 2x4 (DPT5Z) or 4x4 (DPT7Z) vertical posts to the side of stringers, rims or other wood members.


MATERIAL: 14 gauge


FINISH: ZMAX® coating; see Corrosion Information, page 18-19.

INSTALLATION:

- Use specified HDG fasteners. See General Notes.
- · Install in pairs.
- Install with two %" through bolts into side member and 5-10dx1½ to post for DPT5Z or 5-10d for DPT7Z.


The DJT14Z Deck Joist Tie is designed to attach 2x deck joists to the side of 4x or larger support posts. The DJT14Z can be installed with either nails or bolts.

MATERIAL: 14 gauge

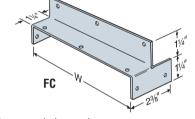
FINISH: ZMAX® coating; see Corrosion Information, page 18-19. INSTALLATION: • Use specified HDG fasteners. See General Notes.

- Recommended: install on post first.
- Minimum 2x4 joist and 4x4 post.
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

				Factored Norn (K _D =	
	Model No.	Ga	Fasteners	D.Fir-L	S-P-F
	NU.			lbs	lbs
				kN	kN
			0 164	1925	1630
	DJT14Z	14	8-16d	8.56	7.25
	DJ114Z	14	0.5/ D:= MD	2295	1630
			2-% Dia. MB	10.21	7.25

Typical DJT14Z Installation

- 1. Resistances assume a dry service condition (K_{SF} = 1.00). Reduce values for other conditions as per 10.2.1.5 CSA 086-09.
- 2. Resistances shown are for one DJT14Z.
- 3. **NAILS:** 16d = 0.162" dia. x 3½" long. See page 24-25 for other nail sizes and information.


FC Framing Clips

For fast, accurate framing. Three-dimensional nailing pattern results in high-strength joint values. Ideal for fence construction.

MATERIAL: 16 gauge FINISH: Galvanized

INSTALLATION: Use all specified fasteners. See General Notes.

80 - 4 - 1				Resistance 1.00)
Model No.	W (in)	Fasteners	D.Fir-L	S-P-F
NO.	(111)		lbs	lbs
			kN	kN
FC4	3%16	8-16d	1415	1005
F04	3716	0-10U	6.30	4.47
FC6	51/2	10-16d	1415	1005
100	J 7/2	10-100	6.30	4.47

- 1. Resistances may be increased for other load durations as per code.
- 2. Multiply values by 0.67 for wet service conditions ($K_{SF} = 0.67$).
- 3. A 2½" minimum lumber thickness is required
- to achieve resistances shown. **NAILS:** 16d = 0.162" dia. x $3\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

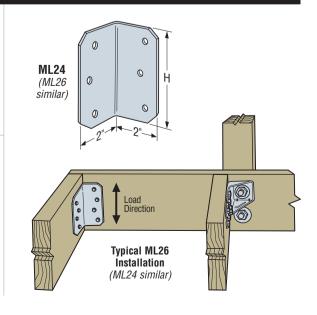
Load Installation

ML Angles

The ML angle combines strength and versatility through the use of Simpson Strong-Tie® Strong-Drive® SDS screws. Fastener holes are staggered to minimize wood splitting and opposing hole patterns allows for back to back installation without fastener interference.

MATERIAL: 12 gauge

FINISH: ML24Z/ML26Z—ZMAX® coating; ML24SS/ML26SS—stainless steel; see Corrosion Information, page 18-19.


INSTALLATION: • Use all specified fasteners. See General Notes.

• Simpson Strong-Tie SDS 1/4"x11/2" are not provided with the angle.

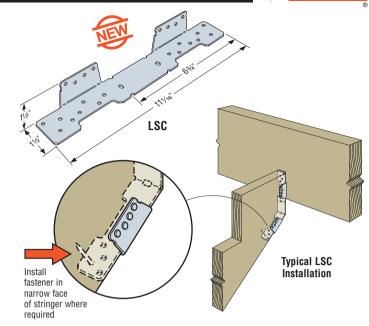
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

			F4	Factored Normal Resistance (K _D = 1.00)				
	Model	H (in)	Fasteners (Total)	D.Fir-L	S-P-F Ibs kN 550 2.45 1160			
		()	(Total)	lbs				
				kN	(K _D = 1.00) S-P-F Ibs kN 550 2.45			
	ML24	4	6-SDS 1/4"x11/2"	765	550			
	IVIL24	4	0-3D3 74 X172	3.40	2.45			
	ML26	6	8-SDS 1/4"x11/2"	1360	1160			
			0-3D3 74 X I 72	6.05	5.16			

- 1. Factored resistances may be increased 15% for short term load duration. Reduce where other load durations govern.
- 2. Multiply values by 0.67 for wet service conditions.

Decks & Fences

The LSC adjustable stair-stringer connector offers a versatile, concealed connection between the stair stringer and the carrying header or rim joist while replacing costly framing. Field slopeable to all common stair stringer pitches, the LSC connector is suitable for either solid or notched stringers.


Features:

- Replaces additional framing and toe-nailing
- Suitable for most installations on 2x10 or 2x12 header/rim joist
- May be installed flush with the top of the carrying member or lower on the face
- · Interchangeable for left or right applications
- LSCZ features a ZMAX® coating for additional corrosion protection. Suitable for interior and some exterior applications. LSCSS is made from stainless steel for higher exposure

environment. See **www.strongtie.com/info** for more information **MATERIAL**: 18 gauge

FINISH: LSCZ—ZMAX® coating; LSCSS—Stainless steel INSTALLATION:

- · Use all specified fasteners, see table.
- Before fastening, position the stair stringer with the LSC on the carrying member to verify where the bend should be located.
- Tabs on the LSC must be positioned to the inside of the stairs.
- The fastener that is installed into the bottom edge of the stringer must go into the second-to-last hole.

These products feature additional corrosion protection.

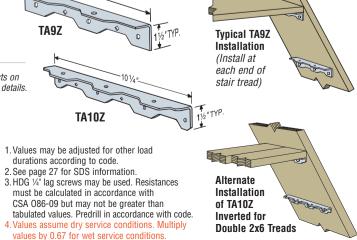
These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

			Fasteners		Factored Normal			
Madal	Dim laint		Strii	nger	Resistance (K _D = 1.00)			
Model No.	Rim Joist Installation	Rim	MIL.	M	D.Fir-L	S-P-F		
140.	Inotaliation	Joist	Wide Face	Narrow Edge	lbs	$(K_D = 1.00)$		
			1 400	Lugo	kN	kN		
		8-10dx1½	8-10dx11//	1-10dx1½	1425	1040		
	Supported ^{1,7}	0-10UX 1 72	0-10UX172	1-10ux 1 72	6.34	4.63		
	Supporteu	0 CD#0v11/"	8-SD#9x1½"		1215	860		
		0-3D#9X172	0-3D#9X172	_	5.40	3.83		
		8-10dx1½	8-10dx1½	1-10dx1½	1165	825		
LSCZ	Standard ²	0-10ux 1 72	0-100X172	1-10ux 172	5.18	3.67		
LOUZ	Stanuaru-	9_CD#0v11//"	8-SD#9x1½"	1_CD#0v11/4"	1165	825		
		0-3D# 3X 1 72	0-3D#3X172	1-3D#3X172	5.18	3.67		
		8-10dx1½	8-10dx1½	1-10dx1½	655	465		
	Cantilevered ^{5,6}	0-10UX 1 72	0-10UX172	1-10UX172	2.91	2.07		
	Cantillevereus	8-SD#9x1½"	0_CD#0v11/4"		840	600		
		U-UU# 9X 1 72	# 9X 1 72	_	3.74	2.67		

- 1. Supported installations require bearing supports within 12" of LSC.
- 2. Standard installations require bearing support within 4 ft. of LSC.
- When cross grain tension forces cannot be avoided in the member, mechanical reinforcement to resist such forces may be considered.
- 4. A minimum distance of ¾" measured from the lowest rim joist fastener to edge of rim joist is required.
- 5. A minimum distance of 3½" measured from the LSC tabs to the end of the rim joist is required.
- A maximum rim joist cantilever length of 12" measured from the face of the bearing support to the end of the rim joist is required to achieve the tablulated values.
- Simpson Strong-Tie SD#9x1½" screws may be substituted for 10dx1½"
 nails to achieve the published nail values if the extra screw is installed
 in the narrow face of the stringer.
- Tabulated values assume seasoned lumber and dry service conditions. Multiply values by 0.67 for wet service conditions.
- NAIL: 10dx1½ = 0.148" dia. x 1½" long. Nails shall be hot-dip galvanized for LSCZ and stainless steel for LSCSS. See page 24-25 for other nail sizes and information.
- SCREWS (LSCZ only): SD #9x1½" (model SD9112) = 0.131" dia. x 1½" long (see pages 28-29).

TA Staircase Angles

For use in structurally-sound staircase framing. The TA eliminates costly conventional notching.


MATERIAL: 12 gauge

FINISH: TA9Z/TA10Z—ZMAX coating; TA9SS/TA10SS—stainless steel; see Corrosion Information, page 18-19.

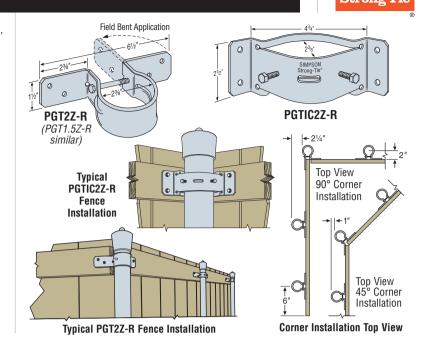
ORDER: May be ordered TA9ZKT and TA10ZKT with two ZMAX TAS and SDS 1/4"x11/2" screws.

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

	Faste	eners	Factored F	Resistance			
Model			$(K_D = 1.00)$				
No.	Stringer	Tread	D.Fir-L	S-P-F			
NU.	Stringer	IIGau	lbs	1.00)			
			kN	1.00) S-P-F Ibs kN 945 4.23 1260 5.60 1260			
TA9Z	3-SDS 1/4"x11/2"	2-SDS 1/4"x11/2"	1025	945			
IASZ	3-3D3 74 X I 72	2-3D3 74 X 1 72	4.56	4.23			
TA10Z	3-SDS 1/4"x11/2"	4-SDS 1/4"x11/2"	1025	1260			
IAIUZ	3-3D3 74 X 1 72	4-3D3 74 X 1 72	4.56	5.60			
TA10Z	4-SDS 1/4"x11/2"	3-SDS 1/4"x11/2"	1370	1260			
IAIUZ	4-9D9 /4 X1/2	3-3D3 74 X I 72	6.10	5.60			

Pipe Grip Ties attach wood fence rails to metal fence posts, eliminating rotted and failed wood posts. The PGT is suitable for standard applications as well as corners and splices.

The PGTIC2Z-R is an interior corner pipe grip tie.

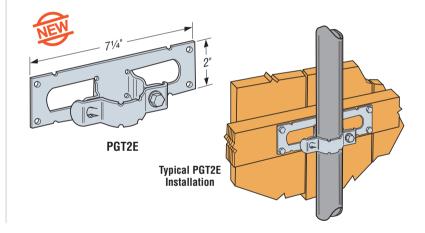

The PGT1.5Z-R is for 1½" pipe (1½" outside diameter). and the PGT2Z-R for 2" pipe (23%" outside diameter).

MATERIAL: 12 gauge

FINISH: ZMAX® coating, also available in G90.

INSTALLATION: • Use all specified fasteners. See General Notes.

- PGTIC2Z-R to Post Install two set screws (supplied) with \% socket in predrilled holes.
- PGTIC2Z-R to Rails Use Simpson Strong-Tie® Strong-Drive® 1/4" x 11/2" SDS wood screws (not supplied).
- Install on vertical pipes, offsetting corners to allow for the correct rail alignment.
- Use 3 to 4 PGTs per pipe; line up to stringline.
- Fasten PGT with 1/4" hex head bolt (supplied).
- · PGT attaches to rails with four Simpson Strong-Tie SDS 1/4" x 11/2" wood screws (not supplied). See page 27 for SDS screw information.
- 1/4" lag bolts may be used. Follow the code requirements for predrilling.
- · Nail fence boards to rails.
- · Field bend PGT flanges to fit corner and angled conditions (bend one time only).


PGT2E Pipe-Grip Tie

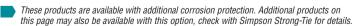
Simpson Strong-Tie introduces the latest time-saving solution for building fences with 2" steel posts. The PGT2E pipe-grip tie features a unique two-piece design that installs quickly and provides a solid connection between fence stringer and post. Snap the attachment plate onto the post for easy positioning and secure the strap using one thread-tapping screw (included).

- · Faster to install than other two-piece fence-post brackets
- Safer to use, eliminating protruding carriage bolts and sharp corners
- · Unique locking tab for the strap means only one screw is needed to fasten

MATERIAL: 12 gauge FINISH: Galvanized INSTALLATION:

• Fasten stringers using 1/4" Simpson Strong-Tie® Strong-Drive® SDS wood screws or 1/4" lag screws (follow code requirements for pre-drilling).

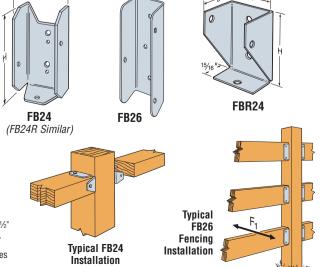
FB/FBR Fence Brackets


FB and FBR fence brackets make the connection between fence rails and posts simple and strong. Eliminates the need for toe nailing or screwing. Clean, versatile connections make planning and building fences, deck/porch railings and louvers easier and faster.

MATERIAL: See table

FINISH: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, page 18-19.

INSTALLATION: • Holes are sized for 8dx11/2", 8d commons or SD9x1½" screws into the supporting member.


- FB24R is sized for 10dx11/2" or SD10x11/2" screws.
- FB26 is sized for SD10x11/2" screws.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

Model Ga		Member	Dimensions (in				
No.	ua	Size	W	Н	3/4 3/4 11/2		
FB24	20	2x4	1%16	3%	3/4		
FB24R	20	2x4 RGH	2	3%	3/4		
FBR24	18	2x4	1%16	27/16	11/2		
FB26	18	2x6	1%16	5	11/2		

- 1. FB26 has a factored resistance for F₁ of 460 lbs (2.05kN).
- 2. FBR24: R = rail (not rough). 3. NAILS: 10dx1½ = 0.148" dia. x 1½" long, 8d = 0.131" dia. x $2\frac{1}{2}$ " long, $8dx1\frac{1}{2} = 0.131$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Decks & Fences

E-Z Base[™]/E-Z Mender[™]/E-Z Spike[™] Fence Products

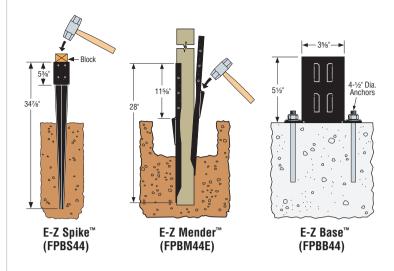
Replacing an entire fence can be an expensive and difficult task. Simpson Strong-Tie® offers a line of products designed to help make reinforcing fence posts easy and economical. The E-Z Base, E-Z Mender and E-Z Spike offer simple solutions for all types of fence post projects.

E-Z Spike (Model No. FPBS44)

- Allows easy installation of 4x4 wood posts without digging holes or pouring concrete.
- Can be used for a variety of applications where quick-to-install posts are needed.

E-Z Mender (Model No. FPBM44E)

- Allows easy repair of rotted or damaged 4x4 wood posts installed in concrete or dirt.
- Reinforces weakened wood posts without having to replace the post or the concrete.
- · Sold individually. Use in pairs.


E-Z Base (Model No. FPBB44)

• Allows easy installation of 4x4 wood posts on existing concrete.

MATERIAL: 12 gauge **FINISH**: Black powder-coat **INSTALLATION**: • See flier F-EZFPP for details.

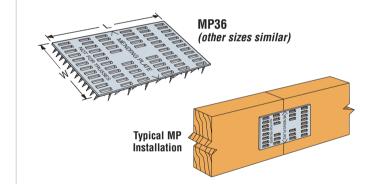
• Attach post to E-Z Spike or E-Z Base with 8-1/4" SDS screws or 1/4" HDG lag screws and attach post to E-Z Mender using 6 HDG nails or screws per part.

NOTE: • Notwithstanding the terms of the Limited Warranty, Simpson Strong-Tie does not guarantee, represent or warrant that this product will perform under, or prevent or reduce damage caused by corrosion, any seismic, wind, atmospheric, or other load-producing event.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

MP Mending Plates

Versatile and easy-to-use mending plates for wood-to-wood connections. No nails or notching of wood required. For non-structural applications only; not for truss applications.


MATERIAL: 20 gauge FINISH: Galvanized

INSTALLATION:

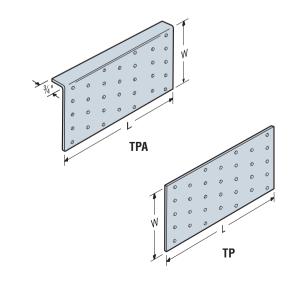
- Place plate over two pieces of aligned wood with arrows aligned at joint.
- · Hammer the plate to embed the prongs.

Model	Dimensions (in)					
No.	W	L				
MP14	1	4				
MP24	2	4				
MP36	3	6				

Connectors are not load rated.

TP/TPA Tie Plates

TPs are nail-on tie plates. TPAs are flanged for added support.


MATERIAL: 20 gauge FINISH: Galvanized

INSTALLATION: • Holes are sized for 8d common or 8dx11/2" nails.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

Model	Dimens	ions (in)	Number of		
No.	W	L	Nail Holes		
TP15	1 13/16	5	13		
TPA37	31/2	7	32		
TPA39	31/2	9	41		
TP35	31//8	5	23		
TP37	31//8	7	32		
TP39	31//8	9	41		
TP311	31//8	11	50		
TP45	41//8	5	30		
TP47	41//8	7	42		
TP49	41//8	9	54		
TP411	41/8	11	66		
TP57	5¾	7	60		
TPA57	5	7	49		

1. Connectors are not load rated.

ICFVL Ledger Connector System

The ICFVL Ledger Connector System is engineered to solve the challenges of mounting wood or steel ledgers to insulated concrete form (ICF) walls. The ICFVL is designed to provide both vertical and lateral, in-plane performance. There are many benefits over traditional anchor bolting, including better on center spacing in most cases, faster installation and no protrusions.

The embedded legs of the ICFVL are embossed for additional stiffness and the hole allows for concrete to flow through and around the connector. The exposed flange on the face of the ICF provides a structural surface for mounting either a wood or steel ledger.

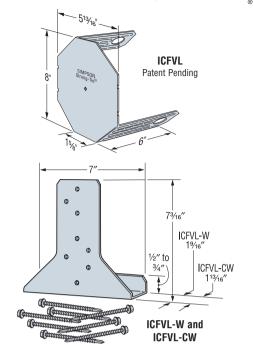
MATERIAL: ICFVL-14 gauge: ICFVL-CW and ICFVL-W-16 gauge

FINISH: Galvanized

INSTALLATION: ICFVL in ICF

- Snap a chalk line for the bottom of the ledger.
- Mark required on center spacing.
- . Use ICFVL to mark kerfs locations.
- · Cut kerfs as marked.
- Insert ICFVL flush to the face of the ICF.
- · Pour concrete.

Wood Ledger Attachment - ICFVL-W or -CW


- Slip appropriate ledger connector underneath the ledger.
- Install the eight ICF-D3.62 screws partially into the ledger.
- Position the ledger level to the chalk line and drive the screws through the wood and into the ICFVL.

Steel Ledger Attachment

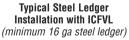
- · Position the ledger level to the chalk line and against the ICFVL.
- Attach with four 1/4-14x3/4", #3 drill point screws (not provided).
- All screws should be located at least 1/2" from the edge of the ICFVL.
- · Space screws evenly.

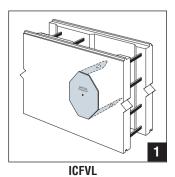
WARNING:

Industry studies show that hardened fasteners can experience performance problems in wet environments. Accordingly, use this product in dry environments only.

		Factored F	Resistance
Ledger	Model	Vertical	Lateral
Type	No.	lbs	lbs
		kN	kN
2x D.Fir-L/S-P-F	ICFVL w/ ICFVL-W	2820	3075
2X D.FII-L/3-P-F	IGFVL W/ IGFVL-W	12.56	13.70
1¾" SCL	ICFVL w/ ICFVL-CW	2820	3075
174 30L	ICEAL MY ICEAL-CAN	12.56	13.70
Steel	ICFVL	2590	2470
31661	TOTAL	11.54	11.00

- 1. Minimum steel ledger specification is $F_V = 33$ ksi (230 Mpa) and $F_{IJ} = 45$ ksi (310 Mpa) in accordance with CSA S136-07.
- No load duration increase allowed.
- Minimum concrete compressive strength, f'_C 2500 psi (17.25 Mpa).
- 4. Connector spacing to be determined by the design professional up to a maximum of 4'-0".
- Values shown apply to ICF foam thickness of 23/4" or less. Contact factory for values with thicker foam
- When combining vertical and lateral loads designer shall evaluate as follows: Vertical Load/Vertical Resistance + Lateral Load/Lateral Resistance ≤ 1.0.
- The ICFVL must be installed no closer than 4" below the top of the wall to achieve the tabulated resistances shown. For installations where the ICFVL is installed less than 4" from the top of the wall (including flush applications) multiply the factored resistances by 0.94.


This tables address vertical load applications for ICF foam thickness of 234" or less only.


						ICF	VL SPA	CING TO	REPLA	CE ANC	HOR BO	LTS (in)	1,2,3				
Ledger	Connector	½" Dia. Anchors at %" Dia. Anchors at (2)-%" Dia. Anchors at			3/	¾" Dia. Anchors at		at									
Туре	Туре	12" 0.c.	24" 0.c.	36" o.c.	48" 0.c.	12" 0.c.	24" 0.c.	36" o.c.	48" 0.c.	12" 0.c.	24" 0.c.	36" o.c.	48" 0.c.	12" 0.c.	24" 0.c.	36" o.c.	48" 0.c.
	WOOD LEDGERS																
2x D.Fir-L/S-P-F	ICFVL w/ ICFVL-W	48	48	48	48	38	48	48	48	19	38	48	48	34	48	48	48
1¾" SCL	ICFVL w/ ICFVL-CW	48	48	48	48	34	48	48	48	17	34	48	48	28	48	48	48
	STEEL LEDGERS																
16 ga (0.060") ICFVL 20 40 48 48 16 32 48 48 — —									_								
14 ga (0.057")	ICFVL	16	32	48	48	13	26	39	48	_	_	_	_	_	_	_	_

- 1. The Designer may specify different spacing based on the load requirements. It is recommended to space the components at multiples of the joist spacing to help reduce the chance of interference with joist hangers. Spacings are based on perpendicular to grain capacity of
- bolt in wood ledger compared to tested value of ICFVL.
- See F-ICFVL flier for additional connection details
- 4. For steel ledgers, the 14 ga spacing is closer than the 16 ga ledger due to the
- calculated resistance of a bolt being higher when using a thicker piece of steel.

 5. Steel ledger values are based on steel. F_U = 45ksi (310 Mpa).

The ICFVL must be installed no closer than 4" below the top of the wall to achieve the connector spacings shown. For installations where the ICFVL is installed less than 4" from the top of the wall (including flush applications) multiply the connector spacings by 0.94

Typical Wood Ledger Installation

with ICFVL and ICFVL-W

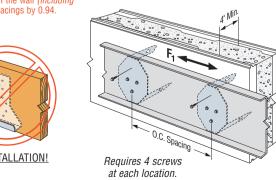


Table provides on center spacing.

Miscellaneous

RTC/FWH Rigid Tie™ Connectors

The RTC series secures two wood members to a vertical post forming a 90° corner. The RTC42 and RTC44 are heavy-duty structural connectors. See the table for post and joist sizes.

RTB—a bracket for intersecting 2x members.

FWH—4 way connectors for 2x members with bendable flanges.

RTA—connects two 2x wood members at a 90° angle.

RTF—connects two members in a "pass-through" application.

RTR & RTU—a 2x member crosses another.

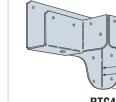
MATERIAL: RTC44—14 gauge; RTA2—16 gauge;

RTR and RTB-20 gauge; all others-18 gauge

FINISH: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, page 18-19.

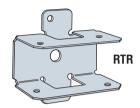
INSTALLATION:

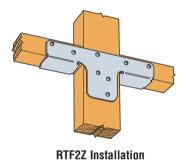
Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

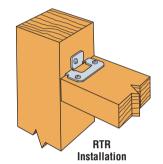

- Use all specified fasteners. See General Notes.
- Install vertical members first, then attach horizontal members for easier alignment.
- Seat wood member in bracket with a C-clamp before securing to aid positioning and prevent skewing.
- · Always follow manufacturer's instructions when using power tools and building equipment.
- These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.
- These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and

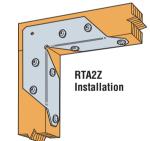
		Fastener	s (Total)		Normal (K _D =1.00)	
Model No.	Post Size	Joist Size			D.Fir-L	S-P-F
NU.	3126	3126	Post	Joist	lbs	lbs
					kN	kN
FWH2	2x	2x	8-SD8x1.25	8-SDSx1.25	_	_
1 00112	2.X	2.X	0-3D0X1.23	0-3D3X1.23	_	_
RTA12	1x	1x	4-SD8x1.25	4-SD8x1.25	_	_
ITIAIZ	17	17	4 0D0X1.20	4 0D0X1.23	_	_
RTA2Z	2x	2x	4-SD8x1.25	4-SD8x1.25		_
1117122			1 000001.20	1 0000011.20		_
RTA4	4x	4x	7-SD8x1.25	5-SD8x1.25		_
	.,,	.,,	. 050////20	0 00000000	_	_
RTB22	2x	2x	4-SD8x1.25	4-SD8x1.25		_
						_
RTC22Z	2x	2x	5-SD8x1.25	6-SD8x1.25		
					-	
RTC24	2x4	2x	9-SD8x1.25	11-SD8x1.25	1225	1080
					5.45	4.80
	4x4 2x		14-SD8x1.25	8-SDSx1.25	1905	1750
RTC42					8.47 2700	7.78 2480
	4x4	2x	14-10d	8-10dx1½	12.01	11.03
					3190	2980
RTC44	4x4	4x	14-10d	15-10d	14.19	13.26
					14.19	13.20
RTF2Z	2x	2x	4-SD8x1.25	8-SDSx1.25		
RTT22	2x	2x	3-SD8x1.25	7-SD8x1.25	_	_
RTR	2x	2x	2-SD8x1.25	4-SD8x1.25	_	_
		_			_	_
RTU2	2x	2x	2-SD8x1.25	4-SD8x1.25	_	_

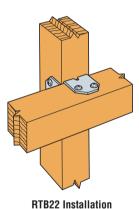
- 1. Factored loads must be equally distributed on both joists.
- 2. Factored resistances may not be increased for short-term loading.
- 3. **NAILS:** 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

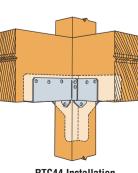


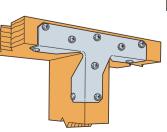







WARNING: Industry studies show that hardened fasteners can experience performance problems in wet and corrosive environments. Accordingly, use the SD8X1.25 screw in dry, interior, and non-corrosive environments only.





RTC44 Installation (RTC24 and RTC42 similar)

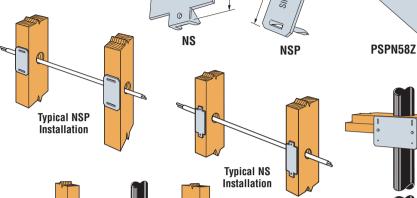
RTT Installation

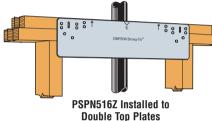
NS/NSP/PSPNZ Nail Stoppers

SIMPSON Strong-Tie

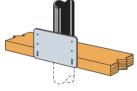
Nail Stoppers help prevent nails from piercing water pipes and electrical lines. Installed over utilities that pass through framing members.

MATERIAL: 16 gauge


FINISH: Galvanized. PSPN-ZMAX® coating. see Corrosion Information, page 18-19.


INSTALLATION: • NS/NSP/PSPN58Z—8d commons or prongs.

- PSPN516Z—16d commons
- For more information request F-PLUMBING.

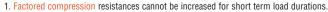

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Model No.	W	L
NS1	1½	3
NS2	11/2	6
NSP1	1½	21/2
NSP2	1½	5
PSPN58Z	5	8
PSPN516Z	5	16

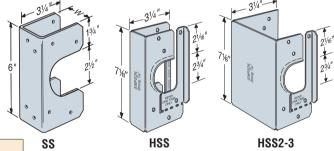
-165/16 PSPN516Z Typical PSPN58Z Installation Installation to Sill Plate

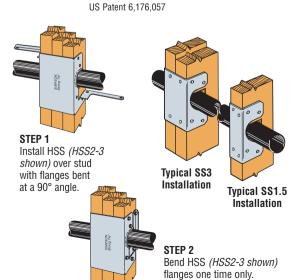
HSS/SS Stud Shoes

Stud Shoes reinforce studs notched in construction. They are NOT a total replacement of removed material.


HSS2-3 is designed for triple 2x studs. HSS Stud Shoes provide tension resistances as well as increased compression resistances. Flared flange provides greater strength. Installs over pipe up to 23/8" outside diameter.

MATERIAL: 16 gauge FINISH: Galvanized


INSTALLATION: Use all specified fasteners. See General Notes.


- HSS: Bend flanges at 90° angle during installation, then bend back and screw into position (screws supplied).
- · Bend flanges one cycle only.

			Factored Resistance					
			D.Fi	r-L	S-P	-F		
Model	Stud	Fasteners	Compresion	Tension	Compresion	Tension		
No.	Size	rastellers	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$		
			lbs	lbs	lbs	lbs		
			kN	kN	kN	kN		
SS1.5	2x	12-10dx1½	875	_	620	_		
331.3	2 X	12-10ux 1 72	3.89	_	2.76	_		
SS2.5	3x	12-10dx1½	1170	_	920	_		
332.3	0.0	12 100X172	5.20	_	4.09	_		
SS3	2-2x	12-10d	1255	_	970	_		
333	2 2 1	12 100	5.58	_	4.31	_		
SS4.5	3-2x	14-10d	1375	_	975	_		
304.3	3-2X	14-10u	6.12	_	4.34	_		
HSS2-SDS1.5	2x	12-SDS ½"x1½"	1860	1450	1430	1040		
11002-0001.0	۷.	12-000 /4 X1/2	8.27	6.45	6.36	4.63		
HSS2-2-SDS3	2-2x	12-SDS 1/4"x3"	1980	1370	1425	990		
11002 2 0000	2 2 1	12 0D0 74 X0	8.81	6.09	6.34	4.40		
HSS2-3-SDS3	3-2x	12-SDS 1/4"x3"	1635	1370	1175	990		
11002 0-0000	0 2 1	12 0D0 /4 X0	7.27	6.09	5.23	4.40		
HSS4-SDS3	4x	12-SDS 1/4"x3"	1995	1370	1435	990		
11004 0000	7/	12 0D0 /4 X0	8.87	6.09	6.38	4.40		

2. **NAILS:** 10d = 0.148" dia. x 3" long, $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

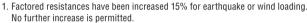
Screw into position.

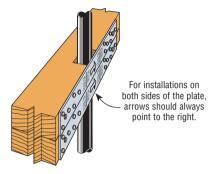
Miscellaneous

The RPS can be used to reinforce notches in wall plates for HVAC and pipe penetrations in walls.

FINISH: Galvanized, some products available in ZMAX® coating. See Corrosion Information, page 18-19.

INSTALLATION: Use all specified fasteners. See General Notes.


- Use RPS22 or RPS28 (16 gauge) to reinforce top plate.
- Use RPS18Z, RPS22Z or RPS28Z (16 gauge ZMAX) to reinforce sill plate.


RPS

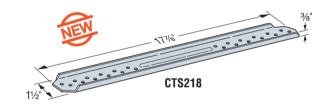
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

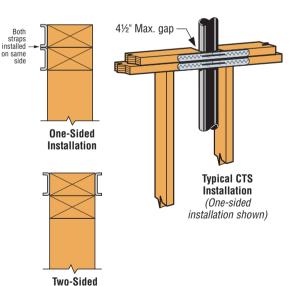
		Dimer	nsions			Factored Tensile Resistance					
Madal		(i	n)	Natah	Fastanava	D.F	ir-L	S-I	P-F		
Model No. Ga	Ga			Notch Width	Fasteners (Total)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D=1.15)$		
NO.		W	L	wiatii	(Total)	lbs	lbs	lbs	lbs		
							kN	kN	kN	kN	
RPS18		1½	185/16	≤ 5½"	5½" 12-8d	1155	1325	1075	1240		
NF 3 10		1 72	10716	≥ 372	12-0u	5.14	5.90	4.79	5.52		
RPS22	16	1½	225/16	≤ 5½"	16-8d	1535	1770	1435	1650		
NF3ZZ	10	1 /2	22/16	≥ 3/2	10-0u	6.84	7.88	6.39	7.35		
RPS28		1½	285/16	≤ 12"	12-8d	1155	1325	1075	1240		
NF320		1 72	20716	<u> </u>		5.14	5.90	4.79	5.52		

2. **NAILS:** 8d = 0.131" dia. x $2\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Typical RPS Installation (Only one strap may be necessary to meet code requirements)

CTS218 Compression and Tension Straps


The CTS218 is designed to repair wood members such as top plates, studs and trusses and is our first strap that handles both tension and compression loads. The unique rolled edges of the strap allow it to span gaps as wide as 4½" and its 1½" width enables installation on the narrow face of 2x lumber.


• Tested specifically for top/bottom plate repair with various multi-strap configurations

MATERIAL: 14 gauge FINISH: Galvanized

INSTALLATION: • Use all specified fasteners. See General Notes.

- One-sided installations install one or two CTS straps on the same side of the member.
- Two-sided installation install CTS straps on opposite sides of member. For three-part installations, install two parts on one side, one part on opposite side.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw.

Factored Resistance (K_D=1.15)

							,
Model	Ctron		Enstances	D.Fir-l		S-P-F	
		Installation		Compression	Tension	Compression	Tension
110.	Qty.		(por strup)	lbs	lbs	lbs	lbs
				kN	kN	kN	kN
	1	One Sided		1485	1985	1055	1985
	'	One Sided		6.61	8.83	4.69	8.83
	2	One Sided		2970	3970	2110	3970
	۷	One Sided		13.21	17.66	9.39	17.66
	2	Two Sided	24-10dv11/6	3440	3970	2445	3970
		TWO Sided	24-10UX172	15.30	17.66	10.88	17.66
	3	Two Sided		5405	5955	3840	5955
	3	TWO Sided		24.04	26.49	17.08	26.49
	1	Two Sided		6880	7940	4890	7940
CTS218	7	TWO Olded					35.32
010210	1	One Sided					1985
	'	One olded					8.83
	2	One Sided					3970
		One olded					17.66
	2	Two Sided	24-SD#0×11/6	3970	3970	2820	3970
		TWO Olucu	24 00// 3/172	17.66	17.66	12.54	17.66
	3	Two Sided		5995	5955	4255	5955
	J	I WO Olded		26.67	26.49	18.93	26.49
	4	Two Sided		7940	7940	5640	7940
	4	I WO Slucu		35.32	35.32	25.09	35.32
	Model No.	No. Qty. 1 2 2 3 4	No. Qty. Installation 1 One Sided 2 One Sided 2 Two Sided 3 Two Sided 4 Two Sided 1 One Sided 2 One Sided 2 Two Sided 2 Two Sided 3 Two Sided 3 Two Sided 3 Two Sided 3 Two Sided	1 One Sided 2 One Sided 2 Two Sided 3 Two Sided 4 Two Sided 1 One Sided 2 One Sided 2 Two Sided 3 Two Sided	1	1	Compression Tension Compression Ibs Ib

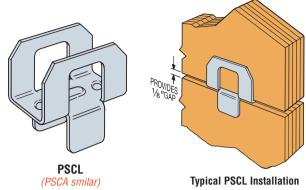
1. Factored resistances have been increased 15% for wind or seismic with no further increase allowed. Reduce where other loads govern. 2. Fastener quantities are for a single strap.

Installation

- 3. Maximum gap between wood members is 41/2".
- 4. **FASTENERS:** $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ ", $SD \#9x1\frac{1}{2} = 0.131$ " dia. $x 1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

PSCL/PSCA Panel Sheathing Clips


Simpson Strong-Tie® Panel Sheathing Clips are used to brace unsupported sheathing edges. The PSCA is a new version of the PSCL with less material for a more cost effective solution. Model sizes include: PSCL3/8, PSCA7/16, PSCL7/16, PSCA15/32, PSCL15/32, PSCL1/2, PSCL5/8, PSCL19/32, PSCL3/4.

MATERIAL: 20 gauge FINISH: Galvanized

INSTALLATION: • Use the same size sheathing clip as the panel thickness.

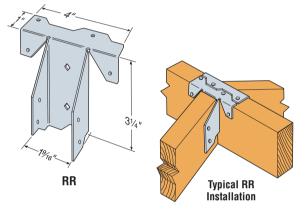
Model No.	Panel Thickness
PSCL%	3/8
PSCL7/16, PSCA7/16	7∕16
PSCL ¹⁵ / ₃₂ , PSCA ¹⁵ / ₃₂	15/32
PSCL½	1/2
PSCL%	5%
PSCL ¹⁹ / ₃₂	19/32
PSCL¾	3/4

1. PSCLs and PSCAs meet the requirements of 9.23.16.6 NBCC 2010 for required edge support of panel type sheathing.

RR Ridge Rafter Connector

An interlock provides alignment control and correct nailing locations. For a rafter-to-face connector, flatten the top flange into the face plane. The RR may be used with any rafter sloped up to 30°.

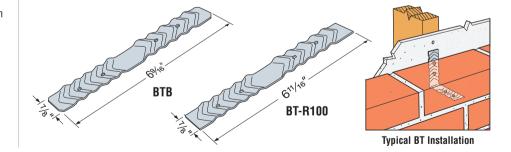
MATERIAL: 18 gauge FINISH: Galvanized


INSTALLATION: • Use all specified fasteners. See General Notes.

These products are approved for installation with the Strong-Drive SD Structural-Connector screw. See page 29 for the correct substitution and SD screw size.

		Fasteners		Factored Resistance				
Model Joist No. Size				D.F	ir-L	S-I	P-F	
			Uplift	Normal	Uplift	Normal		
	Size	Header	Joist	$(K_D=1.15)$	$(K_D=1.00)$	$(K_D=1.15)$	$(K_D=1.00)$	
				lbs	lbs	lbs	lbs	
				kN	kN	kN	kN	
RR	2x6	4-10dx1½	4-10dx1½	185	685	130	490	
nn.	RR 2X0 4-100X172		4-10UX172	0.82	3.05	0.58	2.18	

2. **NAILS:** $10dx1\frac{1}{2} = 0.148$ " dia. x $1\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

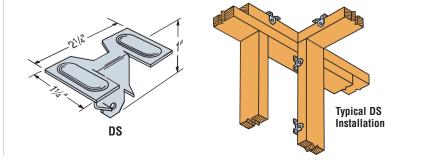

BT Brick Ties

Brick Ties provide a connection between the wood structure and brick façade.

MATERIAL: 22 gauge FINISH: Galvanized INSTALLATION:

> · Holes sized for 10d commons. See code for spacing requirements.

TO ORDER: BT-R100 = retail pack of 100 BTB = bulk carton of 500


DS Drywall Stop

Eliminates costly blocking at top plate, end walls, and corners. A typical residence will use several hundred of these inexpensive clips with a substantial savings in blocking and labour.

The installation prongs provide even more labour savings.

MATERIAL: 20 gauge FINISH: Galvanized INSTALLATION:

- 16" on center or less, using 8d commons.
- DS should not be used where gypsum board is used for structural loads.

SIMPSON Strong-Tie

Simpson Strong-Tie® Wall Bracing products offer effective options to resist racking during construction. Not designed to replace structural panel shearwall load-carrying component.

The WBC (coiled WB) multiple product dispenser pack weighs less than 40 pounds, making storage and transportation easy. WB106C—15 pieces per roll, WB126C—12 pieces per roll, WB143C—10 pieces per roll.

The RCWB features a rolled edge (the TWB has two rolled edges) for extra strength and safety.

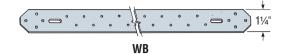
 $\textbf{MATERIAL} : \textbf{WB and WBC---}16 \ \textbf{gauge}; \ \textbf{TWB----}22 \ \textbf{gauge};$

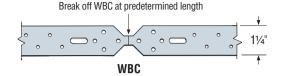
RCWB—20 gauge **FINISH**: Galvanized

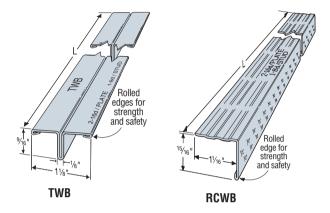
INSTALLATION: • Use all specified fasteners. See General Notes.

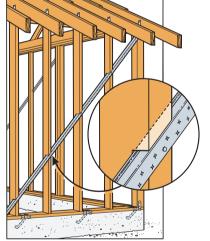
WB and WBC:

- Install in "X" pairs or in opposing "V" fashion.
- Use with 16" or 24" o.c. 2x4 (min.) studs.

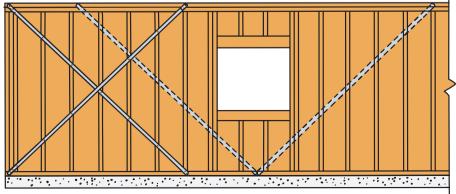

RCWB and TWB:


- Use with 16" o.c. studs.
- Use minimum of 2x4 studs with TWB.
- Use minimum of 2x6 studs with RCWB (2x4 min. for interior, non-bearing wall).
- Establish a run-line using the bracing as a straight edge. Single cut a saw kerf %" deep (TWB) or 1½" deep (RCWB) along the run line. If the wall is pre-framed on the floor, place the part into the saw kerf, and put one nail into the top plate. Tilt the wall up and plumb before nailing off top plate, bottom plate and studs according to the nailing schedule.


Model	L	Angle and	Fasteners		
No.	L	Wall Height	Plates	Studs	
WB106	9'-5%"	8' @ 60	2-16d	1-8d	
WB106C	9'-6"	8' @ 60	2-16d	1-8d	
TWB10	9'-9"	8' @ 55	2-16d	1-8d	
RCWB12	11'-4"	8' @ 45	2-16d	1-8d	
WB126	11'-4%"	8' @ 45	2-16d	1-8d	
WB126C	11'-4¾"	8' @ 45	2-16d	1-8d	
TWB12	11'-4"	8' @ 45	2-16d	1-8d	
RCWB12	11'-4"	9' @ 53	2-16d	1-8d	
WB126	11'-4%"	9' @ 53	2-16d	1-8d	
WB126C	11'-4¾"	9' @ 53	2-16d	1-8d	
TWB12	11'-4"	9' @ 53	2-16d	1-8d	
WB143C	14'-3"	10' @ 45	2-16d	1-8d	
RCWB14	14'-2"	10' @ 45	2-16d	1-8d	
TWB14	14'-2"	10' @ 45	2-16d	1-8d	


1. NAILS: 16d = 0.162" dia. $\times 3\frac{1}{2}$ " long, 8d = 0.131" dia. $\times 2\frac{1}{2}$ " long. See page 24-25 for other nail sizes and information.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.



The WBC Handy Carry Carton is convenient to store, transport and use.

Typical RCWB Installation

WB or WBC Wall Bracing "X" and "V" Applications

SIMPSON Strong-Tie

NCA/TB/LTB Bridging

NCA—Nailless installation eliminates callbacks for nail squeaks. Designed for secure grip before the drive-home blow, and deeper prong penetration. Precision-formed into a rigid "V" section.

TB—Tension-type bridging with maximum nailing flexibility. Use just two of the seven nail holes at each end.

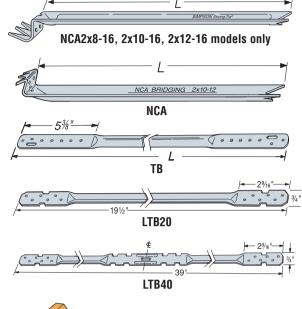
LTB—Staggered nail pattern accommodates 2x8 and 2x10 joists. Use just two of the six nail holes at each end. LTB40 has rigid prongs that install easily into the joist, and embossments that allow crisp bends.

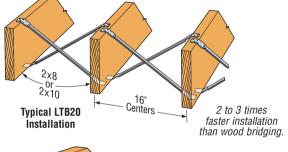
MATERIAL: LTB-22 gauge; NCA and TB-20 gauge (except NCA2x12-16—18 gauge).

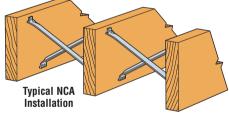
FINISH: Galvanized

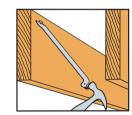
INSTALLATION: • Support floor joists with a depth-to-thickness ratio of six or more with bridging at intervals not exceeding 8'. If span is greater than 8', install on 2x8 or larger joists. If span is greater than 16', use more than one pair.

- Tension bridging works only in tension, so must be used in cross pairs.
- Install bridging tightly; loose installation may allow floor movement.
- NCA may be installed before or after sheathing, from the top or bottom. Simply locate the bend line approximately 1" from the joist edge.
- NCA has nail holes in one end for use if a prong is bent during installation. Fully seat nails if they are used; otherwise, they may lead to squeaks.
- TB requires two 10dx11/2" fasteners per end.
- LTB requires two 6d commons per end.
- Nail Bridging Only—When installation for the connection to the top of the stud wall instead of the joist underside, use a strap one size smaller than shown in the table.

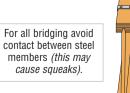

TENSION BRIDGING FOR I-JOISTS

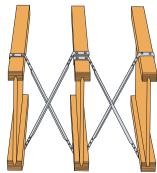

Joist				Jois	t Spacing	j (in)			
Height (in)	12	16	19.2	24	30	32	36	42	48
9½	TB20	TB27	TB27	TB30	TB36	TB36	TB42	TB48	TB54
10	TB20	TB27	TB27	TB30	TB36	TB36	TB42	TB48	TB54
111//8	TB20	TB27	TB27	TB30	TB36	TB36	TB42	TB48	TB54
12	TB20	TB27	TB27	TB30	TB36	TB36	TB42	TB48	TB54
14	TB27	TB27	TB27	TB36	TB36	TB42	TB42	TB48	TB54
16	TB27	TB27	TB30	TB36	TB42	TB42	TB42	TB48	TB54
18	TB27	TB30	TB30	TB36	TB42	TB42	TB48	TB54	TB56
20	TB30	TB30	TB36	TB36	TB42	TB42	TB48	TB54	TB56
22	TB30	TB36	TB36	TB36	TB42	TB42	TB48	TB54	TB56
24	TB36	TB36	TB36	TB42	TB42	TB48	TB48	TB54	TB56
26	TB36	TB36	TB36	TB42	TB48	TB48	TB48	TB54	TB60
28	TB36	TB36	TB42	TB42	TB48	TB48	TB54	TB54	TB60
30	TB36	TB42	TB42	TB42	TB48	TB48	TB54	TB56	TB60
32	TB42	TB42	TB42	TB42	TB48	TB48	TB54	TB56	TB60


TENSION BRIDGING FOR SOLID SAWN LUMBER


Latat		NCA		ТВ		LTB
Joist Size	Spacing	Model No.	L (in)	Model No.	L (in)	Model No.
2x10	12" o.c.	NCA2x10-12	12½	TB20	20	_
2x12	12" o.c.	NCA2x12-12	13%	TB20	20	_
2x14	12" o.c.	NCA2x8-16	151/4	TB27	27	_
2x16	12" o.c.	NCA2x10-16	15 ¹³ ⁄ ₁₆	TB27	27	_
2x8	16" o.c.	NCA2x8-16	151/4	TB27	27	LTB20 or 40
2x10	16" o.c.	NCA2x10-16	15 ¹³ ⁄ ₁₆	TB27	27	LTB20 or 40
2x12	16" o.c.	NCA2x12-16	16%	TB27	27	_

Space bridging to avoid contact noises.





Install from below as shown, or from above. Drive upper end into joist approximately 1" from the top.

Typical TB Installation

The Architectural Products Group consists of aesthetically pleasing, pre-finished connectors and innovative concealed joist ties designed for exposed wood applications. These connectors provide structural performance and, at the same time, add a unique appearance feature to a project. Refer to Simpson Strong-Tie® C-APG catalogue.

ARCHITECTURAL FINISHES

Eliminate time consuming prep work and costly field painting. Available finishes include textured flat black powder-coat, gray paint and hot-dip galvanized coating.

AVAILABILITY

Select products are in stock and readily available. Contact Simpson Strong-Tie for product availability and lead times for non-stocked items.

• PRE-ENGINEERED AND TESTED

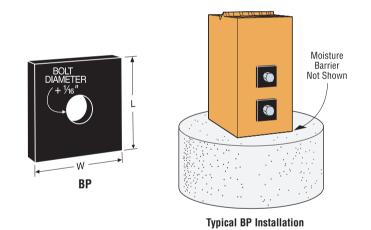
Load-rated products are verified to perform to design loads, unlike custom designed and fabricated connectors.

QUALITY ASSURANCE

No-Equal quality-controlled manufacturing ensures product consistency and high quality.

Products shown in this section come with textured flat black powder-coat unless otherwise noted. Most are also available with a galvanized coating or gray primer. Contact Simpson Strong-Tie for availability.

www.strongtie.com/apg


BP - BEARING PLATES

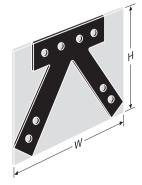
Bearing Plates give greater bearing surface than standard cut washers, and help distribute the load at these critical connections.

MATERIAL: See table

FINISH: Textured flat black powder-coat **INSTALLATION:** See General Notes.

Model	Thickness	Dimens	Bolt Dia.		
No.	(in)	W	L	(in)	
BP½PC	3/16	2	2	1/2	
BP%-2PC	3/16	2	2	5/8	
BP%PC	1/4	21/2	21/2	5/8	
BP¾PC	5/16	23/4	2¾	3/4	
BP%PC	5/16	3	3	7/8	
BP1PC	3/8	31/2	31/2	1	

SPECIAL ORDER PLATES


Simpson Strong-Tie can make a variety of flat and bent steel shapes, which include gusset plates for heavy timber trusses, custom ornamental shapes and retaining plates.

MATERIAL: 3 gauge maximum

FINISH: Galvanized, textured powder-coated flat black, Simpson Strong-Tie® gray paint, stainless steel. Contact Simpson Strong-Tie for availability.

TO OBTAIN A QUOTE:

- Supply a CAD drawing in .dxf format complete with plate dimensions, hole diameter and locations, steel thickness, desired coating (Simpson Strong-Tie Gray Paint, Black Powder-Coat, HDG or raw steel).
- Total plate shape and size up to max. dimensions of 48"x48" (approx. 1/16" tolerance).
- Simpson Strong-Tie does not provide product engineering or load values for Custom Steel Plates.
- · Contact Simpson Strong-Tie for pricing information.

"W" and "H" indicate the envelope size of the steel shape.

Typical Installation (Plate shown has black powder-coat)

Architectural Products Group

CLASSIC COLLECTION

MATERIAL: As noted in tables

FINISH: Textured powder-coated flat black paint

INSTALLATION: • Use all specified fasteners. See General Notes.

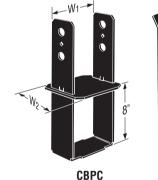
STRAP TIES

Model	Ga	Dimens	ions (in)	Bolts		
No.	ua	W L		Qty.	Dia.	
HST2PC	7	21/2	211/4	6	5/8	
HST5PC	7	5	211/4	12	5/8	
HST3PC	3	3	25½	6	3/4	
HST6PC	3	6	25½	12	3/4	
PS218PC	7	2	18	4	3/4	
PS418PC	7	4	18	4	3/4	
PS720PC	7	6¾	20	8	1/2	

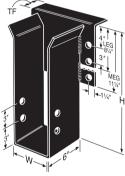
BEAM TO COLUMN TIES

Model No.	Ga	Din	Dimensions (in)		End &	um Bolt Edge ces (in)	Bolts		
		W	Н	L	d ₁	d ₂	Qty.	Dia.	
1212HLPC	7	2½	12	12	2½	4%	5	5/8	
1616HLPC	7	2½	16	16	21/2	4%	5	5/8	
1212HTPC	7	2½	12	12	21/2	4%	6	5/8	
1616HTPC	7	21/2	16	16	21/2	43/8	6	5/8	

1. 1212HL, 1616HL, 1212HT and 1616HT are to be installed in pairs with machine bolts in double shear.


COLUMN BASES

INSTALLATION: • Minimum side cover is 3" for CB's.


- Install with bottom of base flush with concrete.
- Post bases do not provide adequate resistance to prevent members from rotating about the base and therefore are not recommended for non top-supported installations (such as fences or unbraced carports).

Mode	l Ga	Dimens	ions (in)	Bolts			
No.	ua	W ₁ W ₂		Qty.	Dia.		
CB44PC	7	3%16	3½	2	5/8		
CB46PC	7	3%16	5½	2	5/8		
CB48PC	7	3%16	7½	2	5/8		
CB66PC	7	5½	5½	2	5/8		
CB68PC	7	5½	71/2	2	5/8		
CB88PC	3	7½	7½	2	3/4		
CB810P	C 3	7½	9½	2	3/4		

$d_2 H$ Typical 1212HLPC Typical 1212HTPC Installation Installation (1616HLPC similar) (1616HTPC similar) 0 HST2PC & HST5PC HST2PC HST5PC HST3PC & HST6PC HST3PC HST6PC **HSTPC** PS218PC and PS418PC 2½" 1¼ PS720PC CCPC **PSPC**

without Top Flange

LEGPC/MEGPC

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

BEAM HANGERS

MATERIAL: Top flange-7 ga, Stirrups-7 ga.

	Dim	ensions	(in)	Bolts					
Model No.	w	Min.	TF	Header		Joist			
	VV	Н	11	Qty.	Dia.	Qty.	Dia.		
LEG3PC	31/4	9	2½	4	3/4	2	3/4		
LEG5PC	51/4	9	21/2	4	3/4	2	3/4		
MEG5PC	51/4	9	21/2	6	3/4	2	3/4		
LEG7PC	67/8	9	21/2	4	3/4	2	3/4		
MEG7PC	67/8	9	21/2	6	3/4	2	3/4		

^{1.} See Glulam Connectors section of this catalogue for additional information on these products.

COLUMN CAPS

INSTALLATION: • Bolt holes shall be a minimum of 1/32" to a maximum of 1/16" larger than the specified bolt's diameter (10.4.1.2 CSA 086-09).

			Dimer	nsions		Bolts				
Model No.	Ga		(i	n)		Be	am	Post		
		W ₁	W ₂	L	Н	Qty.	Dia.	Qty.	Dia.	
CC44PC	7	3%	3%	7	4	2	5/8	2	5/8	
CC46PC	7	3%	5½	11	6½	4	5/8	2	5/8	
CC66PC	7	5½	5½	11	6½	4	5/8	2	5/8	
CC68PC	7	5½	71/2	11	61/2	4	5/8	2	5/8	
CC88PC	3	71/2	71/2	13	8	4	3/4	2	3/4	

RUSTIC COLLECTION

MATERIAL: As noted in tables

FINISH: Textured powder-coated flat black paint

INSTALLATION: • Use all specified fasteners. See General Notes.

STRAP TIES

Model	Ga	Dimens	ions (in)	Bolts		
No.	ua	W	L	Qty.	Dia.	
OS	12	2	12	4	1/2	
OHS	7	21/2	12	4	5/8	
OHS135	7	6	13½	4	3/4	
OHS195	7	6	19½	8	3/4	

BEAM TO COLUMN TIES

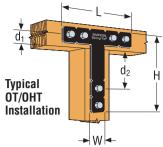
Model No.	Ga	Dii	mensio (in)	ons	End &	ım Bolt Edge inces	Bolts		
		W	W H		d ₁ d ₂		Qty.	Dia.	
OL	12	2	12	12	2	3½	5	1/2	
OHL	7	2½	12	12	2½	4%	5	5/8	
OT	12	2	12	12	2	3½	6	1/2	
OHT	7	2½	12	12	2½	4%	6	5/8	

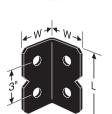
^{1.} OL, OHL, OT and OHT must be installed in pairs with machine bolts in double shear.

HEAVY ANGLES

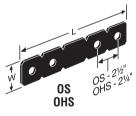
Model	Ga	Dimens	ions (in)	Bolts		
No.	ua	W	L	Qty.	Dia.	
OHA33	7	31//8	3	2	3/4	
OHA36	7	31//8	6	4	3/4	

COLUMN BASES

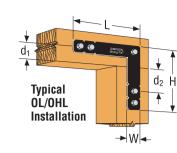

Model	Ga	Dimens	ions (in)	Bolts		
No.	ua	W ₁ W ₂		Qty.	Dia.	
OCB44	3	3%16	3½	2	5/8	
OCB46	3	3%16	5½	2	5/8	
OCB48	3	3%16	7½	2	5/8	
OCB66	3	5½	5½	2	5/8	
OCB68	3	5½	7½	2	5/8	
OCB88	3	7½	7½	2	3/4	
OCB810	3	7½	9½	2	3/4	

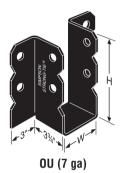

^{1.} Minimum side cover is 3" for OCB's.

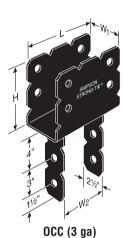
COLUMN CAPS

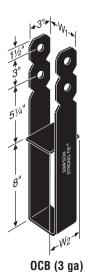

		Dimensions				Bolts				
Model No.	Ga		(i	(in)			am	Post		
		W ₁	W ₂	L	Н	Qty.	Dia.	Qty.	Dia.	
OCC44	3	3%	3%	9	41/2	2	5/8	2	5/8	
OCC46	3	3%	5½	12	7½	4	5/8	2	5/8	
00066	3	5½	5½	12	71/2	4	5/8	2	5/8	
00068	3	5½	71/2	12	71/2	4	5/8	2	5/8	
00088	3	71/2	71/2	15	71/2	4	3/4	2	3/4	

^{1.} For end conditions specify OECC.






JOIST HANGERS


Model	Dimens	ions (in)	Во	Its
No.	W	Н	Header	Joist
0U46	3%16	5	2-3/4	1-3/4
0U48	3%16	7	4-3/4	2-3/4
0U410	3%16	9	4-3/4	2-3/4
0U412	3%16	11	6-¾	3-3/4
0U414	3%16	13	6-¾	3-3/4
OU68	5½	7	4-3/4	2-3/4
OU610	5½	9	4-3/4	2-3/4
OU612	5½	11	6-3/4	3-3/4
OU614	5½	13	6-3/4	3-3/4
OU810	7½	9	4-3/4	2-3/4
OU812	7½	11	6-¾	3-3/4
OU814	7½	13	6-¾	3-3/4

^{1.} Glulam beam sizes are available. Add an "X" to the name and specify width, i.e. OU68X, W = 5.25".

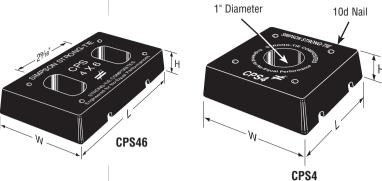
Architectural Products Group

STANDOFF BASES

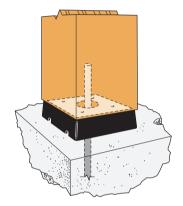
FEATURES: • Designed for increased concrete surface area

- Corrosion resistant
- Sized for 10d nails
- · Can be used with rough lumber

MATERIAL: Engineered composite plastic.

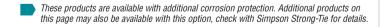

INSTALLATION: • See General Notes.

- Not recommended for non-top-supported installations such as fences.
- Attach to post before installation using four nail holes.
- Embed minimum ½" diameter rod into concrete and extend into wood member (2 rods required for CPS46).
- For nominal or rough sawn lumber.


Model	Post or Column	I	Dimensions (in)	Factored Compressive Resistance	
No.	Size	L	w	н	lbs
		L	VV	"	kN
CPS4	4x4	31/4	31/4	1	5685
UP54	4X4	3 74	3 74	ı	25.32
CPS46	4x6	5 ⁵ ⁄16	35/16	1	8065
UF340	480	3916	3916	'	35.92
CPS5	5x5	41/8	41/8	1	6945
6299	SXS	4 78	4 78	ı	30.94
CPS6	6x6	5 ⁵ ⁄16	5 ⁵ ⁄ ₁₆	1	10655
UF30	0.00	3916	3916		47.46
CPS7	8x8	71/4	71/4	11/4	11430
0.537	0.00	1 74	1 74	1 74	50.91

(other sizes similar)

Typical CPS4 Installation


HL - HEAVY ANGLES & GUSSETS

Versatile angle gussets and heavy angles promote standardization and construction economy, and are compatible with Simpson Strong-Tie structural hardware.


FINISH: Textured flat black powder-coat, Simpson Strong-Tie® gray paint and also available galvanized

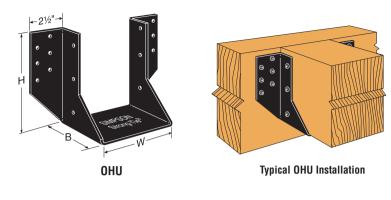
TO ORDER: All products with PC suffix are textured powder-coated flat black paint. 7 gauge products without the PC suffix are galvanized. 3 gauge products without the PC suffix are Simpson Strong-Tie gray paint.

OPTIONS: Gussets may be added to HL models when $L \ge 5$ ". Specify G after numbers in model number as in HL46GPC.

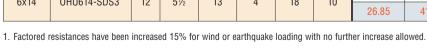
Model	Ga		Di	mensio	ns (in)			Bolts (Total)	
No.	ua	W ₁ & W ₂	L	D ₁	D ₂	D_3	D ₄	Qty.	Dia.
HL33PC	7	31/4	2½	11/4	_	2	_	2	1/2
HL35PC	7	31/4	5	11/4	2½	2	_	4	1/2
HL37PC	7	31/4	7½	11/4	21/2	2	_	6	1/2
HL53PC	7	5¾	2½	11/4	_	2	2½	4	1/2
HL55PC	7	5¾	5	11/4	2½	2	2½	8	1/2
HL57PC	7	5¾	7½	11/4	21/2	2	21/2	12	1/2
HL43PC	3	41/4	3	1½	_	2¾	_	2	3/4
HL46PC	3	41/4	6	1½	3	23/4	_	4	3/4
HL49PC	3	41/4	9	1½	3	2¾	_	6	3/4
HL73PC	3	71/4	3	1½	_	2¾	3	4	3/4
HL76PC	3	71/4	6	1½	3	23/4	3	8	3/4
HL79PC	3	71/4	9	1½	3	2¾	3	12	3/4

Typical HL55PC Installation

ORNAMENTAL – JOIST HANGER


The OHU Ornamental Joist Hangers are heavy duty, load-rated joist hangers that are attached with Simpson Strong-Tie® Strong-Drive® ¼"x3" double-barrier coating SDS wood screws (supplied with product).

MATERIAL: 12 gauge


Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

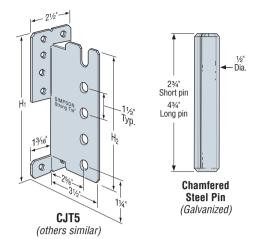
FINISH: Textured powder-coated flat black paint

OPTIONS: No modifications.

						N-	-4		Factored I	Resistance	
			D	imension (in)	IS	SDS 1	. of /4"x3"	D.F	ir-L	r-L S-P-F	
Joist	Model	Ga		()		Wood	Srews	Uplift	Normal	Uplift	Normal
Size	No.	ua						(K _D =1.15)	(K _D =1.00)	(K _D =1.15)	(K _D =1.00)
			W	Н	В	Face	Joist	lbs	lbs	lbs	lbs
								kN	kN	kN	kN
4x6	OHU46-SDS3	12	3%16	5	4	6	4	2415	3885	2080	2795
480	011040-3033	12	3716	J	4	U	4	10.74	17.28	9.25	12.43
4x8	OHU48-SDS3	12	3%16	63/4	4	8	6	2890	3885	2080	2795
480	011040-3033	12	3 / 16	074	4	O	0	12.86	17.28	9.25	12.43
4x10	0HU410-SDS3	12	3%6	83/4	4	12	6	3620	8175	3275	5885
4810	0110410-3033	12	3 / 16	074	4	12	0	16.10	36.37	14.57	26.18
4x12	0HU412-SDS3	12	3%16	10¾	4	12	8	4755	8175	3425	5885
47.12	0110412-3033	12	3716	1074	4	12	0	21.15	36.37	15.24	26.18
4x14	0HU414-SDS3	12	3%16	12¾	4	14	10	4755	8175	3425	5885
47.14	0110414-3033	12	3716	12.74	4	14	10	21.15	36.37	15.24	26.18
6x6	OHU66-SDS3	12	5½	5	4	6	4	2415	3885	2080	2795
0.00	011000-3033	12	372	3	4	0	4	10.74	17.28	9.25	12.43
6x8	OHU68-SDS3	12	5½	7	4	12	6	3620	8175	3275	5885
0.00	011000-3033	12	372	,	4	12	0	16.10	36.37	14.57	26.18
6x10	0HU610-SDS3	12	5½	9	4	14	6	3620	8175	3275	5885
0.710	0110010-0000	12	J/2	3	4	14	0	16.10	36.37	14.57	26.18
6x12	0HU612-SDS3	12	5½	11	4	16	8	4830	9435	4370	6795
UNIL	3110012 0000	12	3 72	- ''	7	10		21.49	41.97	19.44	30.23
6x14	0HU614-SDS3	12	5½	13	4	18	10	6035	9435	5360	6795
0.11	0.10014 0000	12	072	10	7	10	10	26.85	41.97	23.84	30.23

SIMPSON Strong-Tie

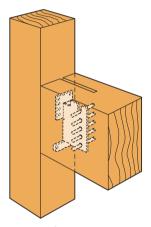
The CJT is a concealed connector. It can be installed three ways: with no routing of header/post or beam; a routed header/post, or a routed beam.

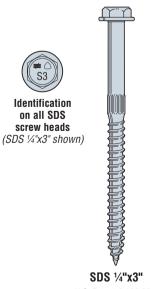

MATERIAL: 12 gauge FINISH: Galvanized

INSTALLATION: • Use all specified fasteners.

See General Notes.

- The CJT Pack is supplied with all pins and screws required. Screws require a hex head driver.
- Router end of beam for screw heads for flush installation.
- To provide maximum beam width for use with short pins, center in beam.
- The joist/beam may be sloped to 45° with full tabulated resistances.
- Request F-CJT flier for installation instructions and ordering information


OPTIONS: Order short or long pins, eg. CJT3S or CJT3L.


WARNING:

This connector requires special attention to ensure correct installation. The beam must be installed perpendicular to the support member. The connection's components may be damaged if the beam is rotated from its opposite end during or after installation. Damaged components may not be noticeable and may reduce the connector's load carrying capacity.

		Dime	nsions	Foots			Factored F	Resistance	
	Min.	(i	n)	Faste	eners	Shor	t Pins	Long	Pins
Model	Joist					Uplift	Normal	Uplift	Normal
No.	Size			SDS	1/2"	(K _D =1.15)	(K _D =1.00)	(K _D =1.15)	(K _D =1.00)
	(in)	H ₁	H ₂	1/4"x3" Screws	Dia. Pins	lbs	lbs	lbs	lbs
				SCIEWS FIIIS		kN	kN	kN	kN
					D.Fir-				
						2580	2510	2580	2510
CJT3	4x8	5%16	47/16	6	3	11.48	11.17	11.48	11.17
						3935	3470	3935	4200
CJT4	4x10	7	515/16	8	4	17.50	15.44	17.50	18.68
						4535	3945	4940	5065
CJT5	4x12	8%16	71/16	10	5	20.17	17.55	21.98	22.53
							_	5900	5130
CJT6	6x12	10	815/16	12	6	_	_	26.25	22.82
				Г).Fir-L GI	ulam		20120	22.02
				<u>'</u>	7.111-L GI	2460	2140	2580	2660
CJT3	31/8x71/2	5 %16	47/16	6	3				
						10.94 3055	9.52 2655	11.48 3935	11.83 4200
CJT4	31/8x9	7	5 ¹⁵ / ₁₆	8	4	13.59	11.81	17.50	18.68
						3635	3160	4940	5215
CJT5	31/8x101/2	8%16	71/16	10	5	16.17	14.06	21.98	23.20
						4190	3640	6910	6005
CJT6	31/x12	10	815/16	12	6	18.64	16.19	30.74	26.71
				Cnv	uce-Pine		10.19	30.74	20.71
				Spr	uce-Pine		4075	1055	1015
CJT3	31/8x71/2	5%16	47/16	6	3	1855	1875	1855	1915
						8.25	8.34	8.25	8.52
CJT4	31/8x9	7	5 ¹⁵ / ₁₆	8	4	2670	2325	2830	3505
						11.88	10.34	12.59	15.59
CJT5	31/8x101/2	8%16	77/16	10	5	3180	2765	3555	4560
						14.15	12.30	15.81	20.28
CJT6	31/8x12	10	815/16	12	6	3665	3185	6045	5255
						16.30	14.17	26.89	23.38
					Paralla				
CJT3	3½x9½	5%16	47/16	6	3	2580	3150	2580	3150
		23		-	_	11.48	14.01	11.48	14.01
CJT4	3½x9½	7	515/16	8	4	3935	4085	3935	4085
					4	17.50	18.17	17.50	18.17
CJT5	3½x11%	8%16	77/16	10	5	4940	5250	4940	5250
		23			_	21.98	23.35	21.98	23.35
CJT6	3½x11%	10	815/16	12	6	7245	6300	7245	6300
						32.23	28.02	32.23	28.02

Typical CJT Installation (Note that pins should be centered within beam)

1. Center pin in beam. Short pin (2¾") for use with 3½ GLB, 4x sawn lumber or 3½" wide PSL. Long pin (4¾") for use with 51/8 GLB, 6x sawn lumber or greater widths.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.

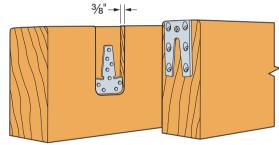
ETB - HIDDEN CONNECTOR KIT

The ETB hidden connector provides a load-tested beam connection without any visible hardware. Interlocking plates are fastened onto each member and lock together for a secure structural connection.

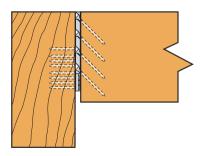
MATERIAL: Plates—Aluminum 6082-T6

FINISH: Plates—none; Screws—Dacromet® corrosion resistant coating

INSTALLATION: • Use all specified fasteners. See General Notes


- Rout a %" (10mm) deep pocket into the side of the supporting beam as shown for the lower plate.
- Install lower plate with 16d hot dip galvanized nails (not included in kit).
- Install horseshoe plate onto end of supported beam using SCRB screws supplied in kit. Screws are installed at a downward angle (approx. 45°).
- Templates are available to make accurate installation more efficient.

Dimensional and Fabrication Information


Model	Dimensions (in)										
No.	Α	В	E	E ₁	t ₁	t ₂					
ETB90	2.36	3.62	2.72	2.26	0.236	0.393					
ETB160	2.36	6.61	5.12	3.74	0.236	0.393					
ETB230	2.95	9.13	7.87	5.43	0.236	0.393					

		Fast	eners			Factored
		Header		Joist		Resistance
Model					Joist	D.Fir-L
No.					Size	(K _D =1.00)
	Qty.	Type	Qty.	Type		lbs
						kN
					4x6	1875
						8.34
					4x8	1675
					-1/0	7.45
					4x10	1545
					47.10	6.87
					4x12	1415
ETB90	6	16dHDG	5	SPAX 5x80	77.12	6.29
LIDOU	0	Touriba	J	SCRB Screw	6x6	1870
					0,0	8.32
					6x8	1870
					0.00	8.32
					6x10	1870
					0.10	8.32
					6x12	1755
					0.172	7.81
					4x8	3430
					470	15.26
					4x10	3430
					47.10	15.26
					4x12	3175
ETB160	11	16dHDG	10	SPAX 5x80	7/12	14.12
LIDIOO	11	Touriba	10	SCRB Screw	6x8	3430
					0.00	15.26
					6x10	3430
					0.10	15.26
					6x12	3430
					0.1.2	15.26
					4x12	4605
ETB230	19	16dHDG	16	SPAX 5x80	4717	20.48
L10230	13	Touriba	10	SCRB Screw	6x12	5225
					UXIZ	23.24

Typical ETB Installation

ETB Installation with Non-Routed Header (Side View)

- Factored resistances assume standard term load duration. Reduce value where other load durations govern. Do not increase value for short term load duration.
- Values shown are for D.Fir-L only. Contact Simpson Strong-Tie for other wood species.
- 3. Factored resistances have been calculated in accordance with CSA 086-09 assuming dry service condition ($K_S = 1.00$) and seasoned lumber (moisture content $\leq 15\%$) at time of fabrication. For unseasoned lumber (moisture content $\geq 15\%$) multiply tablulated values by 0.80. For wet service condition multiply tablulated values by 0.67.
- 4. Factored resistances shown are the lower of the test value, the fasterner capacity or the effective shear capacity of the joist assuming D.Fir-L.
- Substitution for fasteners is not permitted. All fasteners must be used as specified.
- 6. NAILS: 16dHDG = 0.162" dia. x 3½" long hot-dip galvanized.

FACE-MOUNT HANGER OPTION MATRIX

		Н	ANGER MODIFI	CATION OPTION	S		APPLICATIONS	
	SKEWE	D SEAT						
BASE MODEL SERIES	ALLOWABLE	SQUARE CUT JOIST ALLOWED	SLOPED SEAT	SKEWED & SLOPED SEAT	CONCEALED	ALTERNATE WIDTHS	UPLIFT WELDABILITY Weldabe	HANGER OPTION PAGE(S)
			F <i>F</i>	CE MOUNT HA				
HGU	≤ 45°				0	•	U	220
HGUM	≤ 45°	•			•	•	U	220
HGUS	≤ 45°	0					U	216
HHGU					•	•	U	220
HHUS	≤ 45°		≤ 45°	•			U	216
HSUL/HSUR	45° Std.	•			0		U	
HSULC/HSURC	45° Std.	•			Std.		U	
HTU	≤ 67½°	•					U	216
HU	≤ 67½°	•	≤ 45°	•	0	0	U, W	215
HUC	≤ 45°	•	≤ 45°		Std.		U, W	215
HUCQ					Std.		U	
HUSC					Std.		U	_
IUS							U	_
LGU	≤ 45°				•	•	U	220
LGUM	≤ 45°	•					U	220
LSU/LSSU	Field skewable	and slopeable to	45° available fo	r some models			U	_
LTHJA							U	
LU							U	_
LUC					Std.		U	
LUS							U	_
MGU	≤ 45°				0	•	U	220
MIU							U	_
MTHM							U	
SUL/SUR	45° Std.	•					U	_
SULC/SURC	45° Std.	•			Std.		U	
THGB/THGBH/ THGBV/THGBHV	≤ 45°	•					U	221
THGQH	45°	•					U	221
THJA							U	
THJU						•	U	216
U	≤ 67½°	•	≤ 45°	•			U	215

Refer to the specific product pages for uplift, nailer, and weld information.
 Refer to the listed pages for each model series for restrictions, required load reductions, and additional information regarding the hanger modifications.

TOP-FLANGE HANGER OPTION MATRIX

				Н	ANGER IV	ODIFICA	TION OPT	IONS					APPLICATIONS	
	SKEWED	SEAT											<u>U</u> PLIFT	
BASE Model Series	ALLOWABLE SKEW	SQUARE CUT JOIST ALLOWED	SLOPED SEAT	SKEWED & SLOPED SEAT	CONCEALED FLANGE(S)	ALTERNATE WIDTHS	SLOPED TOP FLANGE	OPEN TOP FLANGE	CLOSED TOP FLANGE	OFFSET TOP FLANGE	SADDLE HANGER	RIDGE HANGER	MAILERS WELDABILITY	HANGER OPTION PAGE(S)
	Skewable	Butt Cut	Slopeable	Siopeable & Skewable	Concealed	AL	Sloped Top Flange	Open Top Flange	Closed Top Flange	Offset Top Flange	Saddle Hanger	Ridge Hanger	Nailer Weldable	Ξ.
					T	OP FLAN	IGE HANG	ERS	'					
В	≤ 45°		≤ 45°	•		•	•	•	•		•		U, N, W	217
BA													U, N, W	_
EG	≤ 45°		≤ 45°										_	219
EGQ	≤ 45°		≤ 45°										U	221
GB			≤ 45°								•		U, W	217
GLS	≤ 50°		≤ 45°	•			•			•	•		U, W	219
GLT	≤ 50°		≤ 45°	•			•			•			U, W	219
GLTV	≤ 50°		≤ 45°	•			•			•			U, N, W	219
НВ	≤ 45°		≤ 45°	•		•	•	•	•		•		U, N, W	217
HGB			≤ 45°								•		U	217
HGLS	≤ 50°		≤ 45°				•			•	•		U, W	219
HGLT	≤ 50°		≤ 45°				•			•			U, W	219
HGLTV	≤ 50°		≤ 45°				•			•			U, W	219
ННВ			≤ 45°			•					•		U, W	217
HIT													U, N	_
HUSCTF					Std.								_	_
HW/HWI	≤ 84°	0	≤ 45°	•			•	•		•	•	0	N, W	218
HWU	≤ 45°		≤ 45°	•									U, N, W	218
ITS													U, N	_
LB													U, N, W	_
LBV	≤ 45°		≤ 45°	•		•	•	•	•		•		U, N, W	217
LEG	≤ 45°	•	≤ 45°							•			_	219
MEG	≤ 45°	•	≤ 45°							•			_	219
MIT													U, N	_
MSC	20°-45° •	•	≤ 45°	•		0							_	_
THA					0								U, N	_
THAC					Std.								U, N	_
THAI													N	_
THAR/L	45° Std.	•											U, N	_
THASR/L	22°-84° Field Skewable	•											U	
W/WI	≤ 84°	0	≤ 45°	•			•	•	•	•	•	0	N, W	218
WM/WMI	≤ 45°		≤ 45°	•						•			_	215
WNP/WP/WPI	≤ 84°	0	≤ 45°	•			•	•	•	•	•	0	N, W	218
WPU/WNPU	≤ 45° ○		≤ 45°	•									U, N, W	218

See foonotes on page 212.

HANGER OPTIONS GENERAL NOTES

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC

HANGER MODIFICATION OPTIONS AND APPLICATIONS

The Hanger Options Matrix for Face Mount and Top Flange Hangers on pages 212-213 shows hanger modifications and special applications (*uplift, nailers and weldability*) that are available for each model series. Modifications may not be available for all models in the series, and some combinations of hanger options are not available. Many hanger modifications result in load reductions. For all modifications, refer to the listed hanger option pages for additional information regarding the availability of each modification, associated load reductions, and installation requirements. For more information regarding the applications, refer to the individual product pages throughout the catalogue.

HANGER OPTIONS GENERAL NOTES

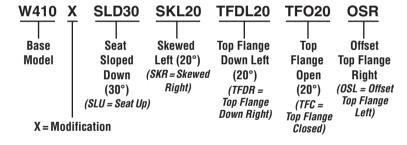
This information applies only to the hangers manufactured by Simpson Strong-Tie and installed per our instructions. Some combinations of these options on a single hanger have not been evaluated. In some cases, combinations of these options cannot be manufactured. A qualified Designer must always evaluate each connection, including header and joist limitations, before specifying the product.

Testing is performed using a standardized hanger test method. The joist in the test setup may include the minimum amount of structural stability where appropriate. For example, the sloped down hanger tests are assembled with a joist cut on the lower end to lie flush with a wood member attached with three 8d common toenails. Header and other attached structural members are assumed fixed in actual installations. Horizontal loads induced by sloped joists must be resisted by other members in the structural system.

MATERIAL: Gauge may vary from that specified depending on the manufacturing process used. U, HU, HUTF, W and B hangers normally have single-piece stirrups; occasionally, the seat may be welded. Hanger configurations, height and fastener schedules may vary from the tables depending on the joist size, skew and slope.

FINISH: See specific hanger tables. Welded specials: Simpson Strong-Tie® gray paint.

Specials that are not galvanized before fabrication can be hot-dip galvanized after fabrication; specify HDG.

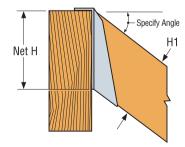

CODES: Modified hangers, due to their numerous variations, are not on code reports.

RESISTANCES: For multiple modifications on the same connector, use the single multiplier factor that yields the lowest factored resistance.

TO ORDER: Use the abbreviations below to order specials. The example shows a W410 hanger and illustrates most available options; most special hangers have only a few of these features. For assistance, contact Simpson Strong-Tie.

INSTALLATION

- Fastener quantities may be increased beyond the amount specified in the standard hanger table.
- Fill all holes with the table-specified fastener types.
- Some skewed hangers require bevel cut joists; refer to the specific notes provided for each product.


HEIGHT FOR SLOPED HANGERS

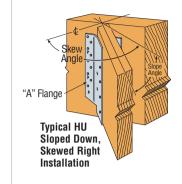
Height 1 (H1) is the joist height before the slope cut has been made.

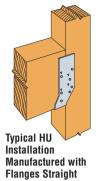
Net Height (Net H) is the joist height after the slope cut has been made.

Provide **H1** when ordering a connector. Connectors are made assuming dry lumber is being used in continuously dry conditions.

Simpson Strong-Tie will calculate the **Net H** dimension based on the mathematical formula of H1/cos angle.

U/HU

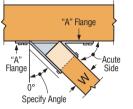

See Hanger Options General Notes. Not all slope and skew combinations are available.

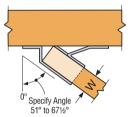

SLOPED, SKEWED, AND SLOPED/SKEWED

- For low-cost, 45° skews, see SUR/SUL and HSUR/HSUL. See also LSU/LSSU connectors.
- These options only apply to wood-to-wood connections.
- U/HU may be skewed to a maximum of 45° and sloped to a maximum of 45°. Hangers 5½" or less in width may be skewed to 671/2°. Hangers skewed 51°- 67½° require a square cut.
- For all options, uplift resistances are 0.75 of table values.
- For skew only or combined slopes and skews, the factored down resistance is 65% of the table value.
- For slope only, the factored down resistance is 100% of the table value.

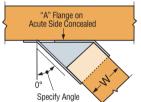
STRAIGHT OR CONCEALED FLANGE

- HU is available with the A flanges straight at 0.70 of the table values if $W \ge 3\frac{1}{2}$ ". If W < 3", use N10 nails at 0.50 of the table value. If $W \ge 3$ ", use 10d nails at 0.50 of the table value.
- · HU is available with A flanges concealed, provided the W dimension is 25/16" or greater, at 100% of the table value. Specify HUC.
- HU is available with one flange concealed when the W dimension is less than 25/16" at 100% of the table value
- For skewed only HUC hangers, the flange on the acute side can be concealed at 0.65 of the table value. See table for skew limitations.
- For sloped only hangers, flanges can be concealed at 100% of the table value.
- For sloped and skewed hangers, the flange on the acute side can be concealed at 0.65 of the table value. Contact Simpson Strong-Tie for skew limitations.
- When nailing into the carrying member's end grain, the factored resistance is 0.67 of the table value for an unmodified product or 0.67 of the reduced capacity for a modified product.
- · For welding see technical bulletin T-HUHUC-W for details.





Strong-Tie


Installed on a Beam

Top View U Hanger Skewed Right < 51° (Square Cut)

Top View U Hanger Skewed Right ≥ 51° (Square Cut)

Top View HUC Concealed Hanger Skewed Right (Square Cut)

Maximum Skew Degree for Skewed HUC Hangers

Hanger Width	Maximum Skew
25/16"	26°
23/8"	26°
2%16"	29°
2¾"	29°
31/8"	37°
31/4"	38°
35/16"	39°
3%16"	42°
41/8"	42°
4%2"	42°

1. Widths greater than 49/32 maximum skew is 45°.

WM/WMI/WMU (Midwall Installation Only)

See Hanger Options General Notes.

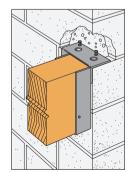
INSTALLATION: • Bevel-cut the joist for skewed hangers (see illustration). HANGER HEIGHT

· For hanger heights exceeding the joist height, the factored resistance is 0.50 of the table value.

SLOPED AND/OR SKEWED SEAT


- WM/WMI may be skewed and/or sloped to 45° maximum.
- The factored resistance is 100% of the table value.

OFFSET TOP FLANGE


• The top flange may be offset left or right for placement at the end of a header. The factored resistance is 0.50 of the table value.

UPLIFT (WMU Only)

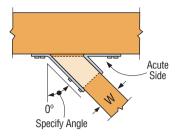
· WMU cannot be modified.

Typical WM Sloped Down, Skewed Right Block Wall Installation

Typical WM Top Flange Offset Left

SIMPSON Strong-Tie

HGUS/HHUS

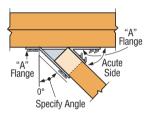

See Hanger Options General Notes.

SLOPED AND/OR SKEWED SEAT

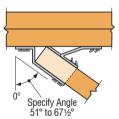
- HHUS hangers can be skewed to a maximum of 45° and/or sloped to a maximum of 45°.
- HHUS skew only, maximum factored down resistance is 0.85 of the table value.
- For sloped only or sloped and skewed hangers, the maximum factored down resistance is 0.72 for HHUS.
- Not all slope and skew combinations are available; consult the factory for information.
- HHUS, the joist must be bevel-cut to allow for double shear nailing.
- Uplift resistances for sloped/skewed conditions are 0.62 of the table value for HHUS hangers.

HGUS hangers can be skewed only to a maximum of 45°. Factored resistances are:

Models	Down Load	Uplift
W < 2" bevel or square	0.62 of table values	0.46 of table values
2" < W < 6" beveled	0.67 of table values	0.41 of table values
2" < W < 6" square cut	0.46 of table values	0.41 of table values
W > 6" bevel or square	0.40 of table values	0.41 of table values



Top View HHUS Hanger Skewed Right (joist must be bevel cut) All joist nails installed on the outside angle (non-acute side).


HTU

See Hanger Options General Notes. SKEWED SEAT

- Skewable up to 671/2°.
- · Available in single and 2-ply size.
- No bevel cut required.

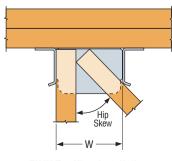
Top View HTU Hanger Skewed Right < 51°

Top View HTU Hanger Skewed Right ≥ 51°

Allowable Loads for Skewed HTU Hangers

		Fas	teners		Factored F	Resistance	
				D.F	ir-L	S-I	P-F
Model	Skew Angle			Uplift	Normal	Uplift	Normal
No.	(Degrees)	Header	Joist	(K _D =1.15)	(K _D =1.00)	(K _D =1.15)	(K _D =1.00)
				lbs	lbs	lbs	lbs
				kN	kN	kN	kN
	< 51	20-16d	14-10dx1½	1835	4110	1300	2905
HTU26	< 51	20-16u	14-100X172	8.16	18.28	5.78	12.92
	51-67½	20-16d	12-10dx1½	1350	3620	955	2560
	31-07 /2 20-100	12-10ux 1 72	6.01	16.10	4.25	11.39	
	< 51	26 164	20-10dx1½	2810	4270	1985	3030
LITLIOO	< 51	26-16d	20-100X172	12.50	18.99	8.83	13.48
HTU28	51-67½ 26-16d	26 164	47.40.1.41/	2075	3930	1465	2780
		17-10dx1½	9.23	17.48	6.52	12.37	
	< 51	32-16d	26-10dx1½	3785	4430	2675	3135
HTU210	< 31	32-10U	20-100X172	16.84	19.71	11.90	13.95
птосто	51-67½	32-16d	22-10dx1½	2795	4240	1980	3000
	31-07 /2	32-10U	22-100X1½	12.43	18.86	8.81	13.35
	. 51	00.164	14 104	2140	3715	1515	2625
LITUOGO	< 51	20-16d	14-10d	9.52	16.53	6.74	11.68
HTU26-2	E1 C71/	20-16d	12-10d	1610	3920	1140	2785
	51-67½	20-16u	12-100	7.16	17.44	5.07	12.39
	< 51	26-16d	20-10d	3960	5425	2815	3855
LITUOGO	< 51	20-10U	20-100	17.62	24.13	12.52	17.15
HTU28-2	E1 C71/	26-16d	17-10d	2385	5425	1695	3855
	51-67½	20-10U	17-100	10.61	24.13	7.54	17.15
	. 51	20.464	06 104	5025	6890	3570	4890
LITUO10 0	< 51	32-16d	26-10d	22.35	30.65	15.88	21.75
HTU210-2	E1 671/	26 164	22.104	3145	6680	2225	4745
	51-67½	36-16d	22-10d	13.99	29.72	9.90	21.10

- 1. Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase is allowed.
- 2. Reduced heel heights are not permitted for skewed HTU's.


THJU

See Hanger Options General Notes. HANGER WIDTHS

- . THJU is available in intermediate seat widths between 51/8" (THJU26 width) and 7¾" (THJU26-W width).
- Factored download and uplift resistances for all intermediate widths is 100% of the THJU26-W table values.
- For double hip installation, divide the total factored resistance by 2 to determine the factored resistance for each hip.
- Order as THJU26X and specify width; see table for reference.

THJU Intermediate Width Options

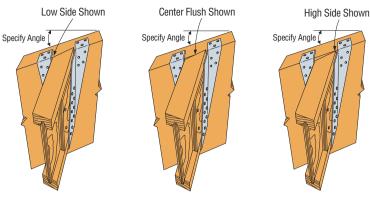
Carried Member Combination	Hip Skew	Width (W)
2-Ply Hip and Single-Ply Jack	45-degree	6%
Single-Ply Hip and 2-Ply Jack	45-degree	6¾
Double (Terminal) Hip	45-degree	7%
2-Ply Hip and 2-Ply Jack	45-degree	THJU26-W
	44-46	THJU26
	47-49	5½
	50-52	5¾
Cinala Dhullin	53-55	6
Single-Ply Hip and Single-Ply Jack	56-57	6%
and onlyie-i ly back	58-59	65%
	60-61	7
	62-63	7%
	64-65	THJU26-W

THJU Top View Installation

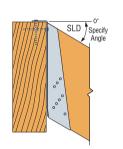
B/LBV/HB/HHB/GB/HGB

See Hanger Options General Notes.

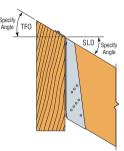
MATERIAL:

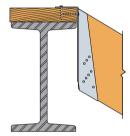

 Gauge may vary from that specified depending on the manufacturing process used. Hanger configurations, height and fastener schedules may vary from the tables depending on the joist size, skew and slope.

RESISTANCES:


• For multiple modifications on the same connector, use the single multiplier factor that yields the lowest factored resistance.

INSTALLATION:

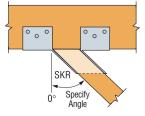

- Fastener quantities will typically increase beyond the amount specified in the standard hanger tables.
- Web stiffeners are required for I-joists.
- Fill all holes with the table-specified fastener types.
- · Bevel cut the carried member for skewed applications.


B Hanger Sloped Down and Skewed Left with Sloped Top Flange Installation When ordering, specify Low Side Flush, Center Flush or High Side Flush

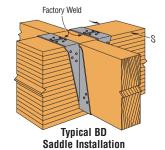
Typical LBV Sloped Down Installation with Full Backing

Typical LBV Sloped Down with Top Flange Open

SIMPSON


Strong-Tie

Typical LBV Sloped Down on Nailer Non-Backed


Reduction Factors for Modified Hangers¹

Hanger Series	Cond	ition	Sloped Down	Sloped Up	Skewed Only		l Down ewed	Slope & Sk	ed Up ewed	TF Down	TF Open/ Closed
361163	Angle	Limit	45	45	45	45		45		35	30
	Minimur	n Height	6	6	6	91/4	14	91/4	14	111/4	91/4
LBV	All Widths	Download	0.98	0.68	1.00	0.97	1.00	1.00	0.68	(90-x)/90	(90-x)/90
	All Wiutiis	Uplift	1.00	1.00	1.00	1.00	1.00	0.86	0.86	1.00	1.00
	Minimur	n Height	6	6	6	91/4	14	91/4	14	14	91/4
	Less than	Download	0.64	0.49	0.70	0.64	0.86	0.49	0.49	(90-x)/90	(90-x)/90
В	2½" Wide	Uplift	1.00	1.00	0.95	1.00	1.00	0.76	0.76	1.00	1.00
	2½" and Wider	Download	0.80	0.97	0.81	0.75	1.00	0.97	0.49	(90-x)/90	(90-x)/90
		Uplift	1.00	1.00	0.95	1.00	1.00	0.76	0.76	1.00	1.00
	Minimum Height		8	8	8	111/4	14	111/4	14	14	111/4
	Less than	Download	0.69	0.51	0.95	0.55	0.52	0.51	0.51	(90-x)/90	(90-x)/90
НВ	2½" Wide	Uplift	1.00	1.00	0.53	0.82	1.00	0.53	0.53	1.00	1.00
	2½"	Download	0.87	0.79	0.95	0.60	1.00	0.79	0.79	(90-x)/90	(90-x)/90
	and Wider	Uplift	1.00	1.00	0.53	1.00	1.00	0.53	0.53	1.00	1.00
ННВ	Minimum Height		91/4	_	_	_	_	_	_	_	_
GB	All Widths	Download	0.60	_	_	_	_	_	_	_	_
HGB	All WIUIIIS	Uplift	1.00	_	_	_	_	_	_	_	_

- 1. Use this table to calculate factored resistances for modified hangers. Apply the reduction factor to the appropriate factored resistance for the header condition including headers.
- 2. B and HB hangers less than 21/2" wide are assumed to use 10dx11/2 joist nails.
- 3. B and HB hangers 21/2" or wider are assumed to use 16dx21/2 or 16d common nails in the joist.
- 4. For B and HB hangers with TF Down that are less than 5% in width, minimum hanger height is 111/4 inches.
- 5. In the table the term "x" refers to the angle of the modification.
- 6. For top flange closed option, install upper nails slightly angled downward to avoid interference with top flange.

Top View B Hanger Skewed Right

SADDLE HANGER

Saddle hangers are made to order; add "D" to model (e.g. BD412); specify S (for saddle) dimension. They may be used for most conditions except at end wall locations and are preferred for nailer applications. Minimum S dimension (saddle width) is 3%₁₆". Minimum supporting member width is 3½" Minimum nailer thickness apply (see page 81 and 110). Saddle hangers achieve factored resistances listed. Saddle hangers on stud walls do not achieve factored resistances listed.

W/WI/WNP/WNPU/WP/WPI/WPU/HW/HWI/HWU

See Hanger Options General Notes.

INSTALLATION: • Some models are available in Type A (*Bevel Cut*) and Type B (*Butt Cut*) styles; all models are available in Type B style. Check Simpson Strong-Tie when ordering.

- Bevel-cut the joist for skewed Type A hangers (see illustration).
 Square-cut the joist for Type B hangers.
- Hangers with a skew greater than 15° may have all the joist nails on the outside angle.
- Skewed HWs have face nails and require a minimum header thickness of 3½".

HANGER HEIGHT

• For hanger heights exceeding the joist height by more than $\frac{1}{2}$ ", the factored resistance is 0.50 of the table value.

SLOPED AND/OR SKEWED SEAT

- Non-skewed hangers can carry the design load when the seat slope is within 2° of the joist slope. Designer must check that wood bearing is not limiting.
- W/WNP/WP/HW series may be skewed to a maximum of 84° and/or sloped to a maximum of 45°. For slope only, skew only, or slope and skew combinations, the factored resistance is 100% of the table value.
- WPU/WNPU/HWU series may be skewed to a maximum of 45° and/or sloped to a maximum of 45° for joist widths less than or equal to 3%6". Multiply the table values by 0.50.

UPLIFT RESISTANCES (WPU/WNPU/HWU only)

- Hangers can be sloped to 45° and/or skewed 45° at 100% of the uplift resistance.
- Skew option is only on hangers with "W" 3%6" or less.
- Specify the slope up or down in degrees from the horizontal plane and/or the skew right or left in degrees from the perpendicular vertical plane. Specify whether low side, high side or centre of joist will be flush with the top of the header (see illustration).
- Uplift loads are not available for open/closed TF, TF sloped, and offset options.

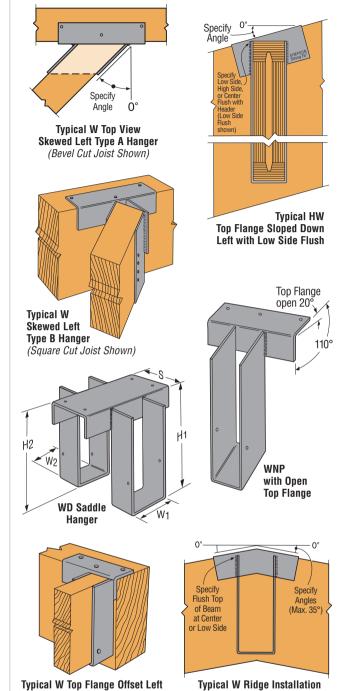
SLOPED TOP FLANGE

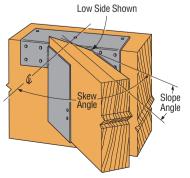
 A top flange may be ordered sloped down left or down right to 35° with or without a sloped and/or skewed seat (see illustration).
 Reduce tabulated factored resistances using straight-line interpolation (see open/closed top flange).

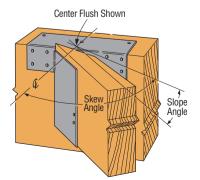
OFFSET TOP FLANGE

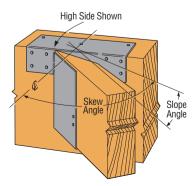
- The top flange may be offset left or right for placement at the end of a header (see illustration). The factored resistance is 0.50 of the table value.
- For skewed and offset top flange hangers, the maximum factored resistance is 0.42 of the table value or 2905 lbs (12.92 kN), whichever is lower.

OPEN/CLOSED TOP FLANGE


- The top flange may be opened more or closed less than the standard 90° (see illustration) to a maximum of 30°, except the HW which cannot be closed. Reduce factored resistances using straight-line interpolation.
- Example: For a top flange open 30°, reduce resistance to [(90-30)/90] x table value.


SADDLE HANGER


• To order, add D to model and specify S dimension (see illustration).


RIDGE HANGER (not available for uplift models)

 Top flange may be sloped to a maximum of 35° to accommodate a ridge (see illustration). Specify angle of the slope. Reduce factored resistance using straight-line interpolation. See Open/Closed example.

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC

Typical HW Sloped Down, Skewed Right with Type A Hanger (Joist end must be bevel cut)
When ordering, specify Low Side Flush, Center Flush or High Side Flush

GLT/HGLT/GLS/HGLS/GLTV/HGLTV

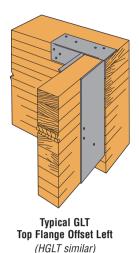
See Hanger Options General Notes.

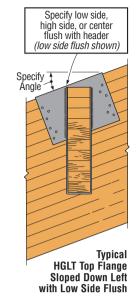
INSTALLATION: • Bevel-cut the carried beam for skewed hangers.

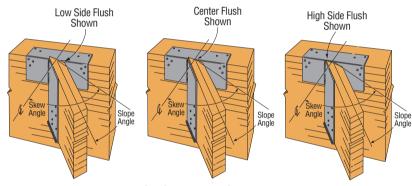
HANGER HEIGHT

 For hangers exceeding the joist height by ½", the factored resistance is 50% of the table value.

SLOPED AND/OR SKEWED SEAT


- GLT/GLTV/HGLT/HGLTV and GLS/HGLS series may be skewed to a maximum of 50° or sloped to a maximum of 45°.
- For skews greater than 15°, multiply the tabulated factored uplift resistance by 0.50.
- For sloped only, multiply the table value by 0.78 for GLT/GLS/GLTV to a maximum of 8135 lbs. For HGLT/HGLS/HGLTV multiply the table value by 0.85 to a maximum of 12,605 lbs.
- For skewed only, multiply the table value by 0.87 for GLT/GLS/GLTV to a maximum of 9510 lbs. For HGLT/HGLS/HGLTV multiply the table value by 0.73 to a maximum of 10,890 lbs.
- For sloped and skewed GLT/GLS/GLTV configurations, multiply the table values by 0.78 to a maximum of 8130 lbs. Sloped and skewed combinations are not allowed for the HGLT/HGLS/HGLTV.


SLOPED TOP FLANGE


- · A top flange may be sloped down left or down right to 30° with or without a sloped and/or skewed seat (see illustration). Reduce tabulated factored resistances using straight-line interpolation.
- Example: For a top flange sloped 30°, reduce resistance to [(90-30)/90] x table value.

OFFSET TOP FLANGE

- The top flange may be offset left or right for placement at the end of a header. Minimum seat width 31/4". The maximum factored resistance is 0.50 of the table value for the GLT/GLTV/GLS and 0.45 for the HGLT/HGLTV/HGLS.
- · For skewed and offset top flange hangers, the maximum factored resistance is 5085 lbs.
- · No uplift resistance.

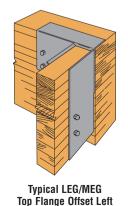
Typical GLT Sloped Down, Skewed Right When ordering, specify Low Side Flush, Center Flush or High Side Flush

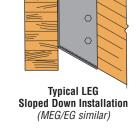
LEG/MEG/EG

See Hanger Options General Notes.

SKEWED SEAT - TOP FLANGE MODELS ONLY

• The LEG/MEG/EG series can be skewed up to 45°. The maximum factored resistance is 13,750 lbs D.Fir-L Glulam and 12,090 lbs Spruce-Pine Glulam for LEG and MEG, 19,710 lbs D.Fir-L Glulam and 18.005 lbs Spruce-Pine Glulam for EG.


SLOPED SEAT - TOP FLANGE MODELS ONLY


• The LEG/MEG/EG series can be sloped up to 45°. The maximum factored resistance is 15,835 lbs D.Fir-L Glulam and 13,920 lbs Spruce-Pine Glulam; see illustration.

NO SLOPED AND SKEWED COMBO AVAILABLE.

OFFSET TOP FLANGE

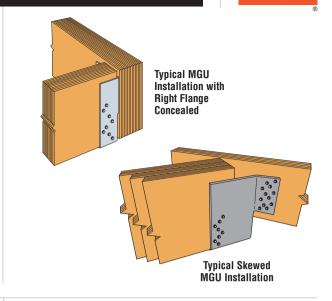
- The LEG/MEG (only) top flange may be offset left or right for placement at the end of a header (see illustration). The maximum factored resistance is 9,280 lbs D.Fir-L Glulam and 8,160 lbs. Spruce-Pine Glulam (Min. H = 11" for MEG, 9" for LEG)
- · No skews allowed on offset hangers.

Specify Angle

LGU/MGU/HGU/HHGU

See Hanger Options General Notes.

CONCEALED FLANGE


- · LGU, MGU, HGU and HHGU hangers are available with one flange concealed. Specify flange to conceal.
- · Factored resistances for one flange-concealed option:
 - LGU 0.83 of published value - HGU 0.70 of published value
 - MGU 0.65 of published value - HHGU 0.84 of published value
- MGU3.63, MGU5.25 and HGU5.25 flanges cannot be concealed.

SKEWED

- LGU, MGU and HGU hangers are available skewed up to 45°.
- Apply the following reduction factors to table values:

Reduction Factors for Skewed LGU, MGU, HGU

Model	Beam Cut	Download	Uplift
LCII	Square Cut	0.90	0.60
LGU	Bevel Cut	0.90	0.60
MGU/HGU less than 6" wide	Square Cut	0.75	0.65
	Bevel Cut	0.80	0.65
MGU/HGU	Square Cut	0.75	0.55
6" and wider	Bevel Cut	0.80	0.55

LGUM/HGUM

See Hanger Options General Notes.

CONCEALED FLANGE

 HGUM hangers are available with one flange concealed. Specify flange to conceal.

Table 1 - HGUM Factored Resistances for One Flange Concealed Applications

	Dimensions (in)		Fasteners		Factored Resistance End of Wall Outside Corner							
	,		CMU/	Joist	CMU	Wall	Concre	te Wall	CMU or Concrete Wall			
No.		Concrete	30131	Uplift	Normal	Uplift	Normal	Uplift	Normal			
NU.	W	Н	Titen HD	SDS Screws	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$		
					lbs	lbs	lbs	lbs	lbs	lbs		
	ни	Sciews	kN	kN	kN	kN	kN	kN				
нспм	51/, to 0	11 +0 20	Q_5/_"v5"	24-1/4"x21/2"	1690	7355	4495	9660	3880	9890		
TIGUIVI	374 10 9	11 10 30	0-78 XJ	24-74 XZ72	7.52	32.72	20.00	42.97	17.26	43.99		

Factored uplift resistances shown are for D.Fir-L joist. For S-P-F joist, multiply the value x 0.72.

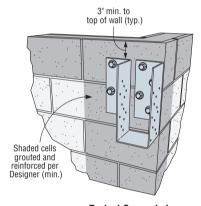
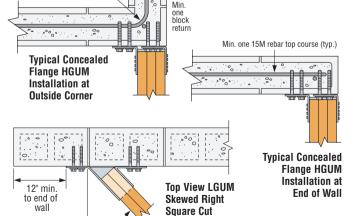
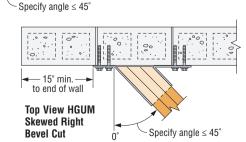

2. See Table 2 for additional notes.

Table 2 - LGUM/HGUM Factored Resistances for Skewed Applications


		Eoo	Fasteners		Factored Resistance			
	Model	гаъ	reners	Uplift Norm		Normal		
		CMU/	Joist	D.Fir-L	S-P-F	Concrete/CMU		
	No.	Concrete	20121	$(K_D = 1.15)$	$(K_D = 1.15)$	$(K_D = 1.00)$		
		Titen HD	SDS Screws	lbs lbs		lbs		
			kN kN		kN	kN		
	LGUM26-2X			875	630	2855		
	LGUM26-3X	4-%"x4"	4-1/4"x21/2"	073	000	2000		
	LGUM26-4X	4-78 A4	4-74 AZ /2	3.89	2.80	12.70		
	LGUM46X			0.00	2.00			
	LGUM28-2X			1410 1015	1015	4470		
	LGUM28-3X	6-¾"x4"	6-1/4"x21/2"	1410	1013	4470		
	LGUM28-4X		6.27 4.5	1 52	19.88			
	LGUM48X			0.21	4.52	19.00		
	LGUM210-2X			1950 1405		6085		
	LGUM210-3X	8-%"x4"	8-1/4"x21/2"	1930	1400	0003		
	LGUM210-4X	U-78 A4	* * * * * * * * * * * * * * * * * * * *		6.25	27.07		
	LGUM410X			0.07	0.23	21.01		
	HGUM5.25X	8-%"x5"	8-1/4"x21/2"	2390 1720	1720	9370		
	HGUM5.50X	0-%8 XO	0-74 XZ72	10.63	7.65	41.68		
	HGUM7.00X	8-%"x5"	8-1/4"x21/2" 2350 10.45	2350	1690	8450		
Ī	HGUM7.25X	0-78 X3		7.52	37.59			
	HGUM9.00X	8-%"x5"	8-1/4"x21/2"	2310	1660	7530		
	TIGUIVIS.UUA	0-%8 XD	U-74 XZ72	10.28	7.38	33.50		

1. Factored uplift values have been increased 15% for wind or earthquake loading with no further increase allowed.

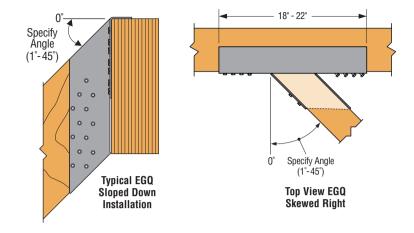

Factored upint values have been increased 15% for wind or earthquake loading with no further increase allowed. Reduce where other load durations govern.
 Factored resistances assume Type S mortar with f'_m = 1087 psi (7.5 Mpa) for 15 MPa concrete block masonry as per Table 4 CSA S304.1-04. For values of f'_m < 1085 psi (7.5 Mpa) multiply the tabulated values by (f'_m/1085)^{0.5}.
 Factored resistances assume a 28 day concrete compressive strength of f'₀ = 2500 psi (17.25 Mpa). For values of f'₀ < 2500 psi (17.25 Mpa) multiply the tabulated values by (f'₀/2500)^{0.5}.
 Factored resistances for concrete block masonry assumes minimum 8" (190 mm) block grouted solid as per CSA A179-04. Specifier to design block wall reinforcing per CSA S304.1-04 to carry the applied load.
 Factored resistances for concrete assumes minimum 8" (203 mm) concrete wall. Specifier to design concrete wall reinforcing as per CSA A23.3-04 to carry the applied load.

Typical Concealed Flange HGUM Installation at Outside Corner

Vertical reha

See Hanger Options General Notes.

HANGER OPTIONS


SKEWED SEAT

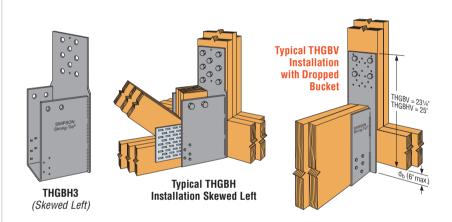
- The EGQ can be skewed a maximum of 45°.
- The factored down resistance is 0.69 of the table value to a maximum of 22,435 lbs (99.76 kN).
- The factored uplift resistance is 100% of the table value.

SLOPED SEAT

- The EGQ can be sloped down a maximum of 45°.
- The factored down resistance is 0.78 of the table value to a maximum of 25,160 lbs (111.92 kN)
- The factored uplift resistance is 100% of the table value.
- Sloped seat installation requires an additional 14 joist screws (supplied with the connector).

NO SLOPED AND SKEWED COMBO AVAILABLE.

THGB/THGBH/THGBV/THGBHV

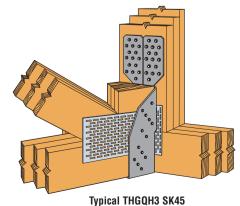

See Hanger Options General Notes.

SKEWED SEAT, 45° MAXIMUM

- Multiply the tabulated factored resistances for uplift and download by the following:
- THGB2/THGB3 0.74 - THGBH3 0.71 - THGBH4 0.56

DROPPED BUCKET

- THGBV/THGBHV backplates can be extended to allow for up to a 6" dropped bucket.
- Factored resistances are 100% of the table values.
- Order as "X" version, specify the total backplate height, BK_PLT, equal to the hanger height (H) plus the dropped bucket amount (db).
 Ex: a THGBV3.62/9 with a 4" dropped bucket would have a total backplate height of 27¼".


THGQH

See Hanger Options General Notes.

SKEWED SEAT

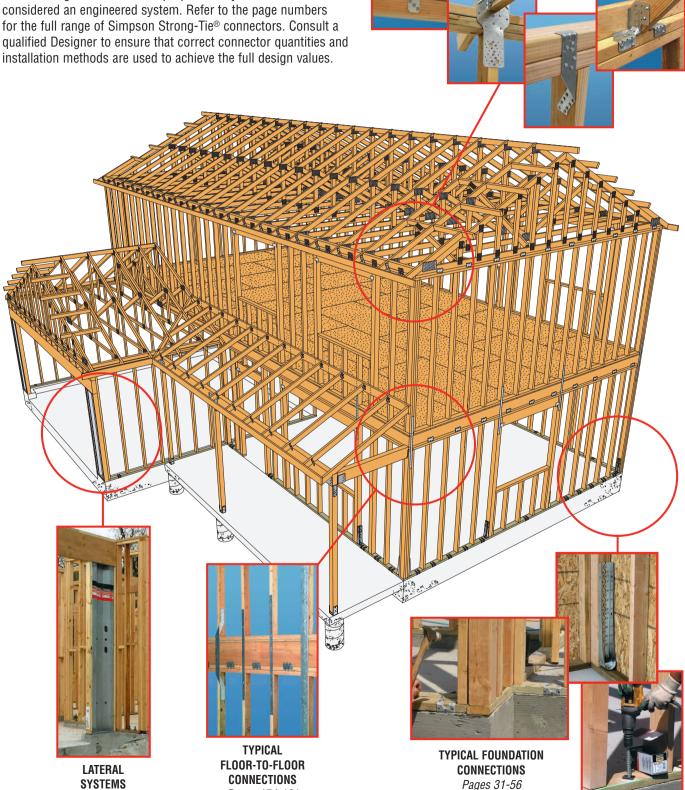
- THGQH may be skewed 45°. Carried members may be bevel cut.
- Connector must be installed centred on girder vertical webs.

			Fasteners		Factored Resistance					
	Max.	N#:	rastellers		D.F	ir-L	S-I	S-P-F		
Model	Girder Truss	Min. Vert.	Header	Joist	Uplift	Normal	Uplift	Normal		
No.	B.C.	Web Size			$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$		
	Depth	0120	пеацеі	Juist	lbs	lbs	lbs	lbs		
					kN	kN	kN	kN		
THGQH2 SK45	2x10	2x10	28-SDS	18-SDS	6275	15440	4520	11115		
THURITZ 3K45	2 2 1 0	2.0	1⁄4"x3"	1⁄4"x3"	27.91	68.68	20.11	1 49.44		
THGQH3 SK45 2x1	2v10	2x12	36-SDS	18-SDS	5345	15440	3845	11115		
	2X10	2	1/4"x41/2"	1/4"x41/2"	23.78	68.68	17.10	49.44		
THGQH4 SK45	2x12	2x12	40-SDS	18-SDS	5345	20310	3845	14625		
THUWH4 SN45	2.1.2	2.8.1.2	1/4"x6"	1/4"x6"	23.78	90.35	17.10	65.06		

Installation Skewed Left

Hanger Options

Catalogue C-CAN12 © 2011 SIMPSON STRONG-TIE COMPANY INC.


CONTINUOUS LOAD TRANSFER PATH

This drawing shows the connection points for a continuous load transfer path from the rafters to the foundation of a two-story house.

Building with a continuous load path is an essential part of creating a structure better able to withstand the forces of mother nature.

This drawing is for illustrative purposes only and should not be considered an engineered system. Refer to the page numbers for the full range of Simpson Strong-Tie® connectors. Consult a

Pages 174-181

Pages 72-74

TECHNICAL PUBLICATIONS

Anchoring and Fastening Systems for Concrete and Masonry

Includes application information, specifications and load values for adhesive and mechanical anchors, P.A.T. and carbide drill bits.

Fastening Systems

The 195-page catalogue showcases our entire line of structural, corrosion-resistant, stainless-steel and collated fasteners as well as our Quik Drive® auto-feed screw fastening systems

Strong Frame™ Ordinary Moment Frame

Provides complete information on the Strong Frame ordinary moment frame, including product information, detailed installation instructions and technical data. Performance data is available for engineered designs as well as prescriptive wall bracing applications.

Strong-Wall® Shearwalls

Features engineered design solutions and applications for Wood and Steel Strong-Wall® shearwalls. Also includes a new garage portal application for Steel Strong-Wall shearwalls and new, code-listed anchorage design solutions.

Cold-Formed Steel Connectors Catalogue

Details Simpson Strong-Tie® structural connectors for cold-formed steel applications. Updates include the addition of new CFS products, Anchor Systems products, Strong Frame™ ordinary moment frame and custom clips and angles.

Not all publications or sofware are available in Limit States Design format. Contact Simpson Strong-Tie for more information.

High Wind-Resistant Structural Connectors

For builders and homeowners on retrofitting and new construction in high wind areas.

Anchoring Solutions for Simpson Strong-Tie® Connectors Catalogue

Simpson Strong-Tie specifications with our connector line. It should be used in conjunction with the current connector and anchor systems catalogues.

Deck Framing Connection Guide

Helps deck builders, inspectors and do-it-yourselfers build a code-compliant, safe deck. The guide covers the critical areas of deck construction to help ensure decks are properly fastened and secured, and meet the required design loads.

Stainless-Steel Connectors

Featuring stainless-steel connectors for using in high exposure and some outdoor environments to protect against corrosion and some preservative-treated woods.

Free Simpson Strong-Tie® Literature CD-ROM

Our Literature CD-ROM features our latest Connectors, Lateral Systems, Fastening Systems and Anchor Systems literature.

In addition to the publications shown above, Simpson Strong-Tie maintains an extensive library of literature, providing information on a wide variety of subjects. You can access the library by visiting <code>www.strongtie.com/tech-bulletins</code> or you can call 800-999-5099 and have publications mailed to you.

VALUE-ADDED SOFTWARE

Simpson Strong-Tie offers software solutions to make product selection and specification easier. Visit www.strongtie.com to download your free versions.

Connector Selector

Finding the right connector just got easier. Input the details of your application and the Simpson Strong-Tie® Connector Selector software suggests appropriate connectors and lists them by their installed cost. The program offers solutions for solid-sawn lumber, I-joists, engineered wood and trusses, and can also take into consideration factors such as wood species and masonry type. Save, print or email your solutions as well as auto-generated job files and material lists.

Strong-Wall® Shearwall Selector

Looking for a faster way to identify shearwalls for your designs? The Strong-Wall® Shearwall Selector software suggests suitable wood or Steel Strong-Wall® solutions based upon the parameters you input for your project. The program features two design modes, engineered-design and prescriptive wall bracing, to suggest appropriate solutions based on framing and foundation preferences. Solutions for one- and two-story applications as well as for balloon-framed walls are available. Output can be saved, printed or attached to email for maximum versatility.

Strong Frame™ Selector

The Strong Frame™ ordinary moment frame takes a lot of the work out of specifying moment frames, and the Strong Frame™ Selector software will make it even easier. The user inputs information such as size of the opening, lateral/gravity loads and drift requirements and the software suggests the appropriate solution from 368 available stock frames. Custom solutions can also be suggested if we don't offer a stock frame to match the application. Save, print or email solutions depending on your needs.

This catalogue reflects changes in the factored resistances and configurations of some Simpson Strong-Tie Company Inc. products. **This catalogue is effective until December 31, 2013,** and supersedes all information in all earlier publications, including catalogues, brochures, fliers, technical bulletins, etc. Use this edition as a current printed reference. Information on factored resistances and configurations is updated annually.

NOTES

Wood Construction Connectors – Canadian Limit States Design	SIMPSON
NOTES	Strong-Tie

NOTES

Supporting You from the Ground Up

At Simpson Strong-Tie, we believe quality is not only about the products we produce, but about the experience and interactions our customers have with us. We work hard to provide value to all our customers whether they're specifying our product or installing it. That means providing things like engineering support, training, product testing, job site visits and nationwide product availability. These services are integral to how we do business with our customers.

In these tough economic times, we also believe it's very important to support the communities we live and work in, which is why for many years we've donated our time and products to Habitat for Humanity. Our local and national support is providing safe, affordable housing to people in need.

Simpson Strong-Tie is committed to supporting our customers and communities while delivering high-quality, innovative structural and fastening products. You've trusted us for more than 50 years, and we will continue to earn that trust.

Together We're Building Safer, Stronger Homes and Buildings

Every day we work hard to earn your business, blending the talents of our people with the quality of our products and services to exceed your expectations. This is our pledge to you.

Home Office

5956 W. Las Positas Boulevard Pleasanton, CA 94588 Tel: 925/560-9000 • Fax: 925/847-1603

Northwest USA

5151 S. Airport Way Stockton, CA 95206 Tel: 209/234-7775 • Fax: 209/234-3868

Southwest USA

12246 Holly Street Riverside, CA 92509 Tel: 714/871-8373 • Fax: 951/369-2889

Northeast USA

2600 International Street Columbus, OH 43228 Tel: 614/876-8060 • Fax: 614/876-0636

Southeast USA

2221 Country Lane McKinney, TX 75069 Tel: 972/542-0326 • Fax: 972/542-5379

Quik Drive® Factory

375 N. Belvedere Drive Gallatin, TN 37066 Tel: 888/487-7845 • Fax: 615/451-9806

INTERNATIONAL FACILITIES

Please visit our website for address and contact information for our European facilities.

(800) 999-5099 www.strongtie.com

Kent Specials Factory

22035 W. Valley Highway Kent, WA 98032 Toll Free: 877/564-2041

Eagan Warehouse & Specials Factory

3711 Kennebec Drive, Suite 700 Eagan, Minnesota 55122 Tel: 651/681-2061 • Fax: 651/681-2046

Eastern Canada

5 Kenview Boulevard Brampton, ON L6T 5G5 Tel: 905/458-5538 • Fax: 905/458-7274

Western Canada

11476 Kingston Street Maple Ridge, B.C. V2X 0Y5 Tel: 604/465-0296 • Fax: 604/465-0297

Simpson Strong-Tie Anchor Systems®

136 Official Road Addison, IL 60101 Tel: 630/543-2797 • Fax: 630/543-7014

Distribution Centers

Enfield, CT; High Point, NC; Jacksonville, FL; Jessup, MD; Ontario, CA